Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background and Objectives

Cabozantinib, a Tyrosine Kinase Inhibitor (TKI), is widely used in Renal Cell Carcinoma (RCC) therapy but often causes serious side effects such as myelosuppression, immunosuppression, and angiopathy. This study aims to identify key protein targets responsible for the therapeutic efficacy and adverse reactions of cabozantinib and to explore structural modifications to reduce toxicity while preserving efficacy.

Methods

A non-randomized computational approach was employed, screening 400 potential protein targets using SwissTargetPrediction and ChemBL databases. Molecular docking and Structure-Activity Relationship (SAR) analysis were performed to assess interactions between cabozantinib and identified targets, focusing on structural elements contributing to toxicity.

Results

Three primary proteins were identified as responsible for the anti-tumor effects of cabozantinib, while three others were linked to its side effects. Docking analysis revealed that the methoxyphenyl group in cabozantinib formed undesirable hydrogen bonds with toxicity-related proteins. Modulating these off-target interactions by minimizing hydrogen bonding in this region could significantly reduce adverse effects.

Conclusion

These findings provide structural insights into cabozantinib’s dual effects and suggest optimization strategies for TKI design, offering a pathway toward safer and more effective RCC treatments.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064374511250411104320
2025-12-01
2025-11-30
Loading full text...

Full text loading...

/deliver/fulltext/mc/21/10/MC-21-10-07.html?itemId=/content/journals/mc/10.2174/0115734064374511250411104320&mimeType=html&fmt=ahah

References

  1. ChoueiriT.K. PalS.K. McDermottD.F. MorrisseyS. FergusonK.C. HollandJ. KaelinW.G. DutcherJ.P. A phase I study of cabozantinib (XL184) in patients with renal cell cancer.Ann. Oncol.20142581603160810.1093/annonc/mdu184 24827131
    [Google Scholar]
  2. Childs-DisneyJ.L. YangX. GibautQ.M.R. TongY. BateyR.T. DisneyM.D. Targeting RNA structures with small molecules.Nat. Rev. Drug Discov.2022211073676210.1038/s41573‑022‑00521‑4 35941229
    [Google Scholar]
  3. KobayashiH. CheverallsK.C. LeonettiM.D. RoyerL.A. Self-supervised deep learning encodes high-resolution features of protein subcellular localization.Nat. Methods2022198995100310.1038/s41592‑022‑01541‑z 35879608
    [Google Scholar]
  4. TannirN.M. SchwabG. GrünwaldV. Cabozantinib: An active novel multikinase inhibitor in renal cell carcinoma.Curr. Oncol. Rep.20171921410.1007/s11912‑017‑0566‑9 28247252
    [Google Scholar]
  5. JungY. MitsuhashiT. KageyamaK. KikuchiT. SatoS. FujitaM. Conformational analysis of (+)‐Germacrene D‐4‐ol using the crystalline sponge method to elucidate the origin of its instability.Chemistry20243039e20240051210.1002/chem.202400512 38742865
    [Google Scholar]
