Skip to content
2000
image of Reducing Cabozantinib Toxicity in Renal Cell Carcinoma Treatment through Structural Modifications

Abstract

Background and Objectives

Cabozantinib, a Tyrosine Kinase Inhibitor (TKI), is widely used in Renal Cell Carcinoma (RCC) therapy but often causes serious side effects such as myelosuppression, immunosuppression, and angiopathy. This study aims to identify key protein targets responsible for the therapeutic efficacy and adverse reactions of cabozantinib and to explore structural modifications to reduce toxicity while preserving efficacy.

Methods

A non-randomized computational approach was employed, screening 400 potential protein targets using SwissTargetPrediction and ChemBL databases. Molecular docking and Structure-Activity Relationship (SAR) analysis were performed to assess interactions between cabozantinib and identified targets, focusing on structural elements contributing to toxicity.

Results

Three primary proteins were identified as responsible for the anti-tumor effects of cabozantinib, while three others were linked to its side effects. Docking analysis revealed that the methoxyphenyl group in cabozantinib formed undesirable hydrogen bonds with toxicity-related proteins. Modulating these off-target interactions by minimizing hydrogen bonding in this region could significantly reduce adverse effects.

Conclusion

These findings provide structural insights into cabozantinib’s dual effects and suggest optimization strategies for TKI design, offering a pathway toward safer and more effective RCC treatments.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064374511250411104320
2025-04-18
2025-08-14
The full text of this item is not currently available.

References

  1. Choueiri T.K. Pal S.K. McDermott D.F. Morrissey S. Ferguson K.C. Holland J. Kaelin W.G. Dutcher J.P. A phase I study of cabozantinib (XL184) in patients with renal cell cancer. Ann. Oncol. 2014 25 8 1603 1608 10.1093/annonc/mdu184 24827131
    [Google Scholar]
  2. Childs-Disney J.L. Yang X. Gibaut Q.M.R. Tong Y. Batey R.T. Disney M.D. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 2022 21 10 736 762 10.1038/s41573‑022‑00521‑4 35941229
    [Google Scholar]
  3. Kobayashi H. Cheveralls K.C. Leonetti M.D. Royer L.A. Self-supervised deep learning encodes high-resolution features of protein subcellular localization. Nat. Methods 2022 19 8 995 1003 10.1038/s41592‑022‑01541‑z 35879608
    [Google Scholar]
  4. Tannir N.M. Schwab G. Grünwald V. Cabozantinib: An active novel multikinase inhibitor in renal cell carcinoma. Curr. Oncol. Rep. 2017 19 2 14 10.1007/s11912‑017‑0566‑9 28247252
    [Google Scholar]
  5. Jung Y. Mitsuhashi T. Kageyama K. Kikuchi T. Sato S. Fujita M. Conformational analysis of (+)‐Germacrene D‐4‐ol using the crystalline sponge method to elucidate the origin of its instability. Chemistry 2024 30 39 e202400512 10.1002/chem.202400512 38742865
    [Google Scholar]
