Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background

Diabetes mellitus and obesity are two of the most frequent health conditions in the world, prompting medical researchers to seek novel effective treatments. According to World Health Organization (WHO) regulations and several research studies, diabetes is regarded as a significant and leading health concern worldwide. The search for efficient and safe antidiabetic drugs has led to the study of pyridine derivatives, a family of molecules with a wide range of pharmacological characteristics. Pyridines are important heterocyclic chemicals renowned for their various pharmacological properties.

Methods

Materials were compiled using the three databases of ScienceDirect, PubMed, and Google Scholar. For this study, only English-language publications have been evaluated based on their titles, abstracts, and full texts using keywords like diabetes, pyridine Derivatives, α-glucosidase inhibitors, and α-amylase inhibitors.

Results

Pyridine and its derivatives have received a lot of attention due to their wide range of potential uses in medicinal chemistry and pharmacology. Structural alterations and optimization efforts have resulted in higher effectiveness, selectivity, and safety characteristics. These discoveries highlight the importance of pyridine analogues as a novel class of therapeutic agents for diabetes management.

Conclusion

The review highlights the significance of pyridine analogues in the development of antidiabetic treatments, opening new avenues for developing drugs and clinical use. The ongoing advancements in the discovery of pyridine derivatives underscore their potential as prospective agents in diabetic treatments.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064342827241230053148
2025-12-01
2025-11-30
Loading full text...

Full text loading...

References

  1. KumarR. SahaP. KumarY. SahanaS. DubeyA. PrakashO. A review on diabetes mellitus: Type1 & type2.World J. Pharm. Pharm. Sci.2020910838850
    [Google Scholar]
  2. VermaM. GuptaS.J. ChaudharyA. GargV.K. Protein tyrosine phosphatase 1b inhibitors as antidiabetic agents – a brief review.Bioorg. Chem.20177026728310.1016/j.bioorg.2016.12.004 28043717
    [Google Scholar]
  3. DilworthL. FaceyA. OmoruyiF. Diabetes mellitus and its metabolic complications: The role of adipose tissues.Int. J. Mol. Sci.20212214764410.3390/ijms22147644 34299261
    [Google Scholar]
  4. ColbergS.R. SigalR.J. YardleyJ.E. RiddellM.C. DunstanD.W. DempseyP.C. HortonE.S. CastorinoK. TateD.F. Physical activity/exercise and diabetes: A position statement of the american diabetes association.Diabetes Care201639112065207910.2337/dc16‑1728 27926890
    [Google Scholar]
  5. ReedJ. BainS. KanamarlapudiV. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives.Diabetes Metab. Syndr. Obes.2021143567360210.2147/DMSO.S319895 34413662
    [Google Scholar]
  6. RoglicG. Who global report on diabetes: A summary.Int. J. Noncommun. Dis.2016113810.4103/2468‑8827.184853
    [Google Scholar]