  6. TarantinoP. TayobN. VillacampaG. DangC. YardleyD.A. IsakoffS.J. ValeroV. FaggenM. MulveyT. BoseR. WecksteinD. WolffA.C. Reeder-HayesK. RugoH.S. RamaswamyB. ZuckermanD. HartL. GadiV.K. ConstantineM. ChengK. GarrettA.M. MarcomP.K. AlbainK. DeFuscoP. TungN. ArdmanB. NandaR. JankowitzR.C. RimawiM. AbramsonV. PohlmannP.R. Van PoznakC. Forero-TorresA. LiuM.C. RuddyK.J. WaksA.G. DeMeoM. BursteinH.J. PartridgeA.H. Dell’OrtoP. RussoL. KrauseE. NewhouseD.J. KurtB.B. MittendorfE.A. SchneiderB. PratA. WinerE.P. KropI.E. TolaneyS.M. Barroso-SousaR. CuriglianoG. DiLulloM. HuiW. KirkupC. VialeG. ZhengY. Adjuvant trastuzumab emtansine versus paclitaxel plus trastuzumab for stage I human epidermal growth factor receptor 2-positive breast cancer: 5-year results and correlative analyses from ATEMPT.J. Clin. Oncol.202442313652366510.1200/JCO.23.02170 38935923
    [Google Scholar]
  7. Al-SalamaZ.T. KeatingG.M. Cabozantinib: A review in advanced renal cell carcinoma.Drugs201676181771177810.1007/s40265‑016‑0661‑5 27909994
    [Google Scholar]
  8. LiuW. ChenL. YinD. YangZ. FengJ. SunQ. LaiL. GuoX. Visualizing single-molecule conformational transition and binding dynamics of intrinsically disordered proteins.Nat. Commun.2023141520310.1038/s41467‑023‑41018‑x 37626077
    [Google Scholar]
  9. ChoueiriT.K. HalabiS. SanfordB.L. HahnO. MichaelsonM.D. WalshM.K. FeldmanD.R. OlenckiT. PicusJ. SmallE.J. DakhilS. GeorgeD.J. MorrisM.J. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: The alliance A031203 CABOSUN trial.J. Clin. Oncol.201735659159710.1200/JCO.2016.70.7398 28199818
    [Google Scholar]
  10. ChoueiriT.K. EscudierB. PowlesT. MainwaringP.N. RiniB.I. DonskovF. HammersH. HutsonT.E. LeeJ.L. PeltolaK. RothB.J. BjarnasonG.A. GécziL. KeamB. MarotoP. HengD.Y.C. SchmidingerM. KantoffP.W. Borgman-HageyA. HesselC. ScheffoldC. SchwabG.M. TannirN.M. MotzerR.J. Cabozantinib versus everolimus in advanced renal-cell carcinoma.N. Engl. J. Med.2015373191814182310.1056/NEJMoa1510016 26406150
    [Google Scholar]
  11. AbhangA. KatariO. GhadiR. ChaudhariD. JainS. ResearchT. Exploring the synergistic behavior of paclitaxel and vorinostat upon co-loading in albumin nanoparticles for breast cancer management.Drug Deliv. Transl. Res.202414251052310.1007/s13346‑023‑01415‑7 37605040
    [Google Scholar]
  12. ChoueiriT.K. EscudierB. PowlesT. TannirN.M. MainwaringP.N. RiniB.I. HammersH.J. DonskovF. RothB.J. PeltolaK. LeeJ.L. HengD.Y.C. SchmidingerM. AgarwalN. SternbergC.N. McDermottD.F. AftabD.T. HesselC. ScheffoldC. SchwabG. HutsonT.E. PalS. MotzerR.J. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): Final results from a randomised, open-label, phase 3 trial.Lancet Oncol.201617791792710.1016/S1470‑2045(16)30107‑3 27279544
    [Google Scholar]
  13. ProcopioG. GrassiP. VerzoniE. RattaR. MennittoA. de BraudF. Cabozantinib in the treatment of advanced renal cell carcinoma: Design, development, and potential place in the therapy.Drug Des. Devel. Ther.2016102167217210.2147/DDDT.S104225 27462141
    [Google Scholar]
  14. ZhangJ. LiuJ. YueY. WangL. HeQ. XuS. LiJ. LiaoY. ChenY. WangS. XieY. ZhangB. BianY. DimitrovD.S. YuanY. ZhuJ. The immunotoxin targeting PRLR increases tamoxifen sensitivity and enhances the efficacy of chemotherapy in breast cancer.J. Exp. Clin. Cancer Res.202443117310.1186/s13046‑024‑03099‑4 38898487
    [Google Scholar]
