Medicinal Chemistry - Volume 21, Issue 10, 2025
Volume 21, Issue 10, 2025
-
-
Synthetic Strategies for the Development of Novel Heterocycles as Larvicides Targeting Aedes aegypti Linn.
More LessBackgroundOwing to their extensive utilization as pesticides, heterocycles assume a fundamental role in the management of vector-borne diseases. Despite the presence of numerous heterocyclic compounds in commercial insecticides and larvicides, resistance to pesticides still demands novel strategies to current pest control methods. Considering these facts, this review aims to survey the synthesis and SAR of heterocyclic molecules with larvicidal activity against Aedes aegypti Linn.
MethodsComprehensive searches across the major databases were conducted to identify heterocyclic compounds exhibiting larvicidal efficacy against Ae. aegypti with the goal to unveil the main characteristics that are essential for exhibiting larvicidal activity.
ResultsActive compounds display LC50 values varying from 0.36 to 2907 µM. Fifteen heterocyclic compounds displayed larvicidal activities below 20 µM. Five-membered ring molecules containing nitrogen and oxygen have displayed larvicidal activity according to the position of heteroatoms in the ring. Molecules bearing 1,2,4-oxadiazole and 1,2-oxazole moieties have been shown to be more active than 1,3,4-oxadiazole derivatives. Compounds possessing the indole scaffold have proven to be more potent than isatin and pyrimidine derivatives. Structural characteristics other than a heterocyclic moiety, such as the presence of halogens and less ionized and polar molecules, may also play a role in determining the final larvicidal activity.
ConclusionThe rationale behind this review is to stimulate the discovery of innovative heterocyclic larvicides. Thus, it is important to continue synthesizing new scaffolds to comprehensively elucidate the structure-activity relationship for each heterocyclic moiety outlined in this investigation.
-
-
-
A Comprehensive Review: Synthesis and Pharmacological Activities of 1,3,4-Oxadiazole Hybrid Scaffolds
More LessAuthors: Suman Lata, Lucky Choudhary, Ankita Bharwal, Amit Pandit and Vikrant AbbotIntroductionHeterocyclic derivatives, particularly those containing heteroatoms such as oxygen and nitrogen, represent a significant portion of currently marketed drugs. Among these, the aromatic heterocycle 1,3,4-oxadiazole, characterized by an N=C=O-linkage, stands out due to its remarkable biological activities. These activities include anti-inflammatory, anti-cancer, antioxidant, anti-tubercular, antiviral, anti-diabetic, and antibacterial effects. Notably, several commercially available medications, such as tiodazosin, raltegravir, zibotentan, and nesapidil, incorporate this structural motif.
MethodsThis review compiles and analyzes existing synthetic methods for preparing 1,3,4-oxadiazole and its derivatives. By examining various synthetic routes and methodologies, the review provides a detailed overview of the strategies employed to generate these biologically active compounds.
ResultsThe review highlights the potential of 1,3,4-oxadiazole derivatives in addressing the toxicity, side effects, and drug resistance commonly associated with existing anticancer therapies. By combining the 1,3,4-oxadiazole moiety with other heteroatoms, novel hybrid derivatives have been synthesized, demonstrating enhanced pharmacological activities across various therapeutic areas.
ConclusionThis comprehensive review offers valuable insights into the synthesis and pharmacological applications of 1,3,4-oxadiazoles. It serves as a crucial resource for researchers exploring the development of new therapeutic compounds, with the ultimate goal of improving public health. The review builds on existing literature from the last two decades to present an exhaustive examination of the potential of 1,3,4-oxadiazole derivatives in drug development.
-
-
-
Pyridine Derivatives: A Comprehensive Review of Their Potential as Anti-Diabetic Agents
More LessAuthors: Deepak Dua, Prakash Kumar, Riya Anand, Salvi Sood and Gurdeep SinghBackgroundDiabetes mellitus and obesity are two of the most frequent health conditions in the world, prompting medical researchers to seek novel effective treatments. According to World Health Organization (WHO) regulations and several research studies, diabetes is regarded as a significant and leading health concern worldwide. The search for efficient and safe antidiabetic drugs has led to the study of pyridine derivatives, a family of molecules with a wide range of pharmacological characteristics. Pyridines are important heterocyclic chemicals renowned for their various pharmacological properties.