  7. UnnikrishnanR. AnjanaR.M. MohanV. Diabetes mellitus and its complications in india.Nat. Rev. Endocrinol.201612635737010.1038/nrendo.2016.53 27080137
    [Google Scholar]
  8. OgleG.D. JamesS. DabeleaD. PihokerC. SvennsonJ. ManiamJ. KlatmanE.L. PattersonC.C. Global estimates of incidence of type 1 diabetes in children and adolescents: Results from the international diabetes federation atlas, 10th edition.Diabetes Res. Clin. Pract.202218310908310.1016/j.diabres.2021.109083 34883188
    [Google Scholar]
  9. KanekoM. FujiharaK. HaradaM.Y. OsawaT. YamamotoM. KitazawaM. MatsubayashiY. YamadaT. SeidaH. KodamaS. SoneH. Rates and risk factors for amputation in people with diabetes in japan: A historical cohort study using a nationwide claims database.J. Foot Ankle. Res.20211412910.1186/s13047‑021‑00474‑8 33836779
    [Google Scholar]
  10. HomeP.D. PocockS.J. Beck-NielsenH. CurtisP.S. GomisR. HanefeldM. JonesN.P. KomajdaM. McMurrayJ.J.V. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (record): A multicentre, randomised, open-label trial.Lancet200937396812125213510.1016/S0140‑6736(09)60953‑3 19501900
    [Google Scholar]
  11. MeierC. KraenzlinM.E. BodmerM. JickS.S. JickH. MeierC.R. Use of thiazolidinediones and fracture risk.Arch. Intern. Med.2008168882082510.1001/archinte.168.8.820 18443256
    [Google Scholar]
  12. SloopK.W. EmmersonP.J. StatnickM.A. WillardF.S. The current state of GPCR ‐based drug discovery to treat metabolic disease.Br. J. Pharmacol.2018175214060407110.1111/bph.14157 29394497
    [Google Scholar]
  13. PolaS. ShahS.R. PingaliH. ZawareP. ThubeB. MakadiaP. PatelH. BandyopadhyayD. RathA. GiriS. PatelJ.H. RanvirR.K. SundarS.R. PatelH. KumarJ. JainM.R. Discovery of a potent g-protein-coupled receptor 119 agonist for the treatment of type 2 diabetes.Bioorg. Med. Chem.20213511607110.1016/j.bmc.2021.116071 33611013
    [Google Scholar]
  14. NicolaouK.C. ScarpelliR. BollbuckB. WerschkunB. PereiraM.M.A. WartmannM. AltmannK-H. ZaharevitzD. GussioR. GiannakakouP. Chemical synthesis and biological properties of pyridine epothilones**this paper is dedicated to professor josé barluenga on the occasion of his 60th birthday.Chem. Biol.20007859359910.1016/S1074‑5521(00)00006‑5 11048950
    [Google Scholar]
  15. IslamM.B. IslamM.I. NathN. EmranT.B. RahmanM.R. SharmaR. MatinM.M. Recent advances in pyridine scaffold: Focus on chemistry, synthesis, and antibacterial activities.BioMed Res. Int.202320231996759110.1155/2023/9967591 37250749
    [Google Scholar]
  16. AlbrattyM. AlhazmiH.A. Novel pyridine and pyrimidine derivatives as promising anticancer agents: A review.Arab. J. Chem.202215610384610.1016/j.arabjc.2022.103846
    [Google Scholar]
  17. KaleV. BhopalkarG. Optimization of pyridine based schiff bases: Design, synthesis and determination of anti-inflammatory, antioxidant and antimicrobial activity.Curr. Chem. Lett.20241319110010.5267/j.ccl.2023.8.006
    [Google Scholar]
