Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction

Heterocyclic derivatives, particularly those containing heteroatoms such as oxygen and nitrogen, represent a significant portion of currently marketed drugs. Among these, the aromatic heterocycle 1,3,4-oxadiazole, characterized by an N=C=O-linkage, stands out due to its remarkable biological activities. These activities include anti-inflammatory, anti-cancer, antioxidant, anti-tubercular, antiviral, anti-diabetic, and antibacterial effects. Notably, several commercially available medications, such as tiodazosin, raltegravir, zibotentan, and nesapidil, incorporate this structural motif.

Methods

This review compiles and analyzes existing synthetic methods for preparing 1,3,4-oxadiazole and its derivatives. By examining various synthetic routes and methodologies, the review provides a detailed overview of the strategies employed to generate these biologically active compounds.

Results

The review highlights the potential of 1,3,4-oxadiazole derivatives in addressing the toxicity, side effects, and drug resistance commonly associated with existing anticancer therapies. By combining the 1,3,4-oxadiazole moiety with other heteroatoms, novel hybrid derivatives have been synthesized, demonstrating enhanced pharmacological activities across various therapeutic areas.

Conclusion

This comprehensive review offers valuable insights into the synthesis and pharmacological applications of 1,3,4-oxadiazoles. It serves as a crucial resource for researchers exploring the development of new therapeutic compounds, with the ultimate goal of improving public health. The review builds on existing literature from the last two decades to present an exhaustive examination of the potential of 1,3,4-oxadiazole derivatives in drug development.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064354700241202174614
2025-12-01
2025-11-30
Loading full text...

Full text loading...