  6. Tarantino P. Tayob N. Villacampa G. Dang C. Yardley D.A. Isakoff S.J. Valero V. Faggen M. Mulvey T. Bose R. Weckstein D. Wolff A.C. Reeder-Hayes K. Rugo H.S. Ramaswamy B. Zuckerman D. Hart L. Gadi V.K. Constantine M. Cheng K. Garrett A.M. Marcom P.K. Albain K. DeFusco P. Tung N. Ardman B. Nanda R. Jankowitz R.C. Rimawi M. Abramson V. Pohlmann P.R. Van Poznak C. Forero-Torres A. Liu M.C. Ruddy K.J. Waks A.G. DeMeo M. Burstein H.J. Partridge A.H. Dell’Orto P. Russo L. Krause E. Newhouse D.J. Kurt B.B. Mittendorf E.A. Schneider B. Prat A. Winer E.P. Krop I.E. Tolaney S.M. Barroso-Sousa R. Curigliano G. DiLullo M. Hui W. Kirkup C. Viale G. Zheng Y. Adjuvant trastuzumab emtansine versus paclitaxel plus trastuzumab for stage I human epidermal growth factor receptor 2–positive breast cancer: 5-year results and correlative analyses From ATEMPT. J. Clin. Oncol. 2024 42 31 3652 3665 10.1200/JCO.23.02170 38935923
    [Google Scholar]
  7. Al-Salama Z.T. Keating G.M. Cabozantinib: A review in advanced renal cell carcinoma. Drugs 2016 76 18 1771 1778 10.1007/s40265‑016‑0661‑5 27909994
    [Google Scholar]
  8. Liu W. Chen L. Yin D. Yang Z. Feng J. Sun Q. Lai L. Guo X. Visualizing single-molecule conformational transition and binding dynamics of intrinsically disordered proteins. Nat. Commun. 2023 14 1 5203 10.1038/s41467‑023‑41018‑x 37626077
    [Google Scholar]
  9. Choueiri T.K. Halabi S. Sanford B.L. Hahn O. Michaelson M.D. Walsh M.K. Feldman D.R. Olencki T. Picus J. Small E.J. Dakhil S. George D.J. Morris M.J. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: The alliance A031203 CABOSUN trial. J. Clin. Oncol. 2017 35 6 591 597 10.1200/JCO.2016.70.7398 28199818
    [Google Scholar]
  10. Choueiri T.K. Escudier B. Powles T. Mainwaring P.N. Rini B.I. Donskov F. Hammers H. Hutson T.E. Lee J.L. Peltola K. Roth B.J. Bjarnason G.A. Géczi L. Keam B. Maroto P. Heng D.Y.C. Schmidinger M. Kantoff P.W. Borgman-Hagey A. Hessel C. Scheffold C. Schwab G.M. Tannir N.M. Motzer R.J. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 2015 373 19 1814 1823 10.1056/NEJMoa1510016 26406150
    [Google Scholar]
  11. Abhang A. Katari O. Ghadi R. Chaudhari D. Jain S. Research T. Exploring the synergistic behavior of paclitaxel and vorinostat upon co-loading in albumin nanoparticles for breast cancer management. Drug Deliv. Transl. Res. 2024 14 2 510 523 10.1007/s13346‑023‑01415‑7 37605040
    [Google Scholar]
  12. Choueiri T.K. Escudier B. Powles T. Tannir N.M. Mainwaring P.N. Rini B.I. Hammers H.J. Donskov F. Roth B.J. Peltola K. Lee J.L. Heng D.Y.C. Schmidinger M. Agarwal N. Sternberg C.N. McDermott D.F. Aftab D.T. Hessel C. Scheffold C. Schwab G. Hutson T.E. Pal S. Motzer R.J. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): Final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2016 17 7 917 927 10.1016/S1470‑2045(16)30107‑3 27279544
    [Google Scholar]
  13. Procopio G. Grassi P. Verzoni E. Ratta R. Mennitto A. de Braud F. Cabozantinib in the treatment of advanced renal cell carcinoma: Design, development, and potential place in the therapy. Drug Des. Devel. Ther. 2016 10 2167 2172 10.2147/DDDT.S104225 27462141
    [Google Scholar]
  14. Zhang J. Liu J. Yue Y. Wang L. He Q. Xu S. Li J. Liao Y. Chen Y. Wang S. Xie Y. Zhang B. Bian Y. Dimitrov D.S. Yuan Y. Zhu J. The immunotoxin targeting PRLR increases tamoxifen sensitivity and enhances the efficacy of chemotherapy in breast cancer. J. Exp. Clin. Cancer Res. 2024 43 1 173 10.1186/s13046‑024‑03099‑4 38898487
    [Google Scholar]
