Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2212-7976
  • E-ISSN: 1874-477X

Abstract

Nanotechnology is a promising area of research in science and technology with potential benefits in automotive, aircraft, construction, energy, healthcare, agriculture, food processing, although it has its own risks in environmental sustainability. Recent advances in this area have stimulated research and their applications in different fields, with important results in mechanical engineering and health engineering. The aim of this article is to give an overview of some recent advances of nanotechnology, exploring emerging applications of these typical technologies. Examples of some successful practical applications and patents in mechanical and healthcare engineering based on this technology are given, and an analysis of the prospects and main problems of this area is also conducted. Furthermore, mechanical engineers and health professionals would find this review valuable in updating their knowledge on the latest developments in nanotechnology applications.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976325883240910043819
2025-06-01
2025-09-06
Loading full text...

Full text loading...

References

  1. NobileL. NobileS. Recent advances of nanotechnology in medicine and engineering.AIP Conf. Proc.2016173602005810.1063/1.4949633
    [Google Scholar]
  2. JeevanandamJ. BarhoumA. ChanY.S. DufresneA. DanquahM.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations.Beilstein J. Nanotechnol.201891050107410.3762/bjnano.9.9829719757
    [Google Scholar]
  3. BarhoumA. García-BetancourtM.L. JeevanandamJ. HussienE.A. MekkawyS.A. MostafaM. OmranM.M. S AbdallaM. BechelanyM. Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations.Nanomaterials (Basel)202212217710.3390/nano1202017735055196
    [Google Scholar]
  4. BarhoumA. García-BetancourtM.L. RahierH. Van AsscheG. Physicochemical characterization of nanomaterials: Polymorph, composition, wettability, and thermal stability.Emerging Applications of Nanoparticles and Architectural NanostructuresAmsterdam, The NetherlandsElsevier Inc.201825527810.1016/B978‑0‑323‑51254‑1.00009‑9
    [Google Scholar]
  5. VaseghiZ. NematollahzadehA. Nanomaterials: Types, synthesis, and characterization.Nanomaterials Green synthesis of nanomaterials for bioenergy applications. SrivastavaN. SrivastavaM. MishraP.K. GuptaV.K. Wiley2020238210.1002/9781119576785.ch2
    [Google Scholar]
  6. KolahalamL.A. Kasi ViswanathI.V. DiwakarB.S. GovindhB. ReddyV. MurthyY.L.N. Review on nanomaterials: Synthesis and applications.Mater. Today Proc.20191862182219010.1016/j.matpr.2019.07.371
    [Google Scholar]
  7. EaliasAM. SaravanakumarMP. A review on the classification, characterization, synthesis of nanoparticles and their application.IOP Conf. Ser. Mater. Sci. Eng.2017263303201910.1088/1757‑899X/263/3/032019
    [Google Scholar]
  8. IjazI. GilaniE. NazirA. BukhariA. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles.Green Chem. Lett. Rev.202013322324510.1080/17518253.2020.1802517
    [Google Scholar]
  9. JamkhandePG. GhuleNW. BamerAH. KalaskarMG. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications.J Drug Delivery Sci Technol201953710117410.1016/j.jddst.2019.101174
    [Google Scholar]
  10. PatelJ.K. PatelA. BhatiaD. Introduction to nanomaterials and nanotechnology.Emerging Technologies for Nanoparticle Manufacturing PatelJ.K. PathakY.V. Cham, SwitzerlandSpringer2021323
    [Google Scholar]
  11. MarceloG.A. LodeiroC. CapeloJ.L. LorenzoJ. OliveiraE. Magnetic, fluorescent and hybrid nanoparticles: From synthesis to application in biosystems.Mater. Sci. Eng. C202010611010410.1016/j.msec.2019.11010431753374
    [Google Scholar]
  12. AbidN. KhanA.M. ShujaitS. ChaudharyK. IkramM. ImranM. HaiderJ. KhanM. KhanQ. MaqboolM. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review.Adv. Colloid Interface Sci.202230010259710.1016/j.cis.2021.10259734979471
    [Google Scholar]
  13. BinnigG. QuateC.F. GerberC. Atomic force microscope.Phys. Rev. Lett.198656993093310.1103/PhysRevLett.56.93010033323
    [Google Scholar]
  14. BinnigG. Atomic force microscope and method for imaging surfaces with atomic resolution.US Patent US47243181985
  15. BinnigG. RohrerH. GerberC. WeibelE. Surface studies by scanning tunneling microscopy.Phys. Rev. Lett.1982491576110.1103/PhysRevLett.49.57
    [Google Scholar]
  16. BinnigG. RohrerH. Scanning tunneling microscope.US Patent 4,343,9931980
  17. GerberC. LangH.P. How the doors to the nanoworld were opened.Nat. Nanotechnol.2006113510.1038/nnano.2006.7018654126
    [Google Scholar]
  18. Liu JLL, Bashir S Advanced nanomaterials and their applications in renewable energy. 1st ed. Burlington, MA: Elsevier Science;2015436