MethodsMaterials were compiled using the three databases of ScienceDirect, PubMed, and Google Scholar. For this study, only English-language publications have been evaluated based on their titles, abstracts, and full texts using keywords like diabetes, pyridine Derivatives, α-glucosidase inhibitors, and α-amylase inhibitors.
ResultsPyridine and its derivatives have received a lot of attention due to their wide range of potential uses in medicinal chemistry and pharmacology. Structural alterations and optimization efforts have resulted in higher effectiveness, selectivity, and safety characteristics. These discoveries highlight the importance of pyridine analogues as a novel class of therapeutic agents for diabetes management.
ConclusionThe review highlights the significance of pyridine analogues in the development of antidiabetic treatments, opening new avenues for developing drugs and clinical use. The ongoing advancements in the discovery of pyridine derivatives underscore their potential as prospective agents in diabetic treatments.
-
-
-
Exploring the Therapeutic Potential of 1,3-Thiazole: A Decade Overview
More LessAuthors: Ajit Manchare, Swapnali Parit, Mukta Lele and Navnath HatvateThe escalating prevalence of lifestyle and microbial diseases poses a significant threat to human well-being, necessitating the discovery and development of novel drugs with distinct modes of action. Addressing this challenge involves employing innovative strategies, and one current approach involves utilizing heterocyclic compounds to synthesize hybrid molecules. These hybrids have resulted from the fusion of two or more bioactive heterocyclic moieties into a single molecule. The focus of this review revolves around the strategic incorporation of heterocycles, particularly thiazole derivatives. Thiazole derivatives, due to their unique structural features, are explored in depth within this review paper. The paper comprehensively outlines diverse hybridization strategies of thiazole derivatives, highlighting their vibrant biological activities mainly in the last decade, 2014-2024. By presenting an extensive overview, the review aims to provide valuable insights into the potential of thiazole derivatives as promising candidates for drug development. The insights garnered from this paper are expected to offer valuable guidance for future drug design endeavors, providing a foundation for developing novel and effective drugs to combat lifestyle diseases and microbial resistance.
-
-
-
Carboxylic Acids as Activators of NRF2: Antioxidant and Anti-inflammatory Effects
More LessThe complex interaction between carboxylic acids and molecular signaling pathways, particularly the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, is of growing interest in medicinal chemistry due to its potential therapeutic benefits. Carboxylic acids, which are widely distributed in nature, are versatile regulators of cellular responses due to their ability to interact with multiple signaling pathways, especially those involved in combating oxidative stress and inflammation. Several carboxylic acids exhibit significant antioxidant and anti-inflammatory activities. They have been identified as potential activators of the NRF2 transcription factor, a key regulator of endogenous antioxidants that maintains cellular redox homeostasis and modulates the production of several antioxidant proteins and detoxifying enzymes. The potential effects of carboxylic acid-NRF2 crosstalk are exhibited in a variety of physiological processes, such as attenuation of oxidative stress and inflammation, detoxification of xenobiotics, and modulation of the immune system. The molecular docking of some carboxylic acids with NRF2 protein showed that their binding affinities were comparable to dimethyl fumarate, a reference drug. The current review explores the evolving landscape of carboxylic acid-NRF2 interactions and their mechanisms of action, highlighting the possible impact of their antioxidant and anti-inflammatory effects on inflammation and oxidative stress-mediated diseases. The natural and synthetic sources of NRF2-activating carboxylic acids and the role of their chemical and physical properties in influencing NRF2-inducing activities were discussed. Their potential challenges as future drugs and clinical trial prospects were also highlighted. Carboxylic acid-NRF2 interactions offer potential for developing therapies that will attenuate oxidative stress and inflammation.
-
-
-
Identification of Natural Terpenoid Compounds as Potential Inhibitors of Nucleoprotein of Influenza A Virus using in silico Approach: ADMET, Molecular Docking, and Molecular Dynamic Simulation
More LessBackgroundWe continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.
ObjectiveThe objective of this study is to explore the inhibitory potential of terpenoid compounds against the Nucleoprotein (NP) of influenza A virus, which is a highly effective drug target due to its ability to facilitate the transcription and replication of viral RNA.
MethodsIn silico research was performed to identify potential inhibitors of NP. Molecular docking studies were conducted to assess the binding of terpenoid compounds to the active site residues of the target protein. The most promising hits were then subjected to molecular dynamics simulations to examine the stability of the protein-ligand complexes. Additionally, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) studies and Lipinski's rule of five were employed to evaluate the drug safety and druglikeness of the compounds.