  15. Zhang W. Tang X. Peng Y. Xu Y. Liu L. Liu S. GBP2 enhances paclitaxel sensitivity in triple‑negative breast cancer by promoting autophagy in combination with ATG2 and inhibiting the PI3K/AKT/mTOR pathway. Int. J. Oncol. 2024 64 4 34 10.3892/ijo.2024.5622 38334171
    [Google Scholar]
  16. Ruiz-Morales J.M. Heng D.Y.C. Cabozantinib in the treatment of advanced renal cell carcinoma: Clinical trial evidence and experience. Ther. Adv. Urol. 2016 8 6 338 347 10.1177/1756287216663073 27904650
    [Google Scholar]
  17. Vieira I.H.P. Botelho E.B. de Souza Gomes T.J. Kist R. Caceres R.A. Zanchi F.B. Visual dynamics: A WEB application for molecular dynamics simulation using GROMACS. BMC Bioinformatics 2023 24 1 107 10.1186/s12859‑023‑05234‑y 36949402
    [Google Scholar]
  18. Yu Y. Lin R. Yu H. Liu M. Xing E. Wang W. Zhang F. Zhao D. Li X. Versatile synthesis of metal-compound based mesoporous Janus nanoparticles. Nat. Commun. 2023 14 1 4249 10.1038/s41467‑023‑40017‑2 37460612
    [Google Scholar]
  19. Osanto S. van der Hulle T. Cabozantinib in the treatment of advanced renal cell carcinoma in adults following prior vascular endothelial growth factor targeted therapy: Clinical trial evidence and experience. Ther. Adv. Urol. 2018 10 3 109 123 10.1177/1756287217748867 29662541
    [Google Scholar]
  20. Mehany M.M. Hammam O.A. Selim A.A. Sayed G.H. Anwer K.E. Novel pyridine bearing pentose moiety-based anticancer agents: Design, synthesis, radioiodination and bioassessments. Sci. Rep. 2024 14 1 2738 10.1038/s41598‑024‑53228‑4 38302640
    [Google Scholar]
  21. Sihombing I.N.N. Arsianti A. Research P. Network pharmacology prediction and molecular docking analysis on the mechanism of eugenol as a candidate against estrogen receptor-positive breast cancer. J. Pharm. Pharmacogn. Res. 2024 12 5 837 851 10.56499/jppres23.1699_12.5.837
    [Google Scholar]
  22. Jia Y. Zhang Y. Zhu H. Structure–activity relationship target prediction studies of clindamycin derivatives with broad-spectrum bacteriostatic antibacterial properties. Molecules 2023 28 21 7357 10.3390/molecules28217357 37959776
    [Google Scholar]
  23. Bergerot P. Lamb P. Wang E. Pal S.K. Cabozantinib in combination with immunotherapy for advanced renal cell carcinoma and urothelial carcinoma: Rationale and clinical evidence. Mol. Cancer Ther. 2019 18 12 2185 2193 10.1158/1535‑7163.MCT‑18‑1399 31792125
    [Google Scholar]
  24. Benemei S. Molecular Mechanisms of 5-HT1F Receptor Agonists. Novel Synthetic Drugs in Migraine Headache Springer International Publishing 2022 73 81 10.1007/978‑3‑030‑95334‑8_7
    [Google Scholar]
  25. Khan M.K. Siddiqui H. Sharif R. Guzel M. Wahab A-T. Yousuf S. Choudhary M.I. Lamotrigine derivatives‐synthesis, anti‐cancer, and anti‐MDR‐bacterial activities. J. Mol. Struct. 2022 1264
    [Google Scholar]
  26. Martínez Chanzá N. Xie W. Asim Bilen M. Dzimitrowicz H. Burkart J. Geynisman D.M. Balakrishnan A. Bowman I.A. Jain R. Stadler W. Zakharia Y. Narayan V. Beuselinck B. McKay R.R. Tripathi A. Pachynski R. Hahn A.W. Hsu J. Shah S.A. Lam E.T. Rose T.L. Mega A.E. Vogelzang N. Harrison M.R. Mortazavi A. Plimack E.R. Vaishampayan U. Hammers H. George S. Haas N. Agarwal N. Pal S.K. Srinivas S. Carneiro B.A. Heng D.Y.C. Bosse D. Choueiri T.K. Harshman L.C. Cabozantinib in advanced non-clear-cell renal cell carcinoma: A multicentre, retrospective, cohort study. Lancet Oncol. 2019 20 4 581 590 10.1016/S1470‑2045(18)30907‑0 30827746