    [Google Scholar]
  19. SinghV.V. WangJ. Nano/micromotors for security/defense applications. A review.Nanoscale2015746193771938910.1039/C5NR06254C26554557
    [Google Scholar]
  20. HanB. DingS. YuX. Intrinsic self-sensing concrete and structures: A review.Measurement20155911012810.1016/j.measurement.2014.09.048
    [Google Scholar]
  21. KhitabA. AnwarW. MansouriI. MehmoodI. TariqM.K. Future of civil engineering materials: A review from recent developments.Rev. Adv. Mater. Sci.20154212027
    [Google Scholar]
  22. RamachandranK. VijayanP. MuraliG. VatinN.I. A review on principles, theories and materials for self sensing concrete for structural applications.Materials (Basel)20221511383110.3390/ma1511383135683133
    [Google Scholar]
  23. KumarG. SharmaA. SharmaB. MittalP. CNT-reinforced metal matrix composites: A review.In: Biennial international confernce on future learning aspects of mechanical engineering. Springer: Singapore.202235736810.1007/978‑981‑99‑4758‑4_32
    [Google Scholar]
  24. KitchenG. SunB. KangS.H. Bioinspired nanocomposites with self-adaptive mechanical properties.Nano Res.202417263364810.1007/s12274‑023‑6141‑9
    [Google Scholar]
  25. JiangQ.G. CaoC. LinT.C. WuS. LiX. Strong and tough glass with self‐dispersed nanoparticles via solidification.Adv. Mater.20193133190180310.1002/adma.20190180331222850
    [Google Scholar]
  26. SivakumarV.L. ManikandanS. RichardT. VeeraraghavanV.P. VickramAS. SaravananA. Recent trends in tribology: Advanced surface coatings and lubrication techniques.SSRG Int. J. Mech. Eng.20231012263410.14445/23488360/IJME‑V10I12P104
    [Google Scholar]
  27. MoustafaE.B. TahaM.A. The effect of mono and hybrid additives of ceramic nanoparticles on the tribological behavior and mechanical characteristics of an Al-based composite matrix produced by friction stir processing.Nanomaterials (Basel)20231314214810.3390/nano1314214837513159
    [Google Scholar]
  28. ShadangiY. ChattopadhyayK. MukhopadhyayN.K. Powder metallurgical processing of Al matrix composite reinforced with AlSiCrMnFeNiCu high-entropy alloys: Microstructure, thermal stability, and microhardness.J. Mater. Res.202338124826410.1557/s43578‑022‑00866‑x
    [Google Scholar]
  29. RochaF. SimõesS. Production and characterization of aluminum reinforced with SiC nanoparticles.Metals (Basel)2023139162610.3390/met13091626
    [Google Scholar]
  30. MoustafaE.B. AljabriA. AbushanabW.S. GhandourahE. TahaM.A. KhoshaimA.B. YounessR.A. MohamedS.S. A comprehensive study of Al-Cu-Mg system reinforced with nano-ZrO2 particles synthesized by powder metallurgy technique.Sci. Rep.2024141286210.1038/s41598‑024‑53061‑938311645
    [Google Scholar]
  31. SethyD. BalasubramaniamK. Smart graphene nanoplatelet strain sensor for natural frequency sensing of stainless steel (SS304) and human health monitoring.Materials (Basel)20221511392410.3390/ma1511392435683216
    [Google Scholar]
  32. TangC. WangY. LiY. ZengS. KongL. LiL. SunJ. ZhuM. DengT. A review of graphene-based temperature sensors.Microelectron. Eng.202327811201510.1016/j.mee.2023.112015
    [Google Scholar]
  33. QiaoX. ZhangY. MengD. The progress and perspectives of nanotechnology applied in nontraditional precision machining processes for advanced industrial applications.Recent Pat. Nanotechnol.2022161182910.2174/187221051566621011409232933459252
    [Google Scholar]
  34. De SimoneJM. RollandJP. MajnorBW. EulissLE. RothrockGD. DennisAE. SamulskiET. Samul-skiJR. Methods for fabricating isolated micro or nano structures using soft or imprint lithography.US Patent 20230248651A12023
  35. KausarA. AhmadI. ZhaoT. AldaghriO. IbnaoufK.H. EisaM.H. Graphene nanocomposites as innovative materials for energy storage and conversion—design and headways.Int. J. Mol. Sci.202324141159310.3390/ijms24141159337511354
    [Google Scholar]
  36. KumariK. AhmaruzzamanM. SnO2 quantum dots (QDs): Synthesis and potential applications in energy storage and environmental remediation.Mater. Res. Bull.202316811244610.1016/j.materresbull.2023.112446
    [Google Scholar]
  37. ZhengH. NiuB. WangY. ZhongP. MaX. JavedH.M.A. Two-dimensional transitional metal disulfides as charge transport layers in organic-inorganic perovskite solar cells.Recent Pat. Nanotechnol.202216141710.2174/187221051466620122309383833357206
    [Google Scholar]
  38. Copper zinc tin sulfur selenium/perovskite three-terminal laminated solar cell and preparation method thereof.CN Patent 116583130A2023
  39. BathulaB. GurugubelliT.R. YooJ. YooK. Recent progress in the use of SnO2 quantum dots: From synthesis to photocatalytic applications.Catalysts202313476510.3390/catal13040765.