  18. GrisezT. RaviN.P. FroeyenM. ScholsD. Van MeerveltL. De JongheS. DehaenW. Synthesis of a 3,7-disubstituted isothiazolo[4,3-b] pyridine as a potential inhibitor of cyclin g-associated kinase.Molecules202429595410.3390/molecules29050954 38474466
    [Google Scholar]
  19. GongC. ZhouY. ZhouQ. MengK. SunZ. ZengW. QinY. LuoX. XueW. Novel flavonoid derivatives containing 1,2,4-triazolo[4,3-a]pyridine as potential antifungal agents: Design, synthesis, and biological evaluation.J. Saudi Chem. Soc.202428210179710.1016/j.jscs.2023.101797
    [Google Scholar]
  20. NawrotD.E. BouzG. JanďourekO. KonečnáK. PaterováP. BártaP. NovákM. KučeraR. ZemanováJ. ForbakM. KordulákováJ. PavlišO. KubíčkováP. DoležalM. ZitkoJ. Antimycobacterial pyridine carboxamides: From design to in vivo activity.Eur. J. Med. Chem.202325811561710.1016/j.ejmech.2023.115617 37423128
    [Google Scholar]
  21. MulyanaF.E. WaskithaS.S.W. PranowoD. KhairuddeanM. WahyumingsihT.D. Synthesis of chalcone derivatives with methoxybenzene and pyridine moieties as potential antimalarial agents.Pharmacia20237041305131310.3897/pharmacia.70.e107406
    [Google Scholar]
  22. DotsenkoV.V. BespalovA.V. SinotskoA.E. TemerdashevA.Z. VasilinV.K. VarzievaE.A. StrelkovV.D. AksenovN.A. AksenovaI.V. 6-amino-4-aryl-7-phenyl-3-(phenylimino)-4,7-dihydro-3h-[1,2]dithiolo[3,4-b]pyridine-5-carboxamides: Synthesis, biological activity, quantum chemical studies and in silico docking studies.Int. J. Mol. Sci.202425276910.3390/ijms25020769 38255843
    [Google Scholar]
  23. BhattK. PatelD. RathodM. PatelA. ShahD. Efficient synthesis and characterization of 6-substituted-n-p-tolyl-imidazo [1,2-a] pyridine-8-carboxamide: A promising scaffold for drug development.Curr. Org. Chem.202327221978198410.2174/0113852728269243231206044929
    [Google Scholar]
  24. OuelletteV. BouzribaC. AlvarezC.A.C. Hamel-CôtéG. FortinS. Modification of the phenyl ring b of phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates by pyridinyl moiety leads to novel antimitotics targeting the colchicine-binding site.Bioorg. Med. Chem. Lett.202410512974510.1016/j.bmcl.2024.129745 38614151
    [Google Scholar]
  25. DeS. Kumar S KA. ShahS.K. KaziS. SarkarN. BanerjeeS. DeyS. Pyridine: The scaffolds with significant clinical diversity.RSC Adv.20221224153851540610.1039/D2RA01571D 35693235
    [Google Scholar]
  26. MehanyM.M. HammamO.A. SelimA.A. SayedG.H. AnwerK.E. Novel pyridine bearing pentose moiety-based anticancer agents: Design, synthesis, radioiodination and bioassessments.Sci. Rep.2024141273810.1038/s41598‑024‑53228‑4 38302640
    [Google Scholar]
  27. El-DeanA.M.K. Abd-EllaA.A. HassanienR. El-SayedM.E.A. A Abdel-RaheemS.A. Design, synthesis, characterization, and insecticidal bio-efficacy screening of some new pyridine derivatives.ACS Omega2019458406841210.1021/acsomega.9b00932 31459929
    [Google Scholar]
  28. VessallyE. HosseinianA. EdjlaliL. BekhradniaA. EsrafiliM.D. New page to access pyridine derivatives: Synthesis from n-propargylamines.RSC Adv.201675121
    [Google Scholar]
  29. HedringtonM.S. DavisS.N. Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes.Expert Opin. Pharmacother.201920182229223510.1080/14656566.2019.1672660 31593486