  15. ZhangW. TangX. PengY. XuY. LiuL. LiuS. GBP2 enhances paclitaxel sensitivity in triple negative breast cancer by promoting autophagy in combination with ATG2 and inhibiting the PI3K/AKT/mTOR pathway.Int. J. Oncol.20246443410.3892/ijo.2024.5622 38334171
    [Google Scholar]
  16. Ruiz-MoralesJ.M. HengD.Y.C. Cabozantinib in the treatment of advanced renal cell carcinoma: Clinical trial evidence and experience.Ther. Adv. Urol.20168633834710.1177/1756287216663073 27904650
    [Google Scholar]
  17. VieiraI.H.P. BotelhoE.B. de Souza GomesT.J. KistR. CaceresR.A. ZanchiF.B. Visual dynamics: A WEB application for molecular dynamics simulation using GROMACS.BMC Bioinformatics202324110710.1186/s12859‑023‑05234‑y 36949402
    [Google Scholar]
  18. YuY. LinR. YuH. LiuM. XingE. WangW. ZhangF. ZhaoD. LiX. Versatile synthesis of metal-compound based mesoporous Janus nanoparticles.Nat. Commun.2023141424910.1038/s41467‑023‑40017‑2 37460612
    [Google Scholar]
  19. OsantoS. van der HulleT. Cabozantinib in the treatment of advanced renal cell carcinoma in adults following prior vascular endothelial growth factor targeted therapy: Clinical trial evidence and experience.Ther. Adv. Urol.201810310912310.1177/1756287217748867 29662541
    [Google Scholar]
  20. MehanyM.M. HammamO.A. SelimA.A. SayedG.H. AnwerK.E. Novel pyridine bearing pentose moiety-based anticancer agents: Design, synthesis, radioiodination and bioassessments.Sci. Rep.2024141273810.1038/s41598‑024‑53228‑4 38302640
    [Google Scholar]
  21. SihombingI.N.N. ArsiantiA. ResearchP. Network pharmacology prediction and molecular docking analysis on the mechanism of eugenol as a candidate against estrogen receptor-positive breast cancer.J. Pharm. Pharmacogn. Res.202412583785110.56499/jppres23.1699_12.5.837
    [Google Scholar]
  22. JiaY. ZhangY. ZhuH. Structure–activity relationship target prediction studies of clindamycin derivatives with broad-spectrum bacteriostatic antibacterial properties.Molecules20232821735710.3390/molecules28217357 37959776
    [Google Scholar]
  23. BergerotP. LambP. WangE. PalS.K. Cabozantinib in combination with immunotherapy for advanced renal cell carcinoma and urothelial carcinoma: Rationale and clinical evidence.Mol. Cancer Ther.201918122185219310.1158/1535‑7163.MCT‑18‑1399 31792125
    [Google Scholar]
  24. BenemeiS. Molecular Mechanisms of 5-HT1F Receptor Agonists. Novel Synthetic Drugs in Migraine Headache.Springer International Publishing2022738110.1007/978‑3‑030‑95334‑8_7
    [Google Scholar]
  25. KhanM.K. SiddiquiH. SharifR. GuzelM. WahabA-T. YousufS. ChoudharyM.I. Lamotrigine derivatives‐synthesis, anti‐cancer, and anti‐MDR‐bacterial activities.J. Mol. Struct.20221264
    [Google Scholar]
  26. Martínez ChanzáN. XieW. Asim BilenM. DzimitrowiczH. BurkartJ. GeynismanD.M. BalakrishnanA. BowmanI.A. JainR. StadlerW. ZakhariaY. NarayanV. BeuselinckB. McKayR.R. TripathiA. PachynskiR. HahnA.W. HsuJ. ShahS.A. LamE.T. RoseT.L. MegaA.E. VogelzangN. HarrisonM.R. MortazaviA. PlimackE.R. VaishampayanU. HammersH. GeorgeS. HaasN. AgarwalN. PalS.K. SrinivasS. CarneiroB.A. HengD.Y.C. BosseD. ChoueiriT.K. HarshmanL.C. Cabozantinib in advanced non-clear-cell renal cell carcinoma: A multicentre, retrospective, cohort study.Lancet Oncol.201920458159010.1016/S1470‑2045(18)30907‑0 30827746