    [Google Scholar]
  27. Li J. Zou Q. Yuan L. A review from biological mapping to computation-based subcellular localization. Mol. Ther. Nucleic Acids 2023 32 507 521 10.1016/j.omtn.2023.04.015 37215152
    [Google Scholar]
  28. Zhou B. Utjapimuk S. Yan K. Dubey R. Kikuchi T. Mitsuhashi T. Fujita M. Rapid analysis of trace amounts of amino acid derivatives by a formyl group‐installed crystalline sponge. Chem. Asian J. 2024 19 3 e202300969 10.1002/asia.202300969 38059774
    [Google Scholar]
  29. Khalili N. Kazerooni A.F. Familiar A. Haldar D. Kraya A. Foster J. Koptyra M. Storm P.B. Resnick A.C. Nabavizadeh A. Radiomics for characterization of the glioma immune microenvironment. NPJ Precis. Oncol. 2023 7 1 59 10.1038/s41698‑023‑00413‑9 37337080
    [Google Scholar]
  30. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem 2023 update. Nucleic Acids Res. 2023 51 D1 D1373 D1380 10.1093/nar/gkac956 36305812
    [Google Scholar]
  31. Escudier B. Lougheed J.C. Albiges L. Cabozantinib for the treatment of renal cell carcinoma. Expert Opin. Pharmacother. 2016 17 18 2499 2504 10.1080/14656566.2016.1258059 27835047
    [Google Scholar]
  32. Zeng Z. Wodaczek F. Liu K. Stein F. Hutter J. Chen J. Cheng B. Mechanistic insight on water dissociation on pristine low-index TiO2 surfaces from machine learning molecular dynamics simulations. Nat. Commun. 2023 14 1 6131 10.1038/s41467‑023‑41865‑8 37783698
    [Google Scholar]
  33. Wang M. Rousseau B. Qiu K. Huang G. Zhang Y. Su H. Le Bihan-Benjamin C. Khati I. Artz O. Foote M.B.J.N.B. Killing tumor-associated bacteria with a liposomal antibiotic generates neoantigens that induce anti-tumor immune responses. 2024 42 8 1263 1274 10.1038/s41587‑023‑01957‑8 37749267
    [Google Scholar]
  34. Lv Y. Mou Y. Su J. Liu S. Ding X. Yuan Y. Li G. Li G. The inhibitory effect and mechanism of Resina Draconis on the proliferation of MCF-7 breast cancer cells: A network pharmacology-based analysis. Sci. Rep. 2023 13 1 3816 10.1038/s41598‑023‑30585‑0 36882618
    [Google Scholar]
  35. Li J. Kuang X.H. Zhang Y. Hu D.M. Liu K. Global burden of gastric cancer in adolescents and young adults: Estimates from GLOBOCAN 2020. Public Health 2022 210 58 64 10.1016/j.puhe.2022.06.010 35870322
    [Google Scholar]
  36. Saadet E.D. Tek I. Evaluation of chemotherapy‐induced cutaneous side effects in cancer patients. Wiley Online Library 2022 10.1111/ijd.16361
    [Google Scholar]
  37. Sandhu M. Cho A. Ma N. Mukhaleva E. Namkung Y. Lee S. Ghosh S. Lee J.H. Gloriam D.E. Laporte S.A. Babu M.M. Vaidehi N. Dynamic spatiotemporal determinants modulate GPCR:G protein coupling selectivity and promiscuity. Nat. Commun. 2022 13 1 7428 10.1038/s41467‑022‑34055‑5 36460632
    [Google Scholar]
  38. Ihmaid S.K. Aljuhani A. Alsehli M. Rezki N. Alawi A. Aldhafiri A.J. Salama S.A. Ahmed H.E.A. Aouad M.R. Discovery of triaromatic flexible agents bearing 1,2,3-Triazole with selective and potent anti-breast cancer activity and CDK9 inhibition supported by molecular dynamics. J. Mol. Struct. 2022 1249 131568 10.1016/j.molstruc.2021.131568
    [Google Scholar]