    [Google Scholar]
  30. SaeediM. Raeisi-NafchiM. SobhaniS. MirfazliS.S. ZardkanlouM. MojtabaviS. FaramarziM.A. AkbarzadehT. Synthesis of 4-alkylaminoimidazo[1,2-a]pyridines linked to carbamate moiety as potent α-glucosidase inhibitors.Mol. Divers.20212542399240910.1007/s11030‑020‑10137‑8 33047276
    [Google Scholar]
  31. AliM. KhanK.M. MahdaviM. JabbarA. ShamimS. SalarU. TahaM. PerveenS. LarijaniB. FaramarziM.A. Synthesis, in vitro and in silico screening of 2-amino-4-aryl-6-(phenylthio) pyridine-3,5-dicarbonitriles as novel α-glucosidase inhibitors.Bioorg. Chem.202010010387910.1016/j.bioorg.2020.103879 32413625
    [Google Scholar]
  32. Al-MajidA.M. IslamM.S. AtefS. El-SendunyF.F. BadriaF.A. ElshaierY.A.M.M. AliM. BarakatA. RahmanM.A.F.M. Synthesis of pyridine-dicarboxamide-cyclohexanone derivatives: Anticancer and α-glucosidase inhibitory activities and in silico study.Molecules2019247133210.3390/molecules24071332 30987350
    [Google Scholar]
  33. KhanZ.A. AhmadM. KamranS.H. AnwarR. MobasherF. RehmanT.U. RiazS. Preclinical anti-diabetic evaluation of n′-2, n′-4, n′-6-tris (4-hydroxybenzylidene) pyridine-2,4,6-tricarbohydrazide.Lat. Am. J. Pharm.2019383531538
    [Google Scholar]
  34. AdibM. PeytamF. Rahmanian-JaziM. Mohammadi-KhanaposhtaniM. MaherniaS. BijanzadehH.R. JahaniM. ImanparastS. FaramarziM.A. MahdaviM. LarijaniB. Design, synthesis and in vitro α-glucosidase inhibition of novel coumarin-pyridines as potent antidiabetic agents.New J. Chem.20184221172681727810.1039/C8NJ02495B
    [Google Scholar]
  35. RehmanT.U. RiazS. KhanI.U. AshrafM. BajdaM. GawalskaA. YarM. Novel pyridine‐2,4,6‐tricarbohydrazide thiourea compounds as small key organic molecules for the potential treatment of type‐2 diabetes mellitus: in vitro studies against yeast α‐ and β‐glucosidase and in silico molecular modeling.Arch. Pharm.20183511170023610.1002/ardp.201700236
    [Google Scholar]
  36. AliF. KhanK.M. SalarU. TahaM. IsmailN.H. WadoodA. RiazM. PerveenS. Hydrazinyl arylthiazole based pyridine scaffolds: Synthesis, structural characterization, in vitro α-glucosidase inhibitory activity, and in silico studies.Eur. J. Med. Chem.201713825527210.1016/j.ejmech.2017.06.041 28672278
    [Google Scholar]
  37. TahaM. IsmailN.H. ImranS. AinaaI. SelvarajM. baharudinM. AliM. KhanK.M. UddinN. Synthesis of 2-phenyl-1h-imidazo[4,5-b]pyridine as type 2 diabetes inhibitors and molecular docking studies.Med. Chem. Res.201726591692810.1007/s00044‑017‑1806‑0
    [Google Scholar]
  38. TahaM. IsmailN.H. ImranS. RashwanH. JamilW. AliS. KashifS.M. RahimF. SalarU. KhanK.M. Synthesis of 6-chloro-2-aryl-1h-imidazo[4,5-b]pyridine derivatives: Antidiabetic, antioxidant, β-glucuronidase inhibiton and their molecular docking studies.Bioorg. Chem.201665485610.1016/j.bioorg.2016.01.007 26855413
    [Google Scholar]
  39. LongS. StefaniF.R. BiondiS. GhiselliG. PanunzioM. N-heteroarylmethyl-5-hydroxy-1,2,5,6-tetrahydropyridine-3-carboxylic acid a novel scaffold for the design of uncompetitive α-glucosidase inhibitors.Bioorg. Med. Chem.201321185811582210.1016/j.bmc.2013.07.012 23910991