    [Google Scholar]
  40. SenthilkumarJ. DharunK. Sanchit KumarT. Suresh KumarR. JayanthiN. VenkateshS. Impact of nano catalyst in the biodiesel production for direct injection diesel engine: A review.Environ. Qual. Manage.202433425726610.1002/tqem.22057
    [Google Scholar]
  41. AnishM. RajM. HariharanV Exploring the potential of nanoparticles in biofuel production: Challenges and future directions – A comprehensive review.Recent Pat. Mech. Eng.202410.2174/0122127976287172240228162047.
    [Google Scholar]
  42. SathishT. AğbulutÜ. MuthukumarK. SaravananR. AlwetaishiM. ShaikS. SaleelC.A. Pore size variation of nano-porous material fixer on the engine bowl and its combined effects on hybrid nano-fuelled CI engine characteristics.Fuel202334512814910.1016/j.fuel.2023.128149
    [Google Scholar]
  43. MohammadiF. AzadiM. ParastM.S.A. Influence of specimen geometry and notch on fatigue lifetime and fracture behavior of aluminum-based nanocomposite under stress-controlled fully-reversed bending loads.Recent Pat. Nanotechnol.2024181728710.2174/187221051666622081711530035980048
    [Google Scholar]
  44. YuanqingC. WeiqingL. Aluminum-based nanocomposite powder for 3D printing and preparation method thereof.CN Patent 112692295A2021
  45. ZhiyongC. RichuW. ChaoqunP. YanF. Preparing method for aluminum-based nano composite material.CN Patent 108746625A2018
  46. JiamiaoL. Aluminum-based nano composite material and preparation method thereof.CN Patent 109897987A2019
  47. KaracaE. AcaralıN. Application of graphene and its derivatives in medicine: A review.Mater. Today Commun.20233710705410.1016/j.mtcomm.2023.107054
    [Google Scholar]
  48. GaoY. LiuJ. YangS. Liquid crystalline reduced graphene oxide composite fibers as artificial muscles.Mater. Today202369193010.1016/j.mattod.2023.08.003
    [Google Scholar]
  49. AntognoliL. MarchionniP NobileV Assessment of cardio-respiratory rates by non-invasive measurement methods in hospitalized preterm neonates.IEEE International Symposium on Medical Measurements and Applications (MeMeA)Rome,Italy20181510.1109/MeMeA.2018.8438772
    [Google Scholar]
  50. TanS. AfrojS. LiD. IslamM.R. WuJ. CaiG. KarimN. ZhaoZ. Highly sensitive and extremely durable wearable e-textiles of graphene/carbon nanotube hybrid for cardiorespiratory monitoring.iScience202326410640310.1016/j.isci.2023.10640337063469
    [Google Scholar]
  51. GuoP. TianB. LiangJ. YangX. TangG. LiQ. LiuQ. ZhengK. ChenX. WuW. An all‐printed, fast‐response flexible humidity sensor based on hexagonal‐WO 3 nanowires for multifunctional applications.Adv. Mater.20233541230442010.1002/adma.20230442037358069
    [Google Scholar]
  52. PangZ. ZhaoY. LuoN. ChenD. ChenM. Flexible pressure and temperature dual-mode sensor based on buckling carbon nanofibers for respiration pattern recognition.Sci. Rep.20221211743410.1038/s41598‑022‑21572‑y36261444
    [Google Scholar]
  53. NobileS. NobileL. Nanotechnology for biomedical applications: Recent advances in neurosciences and bone tissue engineering.Polym. Eng. Sci.201757764465010.1002/pen.24595
    [Google Scholar]
  54. MotieeE.S. KarbasiS. BidramE. SheikholeslamM. Investigation of physical, mechanical and biological properties of polyhydroxybutyrate-chitosan/graphene oxide nanocomposite scaffolds for bone tissue engineering applications.Int. J. Biol. Macromol.202324712559310.1016/j.ijbiomac.2023.12559337406897
    [Google Scholar]