    [Google Scholar]
  27. LiJ. ZouQ. YuanL. A review from biological mapping to computation-based subcellular localization.Mol. Ther. Nucleic Acids20233250752110.1016/j.omtn.2023.04.015 37215152
    [Google Scholar]
  28. ZhouB. UtjapimukS. YanK. DubeyR. KikuchiT. MitsuhashiT. FujitaM. Rapid analysis of trace amounts of amino acid derivatives by a formyl group‐installed crystalline sponge.Chem. Asian J.2024193e20230096910.1002/asia.202300969 38059774
    [Google Scholar]
  29. KhaliliN. KazerooniA.F. FamiliarA. HaldarD. KrayaA. FosterJ. KoptyraM. StormP.B. ResnickA.C. NabavizadehA. Radiomics for characterization of the glioma immune microenvironment.NPJ Precis. Oncol.2023715910.1038/s41698‑023‑00413‑9 37337080
    [Google Scholar]
  30. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac956 36305812
    [Google Scholar]
  31. EscudierB. LougheedJ.C. AlbigesL. Cabozantinib for the treatment of renal cell carcinoma.Expert Opin. Pharmacother.201617182499250410.1080/14656566.2016.1258059 27835047
    [Google Scholar]
  32. ZengZ. WodaczekF. LiuK. SteinF. HutterJ. ChenJ. ChengB. Mechanistic insight on water dissociation on pristine low-index TiO2 surfaces from machine learning molecular dynamics simulations.Nat. Commun.2023141613110.1038/s41467‑023‑41865‑8 37783698
    [Google Scholar]
  33. WangM. RousseauB. QiuK. HuangG. ZhangY. SuH. Le Bihan-BenjaminC. KhatiI. ArtzO. FooteM.B.J.N.B. Killing tumor-associated bacteria with a liposomal antibiotic generates neoantigens that induce anti-tumor immune responses.Nat. Biotechnol.20244281263127410.1038/s41587‑023‑01957‑8 37749267
    [Google Scholar]
  34. LvY. MouY. SuJ. LiuS. DingX. YuanY. LiG. LiG. The inhibitory effect and mechanism of Resina Draconis on the proliferation of MCF-7 breast cancer cells: A network pharmacology-based analysis.Sci. Rep.2023131381610.1038/s41598‑023‑30585‑0 36882618
    [Google Scholar]
  35. LiJ. KuangX.H. ZhangY. HuD.M. LiuK. Global burden of gastric cancer in adolescents and young adults: Estimates from GLOBOCAN 2020.Public. Health.2022210586410.1016/j.puhe.2022.06.010 35870322
    [Google Scholar]
  36. SaadetE.D. TekI. Evaluation of Chemotherapy‐induced Cutaneous Side Effects in Cancer Patients.Wiley Online Library202210.1111/ijd.16361
    [Google Scholar]
  37. SandhuM. ChoA. MaN. MukhalevaE. NamkungY. LeeS. GhoshS. LeeJ.H. GloriamD.E. LaporteS.A. BabuM.M. VaidehiN. Dynamic spatiotemporal determinants modulate GPCR:G protein coupling selectivity and promiscuity.Nat. Commun.2022131742810.1038/s41467‑022‑34055‑5 36460632
    [Google Scholar]
  38. IhmaidS.K. AljuhaniA. AlsehliM. RezkiN. AlawiA. AldhafiriA.J. SalamaS.A. AhmedH.E.A. AouadM.R. Discovery of triaromatic flexible agents bearing 1,2,3-Triazole with selective and potent anti-breast cancer activity and CDK9 inhibition supported by molecular dynamics.J. Mol. Struct.2022124913156810.1016/j.molstruc.2021.131568
    [Google Scholar]