  39. Robinson P.C. Liew D.F.L. Tanner H.L. Grainger J.R. Dwek R.A. Reisler R.B. Steinman L. Feldmann M. Ho L.P. Hussell T. Moss P. Richards D. Zitzmann N. COVID-19 therapeutics: Challenges and directions for the future. Proc. Natl. Acad. Sci. USA 2022 119 15 e2119893119 10.1073/pnas.2119893119 35385354
    [Google Scholar]
  40. Jia A. Xu L. Wang Y. Venn diagrams in bioinformatics. Brief. Bioinform. 2021 22 5 bbab108 10.1093/bib/bbab108 33839742
    [Google Scholar]
  41. Jójárt R. Tahaei S.A.S. Trungel-Nagy P. Kele Z. Minorics R. Paragi G. Zupkó I. Mernyák E. Synthesis and evaluation of anticancer activities of 2- or 4-substituted 3-( N -benzyltriazolylmethyl)-13α-oestrone derivatives. J. Enzyme Inhib. Med. Chem. 2021 36 1 58 67 10.1080/14756366.2020.1838500 33121276
    [Google Scholar]
  42. Opo F.A.D.M. Rahman M.M. Ahammad F. Ahmed I. Bhuiyan M.A. Asiri A.M. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci. Rep. 2021 11 1 4049 10.1038/s41598‑021‑83626‑x 33603068
    [Google Scholar]
  43. Tabassum H. Ahmad I.Z. Molecular docking and dynamics simulation analysis of thymoquinone and thymol compounds from Nigella sativa L. that inhibit cag A and Vac A oncoprotein of helicobacter pylori: Probable treatment of H. pylori Infections. Med. Chem. 2020 17 2 146 157 10.2174/1573406416666200302113729 32116195
    [Google Scholar]
  44. Dixon T. Modeling (Un) Binding Kinetics of Biologically Relevant Systems Using Resampling of Ensembles by Variation Optimization. Michigan State University 2021
    [Google Scholar]
  45. Yang D. Zhou Q. Labroska V. Qin S. Darbalaei S. Wu Y. Yuliantie E. Xie L. Tao H. Cheng J. Liu Q. Zhao S. Shui W. Jiang Y. Wang M.W. G protein-coupled receptors: Structure- and function-based drug discovery. Signal Transduct. Target. Ther. 2021 6 1 7 10.1038/s41392‑020‑00435‑w 33414387
    [Google Scholar]
  46. Noor N.S. Kaus N.H.M. Szewczuk M.R. Hamid S.B.S. Formulation, characterization and cytotoxicity effects of novel thymoquinone-PLGA-PF68 nanoparticles. Int. J. Mol. Sci. 2021 22 17 9420 10.3390/ijms22179420 34502328
    [Google Scholar]
  47. Zhang J. Lu T. Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 2021 23 36 20323 20328 10.1039/D1CP02805G 34486612
    [Google Scholar]
  48. Benedeković G. Popsavin M. Kovačević I. Kojić V. Rodić M. Popsavin V. Synthesis, antiproliferative activity and SAR analysis of (−)-cleistenolide and analogues. Eur. J. Med. Chem. 2020 202 112597 10.1016/j.ejmech.2020.112597 32653698
    [Google Scholar]
  49. Leon K. Cunningham R.L. Riback J.A. Feldman E. Li J. Sosnick T.R. Zhao M. Monk K.R. Araç D. Structural basis for adhesion G protein-coupled receptor Gpr126 function. Nat. Commun. 2020 11 1 194 10.1038/s41467‑019‑14040‑1 31924782
    [Google Scholar]
  50. Keretsu S. Bhujbal S.P. Cho S.J. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Sci. Rep. 2020 10 1 17716 10.1038/s41598‑020‑74468‑0 33077821
    [Google Scholar]
  51. Niknamian S. Zaminpira S. The historical/evolutionary cause and possible treatment of pandemic COVID-19 (SARS-CoV-2, 2019-Coro-navirus). OAJMMS 2019 3 1 16000123 10.23880/oajmms‑16000123
    [Google Scholar]
  52. Tamizharasan N. Gajendran C. Kristam R. Sulochana S.P. Sivanandhan D. Mullangi R. Mathivathanan L. Hallur G. Suresh P. Discovery and optimization of novel phenyldiazepine and pyridodiazepine based Aurora kinase inhibitors. Bioorg. Chem. 2020 99 103800 10.1016/j.bioorg.2020.103800 32283344