  55. SawamotoK. ÁlvarezJ.V. HerreñoA.M. Otero-EspinarF.J. CouceM.L. Alméciga-DíazC.J. TomatsuS. Bone-specific drug delivery for osteoporosis and rare skeletal disorders.Curr. Osteoporos. Rep.202018551552510.1007/s11914‑020‑00620‑432845464
    [Google Scholar]
  56. AhmadJ. AlbarqiH.A. AhmadM.Z. OrabiM.A.A. MdS. BandopadhyayR. AhmedF. KhanM.A. AhamadJ. MishraA. Utilization of nanotechnology to improve bone health in osteoporosis exploiting Nigella sativa and its active constituent thymoquinone.Bioengineering (Basel)202291163110.3390/bioengineering911063136354542
    [Google Scholar]
  57. RahmanM.M. IslamM.R. AkashS. Harun-Or-RashidM. RayT.K. RahamanM.S. IslamM. AnikaF. HosainM.K. AoviF.I. HemegH.A. RaufA. WilairatanaP. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance.Biomed. Pharmacother.202215311330510.1016/j.biopha.2022.11330535717779
    [Google Scholar]
  58. LiuH. ZhangH. HanY. HuY. GengZ. SuJ. Bacterial extracellular vesicles-based therapeutic strategies for bone and soft tissue tumors therapy.Theranostics202212156576659410.7150/thno.7803436185613
    [Google Scholar]
  59. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S14631529042776
    [Google Scholar]
  60. NobileS. MarchionniP. GidiucciC. CorreaniA. PalazziM.L. SpagnoliC. RondinaC. CarnielliV.P. Oxygen saturation/FIO2 ratio at 36 weeks’ PMA in 1005 preterm infants: Effect of gestational age and early respiratory disease patterns.Pediatr. Pulmonol.201954563764310.1002/ppul.2426530688034
    [Google Scholar]
  61. NobileS. MarchionniP. VentoG. VendettuoliV. MarabiniC. LioA. RicciC. MercadanteD. ColnaghiM. MoscaF. RomagnoliC. CarnielliV. New insights on early patterns of respiratory disease among extremely low gestational age newborn.Neonatology20171121535910.1159/00045670628315881
    [Google Scholar]
  62. Dell’OrtoV. NobileS. CorreaniA. MarchionniP. GirettiI. RondinaC. BurattiniI. PalazziM.L. CarnielliV.P. Early nasal continuous positive airway pressure failure prediction in preterm infants less than 32 weeks gestational age suffering from respiratory distress syndrome.Pediatr. Pulmonol.202156123879388610.1002/ppul.2567834610212
    [Google Scholar]
  63. MansfieldR. CeculaP. PedrazC.T. ZimianitiI. ElsaddigM. ZhaoR. SathiyamurthyS. McEnieryC.M. LeesC. BanerjeeJ. Impact of perinatal factors on biomarkers of cardiovascular disease risk in preadolescent children.J. Hypertens.20234171059106710.1097/HJH.000000000000345237115847
    [Google Scholar]
  64. NobileS. Di Sipio MorgiaC. VentoG. Perinatal origins of adult disease and opportunities for health promotion: A narrative review.J. Pers. Med.202212215710.3390/jpm1202015735207646
    [Google Scholar]
  65. BolteC. UstiyanV. RenX. DunnA.W. PradhanA. WangG. KolesnichenkoO.A. DengZ. ZhangY. ShiD. GreenbergJ.M. JobeA.H. KalinT.V. KalinichenkoV.V. Nanoparticle delivery of proangiogenic transcription factors into the neonatal circulation inhibits alveolar simplification caused by hyperoxia.Am. J. Respir. Crit. Care Med.2020202110011110.1164/rccm.201906‑1232OC32240596
    [Google Scholar]
  66. NobileS. MarchionniP. NovielloC. CarnielliV.P. Correlation between cardiorespiratory events and gastro-esophageal reflux in preterm and term infants: Analysis of predisposing factors.Early Hum. Dev.2019134141810.1016/j.earlhumdev.2019.05.00331112857
    [Google Scholar]
  67. DiefenthaelerH.S. BianchinM.D. MarquesM.S. NonnenmacherJ.L. BenderE.T. BenderJ.G. NeryS.F. CichotaL.C. Külkamp-GuerreiroI.C. Omeprazole nanoparticles suspension: Development of a stable liquid formulation with a view to pediatric administration.Int. J. Pharm.202058911981810.1016/j.ijpharm.2020.11981832866648