  39. RobinsonP.C. LiewD.F.L. TannerH.L. GraingerJ.R. DwekR.A. ReislerR.B. SteinmanL. FeldmannM. HoL.P. HussellT. MossP. RichardsD. ZitzmannN. COVID-19 therapeutics: Challenges and directions for the future.Proc. Natl. Acad. Sci. USA202211915e211989311910.1073/pnas.2119893119 35385354
    [Google Scholar]
  40. JiaA. XuL. WangY. Venn diagrams in bioinformatics.Brief. Bioinform.2021225bbab10810.1093/bib/bbab108 33839742
    [Google Scholar]
  41. JójártR. TahaeiS.A.S. Trungel-NagyP. KeleZ. MinoricsR. ParagiG. ZupkóI. MernyákE. Synthesis and evaluation of anticancer activities of 2- or 4-substituted 3-(N-benzyltriazolyl-methyl)-13α-oestrone derivatives.J. Enzyme Inhib. Med. Chem.2021361586710.1080/14756366.2020.1838500 33121276
    [Google Scholar]
  42. OpoF.A.D.M. RahmanM.M. AhammadF. AhmedI. BhuiyanM.A. AsiriA.M. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein.Sci. Rep.2021111404910.1038/s41598‑021‑83626‑x 33603068
    [Google Scholar]
  43. TabassumH. AhmadI.Z. Molecular docking and dynamics simulation analysis of thymoquinone and thymol compounds from Nigella sativa L. that inhibit cag A and Vac A oncoprotein of Helicobacter pylori: Probable treatment of H. pylori infections.Med. Chem.202017214615710.2174/1573406416666200302113729 32116195
    [Google Scholar]
  44. DixonT. Modeling (Un) Binding Kinetics of Biologically Relevant Systems Using Resampling of Ensembles by Variation Optimization.Michigan State University2021
    [Google Scholar]
  45. YangD. ZhouQ. LabroskaV. QinS. DarbalaeiS. WuY. YuliantieE. XieL. TaoH. ChengJ. LiuQ. ZhaoS. ShuiW. JiangY. WangM.W. G protein-coupled receptors: Structure- and function-based drug discovery.Signal Transduct. Target. Ther.202161710.1038/s41392‑020‑00435‑w 33414387
    [Google Scholar]
  46. NoorN.S. KausN.H.M. SzewczukM.R. HamidS.B.S. Formulation, characterization and cytotoxicity effects of novel thymoquinone-PLGA-PF68 nanoparticles.Int. J. Mol. Sci.20212217942010.3390/ijms22179420 34502328
    [Google Scholar]
  47. ZhangJ. LuT. Efficient evaluation of electrostatic potential with computerized optimized code.Phys. Chem. Chem. Phys.20212336203232032810.1039/D1CP02805G 34486612
    [Google Scholar]
  48. BenedekovićG. PopsavinM. KovačevićI. KojićV. RodićM. PopsavinV. Synthesis, antiproliferative activity and SAR analysis of (−)-cleistenolide and analogues.Eur. J. Med. Chem.202020211259710.1016/j.ejmech.2020.112597 32653698
    [Google Scholar]
  49. LeonK. CunninghamR.L. RibackJ.A. FeldmanE. LiJ. SosnickT.R. ZhaoM. MonkK.R. AraçD. Structural basis for adhesion G protein-coupled receptor Gpr126 function.Nat. Commun.202011119410.1038/s41467‑019‑14040‑1 31924782
    [Google Scholar]
  50. KeretsuS. BhujbalS.P. ChoS.J. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation.Sci. Rep.20201011771610.1038/s41598‑020‑74468‑0 33077821
    [Google Scholar]
  51. NiknamianS. ZaminpiraS. The historical/evolutionary cause and possible treatment of pandemic COVID-19 (SARS-CoV-2, 2019-Corona-virus).OAJMMS2019311600012310.23880/oajmms‑16000123
    [Google Scholar]
  52. TamizharasanN. GajendranC. KristamR. SulochanaS.P. SivanandhanD. MullangiR. MathivathananL. HallurG. SureshP. Discovery and optimization of novel phenyldiazepine and pyridodiazepine based Aurora kinase inhibitors.Bioorg. Chem.20209910380010.1016/j.bioorg.2020.103800 32283344