    [Google Scholar]
  40. KaurN. KumarV. NayakS.K. WadhwaP. KaurP. SahuS.K. Alpha‐amylase as molecular target for treatment of diabetes mellitus: A comprehensive review.Chem. Biol. Drug Des.202198453956010.1111/cbdd.13909 34173346
    [Google Scholar]
  41. GanaviD. ShashankM.P. VasanthaK. RamithR. BojaP. Pyrazole-imidazopyridine hydrazones: Synthesis, α-glucosidase, α-amylase inhibitory activity and computational studies.Chem. Select202308115
    [Google Scholar]
  42. FisyukA.S. KulakovI.V. GoncharovD.S. NikitinaO.S. BogzaY.P. ShatsauskasA.L. Shatsauskas, A.L. synthesis of 3-aminopyridin-2 (1 h)-ones and 1 h-pyrido [2,3-b][1, 4] oxazin-2 (3h)-ones.Chem. Heterocycl. Compd.201450221722410.1007/s10593‑014‑1464‑9
    [Google Scholar]
  43. SaleemF. KhanK.M. UllahN. ÖzilM. BaltaşN. HameedS. SalarU. WadoodA. RehmanA.U. KumarM. TahaM. HaiderS.M. Bioevaluation of synthetic pyridones as dual inhibitors of α‐amylase and α‐glucosidase enzymes and potential antioxidants.Arch. Pharm. (Weinheim)20233561220040010.1002/ardp.202200400 36284484
    [Google Scholar]
  44. SadawarteG. JagatapS. PatilM. JagrutV. RajputJ.D. Synthesis of substituted pyridine based sulphonamides as an antidiabetic agent.Eur. J. Chem.202112327928310.5155/eurjchem.12.3.279‑283.2118
    [Google Scholar]
  45. SaleemF. Kanwal KhanK.M. ChigurupatiS. SolangiM. NemalaA.R. MushtaqM. Ul-HaqZ. TahaM. PerveenS. Synthesis of azachalcones, their α-amylase, α-glucosidase inhibitory activities, kinetics, and molecular docking studies.Bioorg. Chem.202110610448910.1016/j.bioorg.2020.104489 33272713
    [Google Scholar]
  46. NawazM. TahaM. QureshiF. UllahN. SelvarajM. ShahzadS. ChigurupatiS. WaheedA. AlmutairiF.A. Structural elucidation, molecular docking, α-amylase and α-glucosidase inhibition studies of 5-amino-nicotinic acid derivatives.BMC Chem.20201414310.1186/s13065‑020‑00695‑1 32685927
    [Google Scholar]
  47. Aispuro-PérezA. López-ÁvalosJ. García-PáezF. Montes-AvilaJ. Picos-CorralesL.A. Ochoa-TeránA. BastidasP. MontañoS. Calderón-ZamoraL. Osuna-MartínezU. Sarmiento-SánchezJ.I. Synthesis and molecular docking studies of imines as α-glucosidase and α-amylase inhibitors.Bioorg. Chem.20209410349110.1016/j.bioorg.2019.103491 31818480
    [Google Scholar]
  48. NithyabalajiR. KrishnanH. SribalanR. Synthesis, molecular structure and multiple biological activities of n-(3-methoxyphenyl)-3-(pyridin-4-yl)-1h-pyrazole-5-carboxamide.J. Mol. Struct.2019118611010.1016/j.molstruc.2019.02.095
    [Google Scholar]
  49. KimH.H. KangY.R. LeeJ.Y. ChangH.B. LeeK.W. ApostolidisE. KwonY.I. The postprandial anti-hyperglycemic effect of pyridoxine and its derivatives using in vitro and in vivo animal models.Nutrients201810328510.3390/nu10030285 29495635
    [Google Scholar]
  50. SureshL. KumarP.S.V. OnkarP. SrinivasL. PydisettyY. ChandramouliG.V.P. Synthesis and in vitro evaluation of dihydro-6h-chromeno[4,3-b]isoxazolo[4,5-e]pyridine derivatives as potent antidiabetic agents.Res. Chem. Intermed.201743105433545110.1007/s11164‑017‑2938‑z