ResultsDocking studies revealed that the terpenoid compounds bind strongly to the active site residues of the NP protein. Molecular dynamics simulations demonstrated the stability of the protein-ligand complexes for the best-hit compounds. ADMET studies and Lipinski's filter indicated that the compounds exhibit desirable drug safety and drug-likeness profiles.
ConclusionThis work may contribute significantly to drug discovery and the development of therapeutic agents against the influenza A virus. The identification of terpenoid compounds that bind strongly to the NP protein and exhibit favorable drug-like properties through in silico studies provides a promising foundation for further research and the development of potential inhibitors targeting this critical viral protein.
-
-
-
Reducing Cabozantinib Toxicity in Renal Cell Carcinoma Treatment through Structural Modifications
More LessAuthors: Jiaxiang Guo, Xiaotao Yin, Yongliang Lu and Yu YangBackground and ObjectivesCabozantinib, a Tyrosine Kinase Inhibitor (TKI), is widely used in Renal Cell Carcinoma (RCC) therapy but often causes serious side effects such as myelosuppression, immunosuppression, and angiopathy. This study aims to identify key protein targets responsible for the therapeutic efficacy and adverse reactions of cabozantinib and to explore structural modifications to reduce toxicity while preserving efficacy.
MethodsA non-randomized computational approach was employed, screening 400 potential protein targets using SwissTargetPrediction and ChemBL databases. Molecular docking and Structure-Activity Relationship (SAR) analysis were performed to assess interactions between cabozantinib and identified targets, focusing on structural elements contributing to toxicity.
ResultsThree primary proteins were identified as responsible for the anti-tumor effects of cabozantinib, while three others were linked to its side effects. Docking analysis revealed that the methoxyphenyl group in cabozantinib formed undesirable hydrogen bonds with toxicity-related proteins. Modulating these off-target interactions by minimizing hydrogen bonding in this region could significantly reduce adverse effects.
ConclusionThese findings provide structural insights into cabozantinib’s dual effects and suggest optimization strategies for TKI design, offering a pathway toward safer and more effective RCC treatments.
-
-
-
Natural Compounds from Alhagi maurorum as Potential HCC and HepG2 Inhibitors: An Integrated Study using Pharmacophore Development, Molecular Docking, MD Simulation, and DFT Approaches
More LessBackgroundThe rise in the frequency of liver cancer all over the world makes it a prominent area of research in the discovery of new drugs or repurposing of existing drugs.
MethodsThis article describes the pharmacophore-based structure-activity relationship (3D-QSAR) on the secondary metabolites of Alhagi maurorum to inhibit human liver cancer cell lines Hepatocellular carcinoma (HCC) and hepatoma G2 (HepG2) which represents the molecular level understanding for isolated phytochemicals of Alhagi maurorum. The definite features, such as hydrophobic regions, average shape, and active compounds’ electrostatic patterns, were mapped to screen phytochemicals. The 3D-QSAR model generates pharmacophore-based descriptors and alignment of active compounds. Further, docking studies were performed on the active compounds to check out their binding affinity with the active site of the target proteins. It was further validated by applying molecular simulations, and the results were found to be accurate. The geometrical optimization and energy gap of the hit compound were calculated by the density functional theory (DFT). Then, ADMET was performed on this hit compound for drug-like features and toxicity.
ResultsOut of 59 compounds, eight ligands were found active after the 3D-QSAR study. After that, molecular docking was performed on the active compounds F72, F52, F54, F29, F37, F38, F25, and F29, which were recognized as potential targets, and the docking results showed that compound F52 (also an FDA-approved drug) was the best hit. F52 was found to be the best hit against liver cancer cell lines HCC and HepG2.
ConclusionThis study would be helpful for early drug discovery optimization and lead identification.
-
Volumes & issues
-
Volume 21 (2025)
-
Volume 20 (2024)
-
Volume 19 (2023)
-
Volume 18 (2022)
-
Volume 17 (2021)
-
Volume 16 (2020)
-
Volume 15 (2019)
-
Volume 14 (2018)
-
Volume 13 (2017)
-
Volume 12 (2016)
-
Volume 11 (2015)
-
Volume 10 (2014)
-
Volume 9 (2013)
-
Volume 8 (2012)
-
Volume 7 (2011)
-
Volume 6 (2010)
-
Volume 5 (2009)
-
Volume 4 (2008)
-
Volume 3 (2007)
-
Volume 2 (2006)
-
Volume 1 (2005)
Most Read This Month