    [Google Scholar]
  53. AdewumiO.A. SinghV. SinghG.J.J.O.P. Phytochemistry Chemical composition, traditional uses and biological activities of artemisia species.J. Pharmacogn. Phytochem.20209511241140
    [Google Scholar]
  54. Satish KumarV. Rajkiran ReddyB. SudipM. PurushothamU. SubbaiahG. Gurava ReddyA.V. MalarvilliT. Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: Synthesis, biological evaluation, molecular modelling studies.Mater. Sci. Eng. C Mater. Biol. Appl.20199941742910.1016/j.msec.2019.01.123 30889716
    [Google Scholar]
  55. WangJ. TangH. HouB. ZhangP. WangQ. ZhangB.L. HuangY.W. WangY. XiangZ.M. ZiC.T. WangX-J. ShengJ. Synthesis, antioxidant activity, and density functional theory study of catechin derivatives.RSC Advances2017785541365414110.1039/C7RA11496F
    [Google Scholar]
  56. MeibomD. Albrecht-KüpperB. DiedrichsN. HübschW. KastR. KrämerT. KrenzU. LerchenH.G. MittendorfJ. NellP.G. SüssmeierF. VakalopoulosA. ZimmermannK. Neladenoson bialanate hydrochloride: A prodrug of a partial adenosine A1 receptor agonist for the chronic treatment of heart diseases.ChemMedChem2017121072873710.1002/cmdc.201700151 28488817
    [Google Scholar]
  57. BohyunM. Yong JooP. Gi HoS. YunmiL. Ki HyunK. Synthesis and antitumor activity of (−)-bassianolide in MDA-MB 231 breast cancer cells through cell cycle arrest.Bioorg. Chem.201669647010.1016/j.bioorg.2016.09.008 27676608
    [Google Scholar]
  58. BhaskarB.V. BabuT.M.C. ReddyN.V. RajendraW. Homology modeling, molecular dynamics, and virtual screening of NorA efflux pump inhibitors of Staphylococcus aureus.Drug Des. Devel. Ther.2016103237325210.2147/DDDT.S113556 27757014
    [Google Scholar]
  59. AbdelazizA. VaishampayanU. Cabozantinib for renal cell carcinoma: Current and future paradigms.Curr. Treat. Options Oncol.20171831810.1007/s11864‑017‑0444‑6 28286925
    [Google Scholar]
  60. SroorF.M. MahrousK.F. El-KaderH.A.M.A. OthmanA.M. IbrahimN.S. Impact of trifluoromethyl and sulfonyl groups on the biological activity of novel aryl-urea derivatives: Synthesis, in-vitro, in-silico and SAR studies.Sci. Rep.20231311756010.1038/s41598‑023‑44753‑9 37845243
    [Google Scholar]
  61. RoboM.T. HayesR.L. DingX. PulawskiB. VilseckJ.Z. Fast free energy estimates from λ-dynamics with bias-updated Gibbs sampling.Nat. Commun.2023141851510.1038/s41467‑023‑44208‑9 38129400
    [Google Scholar]
  62. HabibF. TocherD.A. CarmaltC.J. Encapsulation of N-containing compounds in a new hydrophilic Cd-based crystalline sponge via coordinative alignment method.CrystEngComm202325355001501110.1039/D3CE00592E
    [Google Scholar]
  63. ZanchiA. JehleA.W. LamineF. VogtB. CzerlauC. BilzS. SeegerH. De SeigneuxS. Diabetic kidney disease in type 2 diabetes: A consensus statement from the Swiss Societies of Diabetes and Nephrology.Swiss Med. Wkly.202315314000410.57187/smw.2023.40004 36652726
    [Google Scholar]
  64. DengC. SongB.Q. SensharmaD. GaoM.Y. BezrukovA.A. NikolayenkoV.I. LusiM. MukherjeeS. ZaworotkoM.J. Effect of extra-framework anion substitution on the properties of a chiral crystalline sponge.Cryst. Growth Des.202323118139814610.1021/acs.cgd.3c00857 37937187