    [Google Scholar]
  53. Adewumi O.A. Singh V. Singh G.J.J.O.P. Phytochemistry Chemical composition, traditional uses and biological activities of artemisia species. J. Pharmacogn. Phytochem. 2020 9 5 1124 1140
    [Google Scholar]
  54. Satish Kumar V. Rajkiran Reddy B. Sudip M. Purushotham U. Subbaiah G. Gurava Reddy A.V. Malarvilli T. Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: Synthesis, biological evaluation, molecular modelling studies. Mater. Sci. Eng. C Mater. Biol. Appl. 2019 99 417 429 10.1016/j.msec.2019.01.123 30889716
    [Google Scholar]
  55. Wang J. Tang H. Hou B. Zhang P. Wang Q. Zhang B.L. Huang Y.W. Wang Y. Xiang Z.M. Zi C.T. Wang X-J. Sheng J. Synthesis, antioxidant activity, and density functional theory study of catechin derivatives. RSC Advances 2017 7 85 54136 54141 10.1039/C7RA11496F
    [Google Scholar]
  56. Meibom D. Albrecht-Küpper B. Diedrichs N. Hübsch W. Kast R. Krämer T. Krenz U. Lerchen H.G. Mittendorf J. Nell P.G. Süssmeier F. Vakalopoulos A. Zimmermann K. Neladenoson bialanate hydrochloride: A prodrug of a partial adenosine A1 receptor agonist for the chronic treatment of heart diseases. ChemMedChem 2017 12 10 728 737 10.1002/cmdc.201700151 28488817
    [Google Scholar]
  57. Bohyun M. Yong Joo P. Gi Ho S. Yunmi L. Ki Hyun K. Synthesis and antitumor activity of (−)-bassianolide in MDA-MB 231 breast cancer cells through cell cycle arrest. Bioorg. Chem. 2016 69 64 70 10.1016/j.bioorg.2016.09.008 27676608
    [Google Scholar]
  58. Bhaskar B.V. Babu T.M.C. Reddy N.V. Rajendra W. Homology modeling, molecular dynamics, and virtual screening of NorA efflux pump inhibitors of Staphylococcus aureus. Drug Des. Devel. Ther. 2016 10 3237 3252 10.2147/DDDT.S113556 27757014
    [Google Scholar]
  59. Abdelaziz A. Vaishampayan U. Cabozantinib for renal cell carcinoma: Current and future paradigms. Curr. Treat. Options Oncol. 2017 18 3 18 10.1007/s11864‑017‑0444‑6 28286925
    [Google Scholar]
  60. Sroor F.M. Mahrous K.F. El-Kader H.A.M.A. Othman A.M. Ibrahim N.S. Impact of trifluoromethyl and sulfonyl groups on the biological activity of novel aryl-urea derivatives: Synthesis, in-vitro, in-silico and SAR studies. Sci. Rep. 2023 13 1 17560 10.1038/s41598‑023‑44753‑9 37845243
    [Google Scholar]
  61. Robo M.T. Hayes R.L. Ding X. Pulawski B. Vilseck J.Z. Fast free energy estimates from λ-dynamics with bias-updated Gibbs sampling. Nat. Commun. 2023 14 1 8515 10.1038/s41467‑023‑44208‑9 38129400
    [Google Scholar]
  62. Habib F. Tocher D.A. Carmalt C.J. Encapsulation of N-containing compounds in a new hydrophilic Cd-based crystalline sponge via coordinative alignment method. CrystEngComm 2023 25 35 5001 5011 10.1039/D3CE00592E
    [Google Scholar]
  63. Zanchi A. Jehle A.W. Lamine F. Vogt B. Czerlau C. Bilz S. Seeger H. De Seigneux S. Diabetic kidney disease in type 2 diabetes: A consensus statement from the Swiss Societies of Diabetes and Nephrology. Swiss Med. Wkly. 2023 153 1 40004 10.57187/smw.2023.40004 36652726
    [Google Scholar]
  64. Deng C. Song B.Q. Sensharma D. Gao M.Y. Bezrukov A.A. Nikolayenko V.I. Lusi M. Mukherjee S. Zaworotko M.J. Effect of extra-framework anion substitution on the properties of a chiral crystalline sponge. Cryst. Growth Des. 2023 23 11 8139 8146 10.1021/acs.cgd.3c00857 37937187