    [Google Scholar]
  68. MarquesM.S. LimaL.A. PolettoF. ContriR.V. Kulkamp GuerreiroI.C. Nanotechnology for the treatment of paediatric diseases: A review.J. Drug Deliv. Sci. Technol.20227510362810.1016/j.jddst.2022.103628
    [Google Scholar]
  69. AzevedoA.P.G.B. MüllerN. Sant´AnnaC. Applications of silver nanoparticles in patent research.Recent Pat. Nanotechnol.202418336137310.2174/187221051766623042715592137106512
    [Google Scholar]
  70. RobertC. YulinW. DavidL. Carbon supported surface functionalized silver nanoparticles.EP Patent 4302902A12024
  71. DanG. Concentrated dispersions of uniform silver nanoparticles and methods for preparing the same.US Patent 2023001475A12023
  72. TakamichiM. JunichiroM. NaruhitoI. MasatoshiO. Silver nanoparticles.US Patent 2021346949A12021
  73. ChintalapudiK. PannemR.M.R. Enhanced chemical resistance to sulphuric acid attack by reinforcing graphene oxide in ordinary and Portland Pozzolana cement mortars.Case Stud. Constr. Mater.202217e0145210.1016/j.cscm.2022.e01452.
    [Google Scholar]
  74. ZaidO. Martínez-GarcíaR. AslamF. Influence of wheat straw ash as partial substitute of cement on properties of high-strength concrete incorporating graphene oxide.J. Mater. Civ. Eng.202234110402229510.1061/(ASCE)MT.1943‑5533.0004415
    [Google Scholar]
  75. BonaguraM. NobileL. Artificial Neural Network (ANN) approach for predicting concrete compressive strength by SonReb.SDHM202115212513710.32604/sdhm.2021.015644
    [Google Scholar]
  76. JiZ. GuoW. WoodE.L. LiuJ. SakkiahS. XuX. PattersonT.A. HongH. Machine learning models for predicting cytotoxicity of nanomaterials.Chem. Res. Toxicol.202235212513910.1021/acs.chemrestox.1c0031035029374
    [Google Scholar]
  77. El-KallinyA.S. Abdel-WahedM.S. El-ZahharA.A. HamzaI.A. Gad-AllahT.A. Nanomaterials: A review of emerging contaminants with potential health or environmental impact.Discov. Nano20231816810.1186/s11671‑023‑03787‑837382722
    [Google Scholar]
  78. LiuY. ZhuS. GuZ. ChenC. Toxicology of nanomaterials: From toxicokinetics to toxicity mechanisms.Reference Module in Materials Science and Materials Engineering YinY. YuY. XiaY. Elsevier202171873210.1016/B978‑0‑12‑822425‑0.00025‑7
    [Google Scholar]
  79. RajaT. RajaK.V. ReddyM.I. Al ObaidS. AlharbiS.A. KalamM.A. Studies on mechanical and morphological behaviors of banyan/kevlar fibers reinforced MgO particulates hybrid aliphatic epoxy composite.Int. J. Adv. Manuf. Technol.20231810.1007/s00170‑023‑11852‑w
    [Google Scholar]
  80. ThandavamoorthyR. KumarS.L. AdinarayananA. Al ObaidS. AlharbiS.A. KalamM.A. Evaluation of mechanical and water absorption properties of kevlar/carbon/basalt fibers reinforced nano cellulose particulates Bisphenol-F LY556 epoxy composite.Int. J. Adv. Manuf. Technol.202311010.1007/s00170‑023‑12152‑z
    [Google Scholar]
  81. KumaranN. RameshS. ChitraS. Bandwidth and frequency agile MIMO antenna for cognitive vehicular communications.Int. J. Commun. Syst.20233614555110.1002/dac.5551
    [Google Scholar]
  82. KumaranN. RameshS. Analysis on hybrid beamforming for 5G energy efficient communications.J Green Eng202010111135211359
    [Google Scholar]
/content/journals/meng/10.2174/0122127976325883240910043819
Loading
/content/journals/meng/10.2174/0122127976325883240910043819
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test