    [Google Scholar]
  51. ReimannF. GribbleF.M. G protein-coupled receptors as new therapeutic targets for type 2 diabetes.Diabetologia201659222923310.1007/s00125‑015‑3825‑z 26661410
    [Google Scholar]
  52. YeZ. LiuC. ZouF. CaiY. ChenB. ZouY. MoJ. HanT. HuangW. QiuQ. QianH. Discovery of novel potent gpr40 agonists containing imidazo[1,2-a]pyridine core as antidiabetic agents.Bioorg. Med. Chem.2020281311557410.1016/j.bmc.2020.115574 32546302
    [Google Scholar]
  53. FangY. ZhangS. WuW. LiuY. YangJ. LiY. LiM. DongH. JinY. LiuR. YangZ. Design and synthesis of tetrahydropyridopyrimidine derivatives as dual gpr119 and dpp-4 modulators.Bioorg. Chem.20209410339010.1016/j.bioorg.2019.103390 31662212
    [Google Scholar]
  54. ZhouY. ZhuX. ZhangL. TangC. FengB. Design, synthesis, and biological evaluation of 2‐(4‐(methylsulfonyl)phenyl)pyridine derivatives as gpr119 agonists.Chem. Biol. Drug Des.2019931677410.1111/cbdd.13380 30120879
    [Google Scholar]
  55. KoshizawaT. MorimotoT. WatanabeG. FukudaT. YamasakiN. HagitaS. SawadaY. OkudaA. ShibuyaK. OhgiyaT. Discovery of novel spiro[chromane-2,4′-piperidine] derivatives as potent and orally bioavailable g-protein-coupled receptor 119 agonists.Bioorg. Med. Chem. Lett.201828193236324110.1016/j.bmcl.2018.08.010 30145005
    [Google Scholar]
  56. MatsudaD. KobashiY. MikamiA. KawamuraM. ShiozawaF. KawabeK. HamadaM. NishimotoS. KimuraK. MiyoshiM. TakayamaN. KakinumaH. OhtakeN. Novel 3 h -[1,2,3]triazolo[4,5- c]pyridine derivatives as gpr119 agonists: Synthesis and structure-activity/solubility relationships.Bioorg. Med. Chem.201725164339435410.1016/j.bmc.2017.06.014 28662959
    [Google Scholar]
  57. JangY.K. LeeK.M. JungK.Y. KangS.K. PagireS.H. LeeJ.M. PagireH.S. KimK.R. BaeM.A. LeeH. RheeS.D. AhnJ.H. Design, synthesis, and biological evaluation of aryl n-methoxyamide derivatives as gpr119 agonists.Bioorg. Med. Chem. Lett.201727163909391410.1016/j.bmcl.2017.06.032 28666737
    [Google Scholar]
  58. MatsudaD. KobashiY. MikamiA. KawamuraM. ShiozawaF. KawabeK. HamadaM. OdaK. NishimotoS. KimuraK. MiyoshiM. TakayamaN. KakinumaH. OhtakeN. Design and synthesis of 1h-pyrazolo[3,4-c]pyridine derivatives as a novel structural class of potent gpr119 agonists.Bioorg. Med. Chem. Lett.201626153441344610.1016/j.bmcl.2016.06.050 27390068
    [Google Scholar]
  59. WangY. YuM. ZhuJ. ZhangJ.K. KayserF. MedinaJ.C. SieglerK. ConnM. ShanB. GrilloM.P. LiuJ.J. CowardP. Discovery and optimization of 5-(2-((1-(phenylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)oxy)pyridin-4-yl)-1,2,4-oxadiazoles as novel gpr119 agonists.Bioorg. Med. Chem. Lett.20142441133113710.1016/j.bmcl.2013.12.127 24440299
    [Google Scholar]
  60. SakairiM. KogamiM. ToriiM. KunoY. OhsawaY. MakinoM. KataokaD. OkamotoR. MiyazawaT. InoueM. TakahashiN. HaradaS. WatanabeN. Synthesis and biological evaluation of a 6-aminofuro[3,2-c]pyridin-3(2h)-one series of gpr 119 agonists.Arzneimittelforschung2012621153754410.1055/s‑0032‑1323760 22972470