    [Google Scholar]
  65. DorraniH. MohebbiA. A comparative study of TIP4P-2005, SPC/E, SPC, and TIP3P-Ew models for predicting water transport coefficients using EMD and NEMD simulations.J. Eng. Thermophys.202332113816110.1134/S1810232823010113
    [Google Scholar]
  66. VieiraT. Receptor-based virtual screening of large libraries in a multi-level in silico approach.Methods Mol. Biol.2023265226126710.1007/978‑1‑0716‑3147‑8_15 37093481
    [Google Scholar]
  67. ZouJ. WangX. LiuX. ZhengY. ShaoW. ZhangQ-W. ZhuP. LiL.J.J.O.C.E. Capturing the precise structure of liquids: The crystalline sponge method for an undergraduate laboratory course.J. Chem. Educ.202310113614410.1021/acs.jchemed.3c00714
    [Google Scholar]
  68. DolatiM. TafviziF. SalehipourM. MovahedT.K. JafariP. Biogenic copper oxide nanoparticles from Bacillus coagulans induced reactive oxygen species generation and apoptotic and anti-metastatic activities in breast cancer cells.Sci. Rep.2023131325610.1038/s41598‑023‑30436‑y 36828883
    [Google Scholar]
  69. GuptaD. KumarM. SaifiS. RawatS. EthayathullaA.S. KaurP. A comprehensive review on role of Aurora kinase inhibitors (AKIs) in cancer therapeutics.Int. J. Biol. Macromol.2024265Pt 213091310.1016/j.ijbiomac.2024.130913 38508544
    [Google Scholar]
  70. JiangZ. OuyangQ. SunT. ZhangQ. TengY. CuiJ. WangH. YinY. WangX. ZhouX. WangY. SunG. WangJ. ZhangL. YangJ. QianJ. YanM. LiuX. YiT. ChengY. LiM. ZangA. WangS. WangC. WuX. ChengJ. LiH. LinY. GengC. GuK. XieC. XiongH. WuX. YangJ. LiQ. ChenY. LiF. ZhangA. ZhangY. WuY. NieJ. LiuQ. WangK. MoX. ChenL. PanY. FuP. ZhangH. PangD. ShengY. HanY. WangH. CangS. LuoX. YuW. DengR. YangC. KeeganP. Toripalimab plus nab-paclitaxel in metastatic or recurrent triple-negative breast cancer: A randomized phase 3 trial.Nat. Med.202430124925610.1038/s41591‑023‑02677‑x 38191615
    [Google Scholar]
  71. GuoX. WangL. ZhangJ. LiuQ. WangB. LiuD. GaoF. LanziG. ZhaoY. ShiY. Thwarting resistance: MgrA inhibition with methylophiopogonanone a unveils a new battlefront against S. aureus.NPJ Biofilms Microbiomes20241011510.1038/s41522‑024‑00485‑w 38413623
    [Google Scholar]
  72. LixianS. XiaoqianY. LuyanG. LizhiZ. RuiD. HongyueY. CaijieZ. FenghuiY. Risk factors of paclitaxel-induced peripheral neuropathy in patients with breast cancer: A prospective cohort study.Front. Oncol.202414132731810.3389/fonc.2024.1327318 38515579
    [Google Scholar]
  73. ZenjanabM.K. AlimohammadvandS. DoustmihanA. KianianS. OskoueiB.S. MazloomiM. AkbariM. Jahanban-EsfahlanR.J.J.O.D.D.S. Paclitaxel for breast cancer therapy: A review on effective drug combination modalities and nano drug delivery platforms.J. Drug Deliv. Sci. Technol.202498810556710.1016/j.jddst.2024.105567
    [Google Scholar]
  74. MeynM. SmithgallT. Small molecule inhibitors of Lck: The search for specificity within a kinase family.Mini Rev. Med. Chem.20088662863710.2174/138955708784534454 18537718
    [Google Scholar]
/content/journals/mc/10.2174/0115734064374511250411104320
Loading
/content/journals/mc/10.2174/0115734064374511250411104320
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test