    [Google Scholar]
  65. Dorrani H. Mohebbi A. A comparative study of TIP4P-2005, SPC/E, SPC, and TIP3P-Ew models for predicting water transport coefficients using EMD and NEMD simulations. J. Eng. Thermophys. 2023 32 1 138 161 10.1134/S1810232823010113
    [Google Scholar]
  66. Vieira T. Receptor-based virtual screening of large libraries in a multi-level in silico approach. Methods Mol Biol 2023 2652 261 267 10.1007/978‑1‑0716‑3147‑8_15 37093481
    [Google Scholar]
  67. Zou J. Wang X. Liu X. Zheng Y. Shao W. Zhang Q-W. Zhu P. Li L.J.J.O.C.E. Capturing the precise structure of liquids: The crystalline sponge method for an undergraduate laboratory course. J. Chem. Educ 2023 101 136 144 10.1021/acs.jchemed.3c00714
    [Google Scholar]
  68. Dolati M. Tafvizi F. Salehipour M. Komeili Movahed T. Jafari P. Biogenic copper oxide nanoparticles from Bacillus coagulans induced reactive oxygen species generation and apoptotic and anti-metastatic activities in breast cancer cells. Sci. Rep. 2023 13 1 3256 10.1038/s41598‑023‑30436‑y 36828883
    [Google Scholar]
  69. Gupta D. Kumar M. Saifi S. Rawat S. Ethayathulla A.S. Kaur P. A comprehensive review on role of Aurora kinase inhibitors (AKIs) in cancer therapeutics. Int. J. Biol. Macromol. 2024 265 Pt 2 130913 10.1016/j.ijbiomac.2024.130913 38508544
    [Google Scholar]
  70. Jiang Z. Ouyang Q. Sun T. Zhang Q. Teng Y. Cui J. Wang H. Yin Y. Wang X. Zhou X. Wang Y. Sun G. Wang J. Zhang L. Yang J. Qian J. Yan M. Liu X. Yi T. Cheng Y. Li M. Zang A. Wang S. Wang C. Wu X. Cheng J. Li H. Lin Y. Geng C. Gu K. Xie C. Xiong H. Wu X. Yang J. Li Q. Chen Y. Li F. Zhang A. Zhang Y. Wu Y. Nie J. Liu Q. Wang K. Mo X. Chen L. Pan Y. Fu P. Zhang H. Pang D. Sheng Y. Han Y. Wang H. Cang S. Luo X. Yu W. Deng R. Yang C. Keegan P. Toripalimab plus nab-paclitaxel in metastatic or recurrent triple-negative breast cancer: A randomized phase 3 trial. Nat. Med. 2024 30 1 249 256 10.1038/s41591‑023‑02677‑x 38191615
    [Google Scholar]
  71. Guo X. Wang L. Zhang J. Liu Q. Wang B. Liu D. Gao F. Lanzi G. Zhao Y. Shi Y. Thwarting resistance: MgrA inhibition with methylophiopogonanone a unveils a new battlefront against S. aureus. NPJ Biofilms Microbiomes 2024 10 1 15 10.1038/s41522‑024‑00485‑w 38413623
    [Google Scholar]
  72. Lixian S. Xiaoqian Y. Luyan G. Lizhi Z. Rui D. Hongyue Y. Caijie Z. Fenghui Y. Risk factors of paclitaxel-induced peripheral neuropathy in patients with breast cancer: A prospective cohort study. Front. Oncol. 2024 14 1327318 10.3389/fonc.2024.1327318 38515579
    [Google Scholar]
  73. Zenjanab M.K. Alimohammadvand S. Doustmihan A. Kianian S. Oskouei B.S. Mazloomi M. Akbari M. Jahanban-Esfahlan R.J.J.O.D.D.S. Paclitaxel for breast cancer therapy: A review on effective drug combination modalities and nano drug delivery platforms. J. Drug Deliv. Sci. Technol. 2024 98 8 105567 10.1016/j.jddst.2024.105567
    [Google Scholar]
  74. Meyn M. Smithgall T. Small molecule inhibitors of Lck: The search for specificity within a kinase family. Mini Rev. Med. Chem. 2008 8 6 628 637 10.2174/138955708784534454 18537718
    [Google Scholar]
/content/journals/mc/10.2174/0115734064374511250411104320
Loading
/content/journals/mc/10.2174/0115734064374511250411104320
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test