    [Google Scholar]
  61. EganA. VellaA. Ttp399: An investigational liver-selective glucokinase (gk) activator as a potential treatment for type 2 diabetes.Expert Opin. Investig. Drugs201928974174710.1080/13543784.2019.1654993 31398075
    [Google Scholar]
  62. PatidarD. JainA. MohantyP.K. Synthesis, characterization and pharmacological activity of 3, 6-disubstituted 2-pyridinecarboxamide derivatives as glucokinase activator.Int. J. Adv. Sci. Res.20201104Suppl. 9150156
    [Google Scholar]
  63. GrewalA.S. KharbR. PrasadD.N. DuaJ.S. LatherV. n ‐pyridin‐2‐yl benzamide analogues as allosteric activators of glucokinase: Design, synthesis, in vitro, in silico and in vivo evaluation.Chem. Biol. Drug Des.201993336437210.1111/cbdd.13423 30369030
    [Google Scholar]
  64. DransfieldP.J. PattaropongV. LaiS. FuZ. KohnT.J. DuX. ChengA. XiongY. KomorowskiR. JinL. ConnM. TienE. DeWolfW.E.Jr HinklinR.J. AicherT.D. KraserC.F. BoydS.A. VoegtliW.C. CondroskiK.R. Veniant-EllisonM. MedinaJ.C. HouzeJ. CowardP. Novel series of potent glucokinase activators leading to the discovery of am-2394.ACS Med. Chem. Lett.20167771471810.1021/acsmedchemlett.6b00140 27437083
    [Google Scholar]
  65. DuX. HinklinR.J. XiongY. DransfieldP. ParkJ. KohnT.J. PattaropongV. LaiS. FuZ. JiaoX. ChowD. JinL. DavdaJ. VeniantM.M. AndersonD.A. BaerB.R. BencsikJ.R. BoydS.A. ChicarelliM.J. MohrP.J. WangB. CondroskiK.R. DeWolfW.E. ConnM. TranT. YangJ. AicherT.D. MedinaJ.C. CowardP. HouzeJ.B. C5-alkyl-2-methylurea-substituted pyridines as a new class of glucokinase activators.ACS Med. Chem. Lett.20145121284128910.1021/ml500341w 25516785
    [Google Scholar]
  66. ParkK. LeeB.M. HyunK.H. LeeD.H. ChoiH.H. KimH. ChongW. KimK.B. NamS.Y. Discovery of 3-(4-methanesulfonylphenoxy)-n-[1-(2-methoxy-ethoxymethyl)-1h-pyrazol-3-yl]-5-(3-methylpyridin-2-yl)-benzamide as a novel glucokinase activator (GKA) for the treatment of type 2 diabetes mellitus.Bioorg. Med. Chem.20142272280229310.1016/j.bmc.2014.02.009 24588963
    [Google Scholar]
  67. LiN. WangL.J. JiangB. LiX. GuoC. GuoS. ShiD.Y. Recent progress of the development of dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus.Eur. J. Med. Chem.201815114515710.1016/j.ejmech.2018.03.041 29609120
    [Google Scholar]
  68. MaezakiH. TawadaM. YamashitaT. BannoY. MiyamotoY. YamamotoY. IkedoK. KosakaT. TsubotaniS. TaniA. AsakawaT. SuzukiN. OiS. Design of potent dipeptidyl peptidase IV (DPP-4) inhibitors by employing a strategy to form a salt bridge with LYS554.Bioorg. Med. Chem. Lett.201727153565357110.1016/j.bmcl.2017.05.048 28579121
    [Google Scholar]
  69. ZhuY. MengX. CaiZ. HaoQ. ZhouW. Synthesis of phenylpyridine derivatives and their biological evaluation toward dipeptidyl peptidase-4.Chem. Heterocycl. Compd.201753335035610.1007/s10593‑017‑2062‑4
    [Google Scholar]
  70. LiQ. ZhouM. HanL. CaoQ. WangX. ZhaoL. ZhouJ. ZhangH. Design, synthesis and biological evaluation of imidazo [1,2‐a] pyridine derivatives as novel DPP‐4 inhibitors.Chem. Biol. Drug Des.201586484985610.1111/cbdd.12560 25787859
    [Google Scholar]
  71. MiyamotoY. BannoY. YamashitaT. FujimotoT. OiS. MoritohY. AsakawaT. KataokaO. TakeuchiK. SuzukiN. IkedoK. KosakaT. TsubotaniS. TaniA. FunamiM. AmanoM. YamamotoY. AertgeertsK. YanoJ. MaezakiH. Design and synthesis of 3-pyridylacetamide derivatives as dipeptidyl peptidase IV (DPP-4) inhibitors targeting a bidentate interaction with ARG125.Bioorg. Med. Chem.201119117218510.1016/j.bmc.2010.11.038 21163664
    [Google Scholar]
  72. KaczanowskaK. WiesmüllerK.H. SchaffnerA.P. Design, synthesis, and in vitro evaluation of novel aminomethyl-pyridines as dpp-4 inhibitors.ACS Med. Chem. Lett.20101953053510.1021/ml100200c 24900243
    [Google Scholar]
  73. ChenH. ZhangX. ZhangX. LiuW. LeiY. ZhuC. MaB. (5-hydroxy-4-oxo-2-styryl-4 h-pyridin-1-yl)-acetic acid derivatives as multifunctional aldose reductase inhibitors.Molecules20202521513510.3390/molecules25215135 33158254
    [Google Scholar]
  74. PraveenkumarE. GurrapuN. KolluriK.P. YerraguntaV. Reddy KunduruB. SubhashiniN.J.P. Synthesis, anti-diabetic evaluation and molecular docking studies of 4-(1-aryl-1h-1, 2, 3-triazol-4-yl)-1,4-dihydropyridine derivatives as novel 11-β hydroxysteroid dehydrogenase-1 (11β-HSD1) inhibitors.Bioorg. Chem.20199010305610.1016/j.bioorg.2019.103056 31276952
    [Google Scholar]
  75. ChenJ. PengZ. LuM. XiongX. ChenZ. LiQ. ChengZ. JiangD. TaoL. HuG. Discovery of 1-(4-((3-(4-methylpiperazin-1-yl)propyl)amino)benzyl)-5-(trifluoromethyl)pyridin-2(1h)-one, an orally active multi-target agent for the treatment of diabetic nephropathy.Bioorg. Med. Chem. Lett.201828222222910.1016/j.bmcl.2017.07.001 29248299
    [Google Scholar]
  76. MaF. LiuJ. ZhouT. LeiM. ChenJ. WangX. ZhangY. ShenX. HuL. Discovery and structure-activity relationships study of thieno[2,3-b]pyridine analogues as hepatic gluconeogenesis inhibitors.Eur. J. Med. Chem.201815230731710.1016/j.ejmech.2018.04.028 29733999
    [Google Scholar]
  77. KotaT.V. GandhamH.B. SanasiP.D. Green synthesis, characterization and antidiabetic activity of 2-substituted aryl/alkyl-n-aryl/alkyl imidazo [1,2-a] pyridin-3-amine derivatives.Asian J. Chem.201830716
    [Google Scholar]
  78. KrauseM. FoksH. GobisK. Pharmacological potential and synthetic approaches of imidazo [4,5-b] pyridine and imidazo [4,5-c] pyridine derivatives.Molecules201722339910.3390/molecules22030399 28273868
    [Google Scholar]
  79. HanZ. HaoX. MaB. ZhuC. A series of pyrido[2,3-b]pyrazin-3(4H)-one derivatives as aldose reductase inhibitors with antioxidant activity.Eur. J. Med. Chem.201612130831710.1016/j.ejmech.2016.05.036 27267001
    [Google Scholar]
  80. ZhuS. ZhangS. HaoX. QinX. ParveenS. YangS. MaB. ZhuC. Pyridothiadiazine derivatives as aldose reductase inhibitors having antioxidant activity.J. Enzyme. Inhib. Med. Chem.201631sup112613010.1080/14756366.2016.117863827153454
    [Google Scholar]
/content/journals/mc/10.2174/0115734064342827241230053148
Loading
/content/journals/mc/10.2174/0115734064342827241230053148
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test