References

  1. GujjarappaR. SravaniS. KabiA.K. GargA. VodnalaN. TyagiU. KaldhiD. SinghV. GuptaS. MalakarC.C. An overview on biological activities of oxazole, isoxazoles and 1,2,4-oxadiazoles derivatives. Nanostructured Biomater. Basic Struct. Appl. SwainB.P. SingaporeSpringer202237940010.1007/978‑981‑16‑8399‑2_10
    [Google Scholar]
  2. AkbarS. DasS. DewanganR.P. JosephA. AhmedB. Review on the potential of 1,3,4-Oxadiazine derivatives: Synthesis, structure-activity relationship, and future prospects in drug development.Eur. J. Med. Chem. Rep.20241110015210.1016/j.ejmcr.2024.100152
    [Google Scholar]
  3. ChaudharyT. UpadhyayP.K. Recent advancement in synthesis and bioactivities of 1,3,4-oxadiazole.Curr. Org. Synth.202320666367710.2174/1570179420666221129153933 36453511
    [Google Scholar]
  4. SahuB. BhatiaR. KaurD. ChoudharyD. RawatR. SharmaS. KumarB. Design, synthesis and biological evaluation of oxadiazole clubbed piperazine derivatives as potential antidepressant agents.Bioorg. Chem.202313610654410.1016/j.bioorg.2023.106544 37116324
    [Google Scholar]
  5. ZorodduS. CoronaP. SannaL. BorghiF. BordoniV. AsproniB. PinnaG.A. BagellaL. MurinedduG. Novel 1,3,4-oxadiazole chalcogen analogues: Synthesis and cytotoxic activity.Eur. J. Med. Chem.202223811444010.1016/j.ejmech.2022.114440 35576700
    [Google Scholar]
  6. BalachandraA. DeshpandeS.N. RajA. RevanasiddappaB.C. Synthesis, molecular docking, and anticonvulsant activity of 1,3,4-oxadiazole derivatives.J. Health Allied Sci202410.1055/s‑0044‑1787814
    [Google Scholar]
  7. MaS. JiangW. LiQ. LiT. WuW. BaiH. ShiB. Design, synthesis, and study of the insecticidal activity of novel steroidal 1,3,4-oxadiazoles.J. Agric. Food Chem.20216939115721158110.1021/acs.jafc.1c00088 34554742
    [Google Scholar]
  8. VermaS.K. VermaR. VermaS. VaishnavY. TiwariS.P. RakeshK.P. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review.Eur. J. Med. Chem.202120911288610.1016/j.ejmech.2020.112886 33032083
    [Google Scholar]
  9. ParizadehN. AlipourE. SoleymaniS. ZabihollahiR. AghasadeghiM.R. HajimahdiZ. ZarghiA. Synthesis of novel 3-(5-(Alkyl/arylthio)-1,3,4-Oxadiazol-2-yl)-8-Phenylquinolin-4(1 H)-one derivatives as anti-HIV agents.Phosphorus Sulfur Silicon Relat. Elem.2018193422523110.1080/10426507.2017.1394302
    [Google Scholar]
  10. WangY.E. YangD. DaiL. HuoJ. ChenL. KangZ. MaoJ. ZhangJ. Design, synthesis, herbicidal activity, and molecular docking study of 2-Thioether-5-(Thienyl/Pyridyl)-1,3,4-Oxadiazoles as potent transketolase inhibitors.J. Agric. Food Chem.20227082510251910.1021/acs.jafc.1c06897 35175764
    [Google Scholar]
  11. HamoudM.M.S. OsmanN.A. RezqS. A A Abd El-WahabH. E A HassanA. Abdel-FattahH.A. RomeroD.G. GhanimA.M. Design and synthesis of novel 1,3,4-Oxadiazole and 1,2,4-Triazole derivatives as cyclooxygenase-2 inhibitors with anti-inflammatory and antioxidant activity in LPS-stimulated RAW264.7 macrophages.Bioorg. Chem.202212410580810.1016/j.bioorg.2022.105808 35447409
    [Google Scholar]
  12. LataS. KaurR. SinghG. BhandariD.D. AbbotV. Exploring the antimicrobial potential of novel 2-oxo-2-H-chromene conjugates with guanine, thiazole, and imidazole: Synthesis, characterization, and biological evaluation.Eur. J. Med. Chem. Rep.20241210017910.1016/j.ejmcr.2024.100179
    [Google Scholar]
  13. WangY. LiD. LvZ. FengB. LiT. WengX. Efficacy and safety of Gutong Patch compared with NSAIDs for knee osteoarthritis: A real-world multicenter, prospective cohort study in China.Pharmacol. Res.202319710695410.1016/j.phrs.2023.106954 37832860
    [Google Scholar]
  14. HeinrichM. AppendinoG. EfferthT. FürstR. IzzoA.A. KayserO. PezzutoJ.M. ViljoenA. Best practice in research – Overcoming common challenges in phytopharmacological research.J. Ethnopharmacol.202024611223010.1016/j.jep.2019.112230 31526860
    [Google Scholar]
  15. ZhouY. LiL. YuZ. GuX. PanR. LiQ. YuanC. CaiF. ZhuY. CuiY. Dermatophagoides pteronyssinus allergen Der p 22: Cloning, expression, IGE ‐binding in asthmatic children, and immunogenicity.Pediatr. Allergy Immunol.2022338e1383510.1111/pai.13835 36003049
    [Google Scholar]
  16. MermerA. KelesT. SirinY. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review.Bioorg. Chem.202111410507610.1016/j.bioorg.2021.105076 34157555
    [Google Scholar]
  17. ChernyshovV.V. PopadyukI.I. YarovayaO.I. SalakhutdinovN.F. Nitrogen-containing heterocyclic compounds obtained from monoterpenes or their derivatives: Synthesis and properties.Top. Curr. Chem.202238054210.1007/s41061‑022‑00399‑1 35951263
    [Google Scholar]
  18. KapilaI. BharwalA. SharmaP. ChoudharyN. AbbotV. Synthetic marvels in tuberculosis research: An in-depth review of 1,3,4-oxadiazole derivatives as antitubercular agents.Eur. J. Med. Chem. Rep.20241110015010.1016/j.ejmcr.2024.100150
    [Google Scholar]
  19. ZhouY. LiQ. PanR. WangQ. ZhuX. YuanC. CaiF. GaoY. CuiY. Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae.Allergy202277246948210.1111/all.15111 34570913
    [Google Scholar]
  20. LiX. LiangJ. HuJ. MaL. YangJ. ZhangA. JingY. SongY. YangY. FengZ. DuZ. WangY. LuoT. HeW. ShuX. YangS. LiQ. MeiM. LuoS. LiaoK. ZhangY. HeY. HeY. XiaoM. PengB. Screening for primary aldosteronism on and off interfering medications.Endocrine202383117818710.1007/s12020‑023‑03520‑6 37796417
    [Google Scholar]
  21. PatelD.S.A. 1, 3, 4-Oxadiazole: Synthesis and Pharmacological Applications.Crown Publishing2024
    [Google Scholar]
  22. ZuoW. ZuoL. GengX. LiZ. WangL. Photoinduced C–H heteroarylation of enamines via quadruple cleavage of CF 2 Br 2.Org. Chem. Front.202310246112611610.1039/D3QO01474F
    [Google Scholar]
  23. SinghR.B. SinghG.K. ChaturvediK. KumarD. SinghS.K. ZamanM.K. Design, synthesis, characterization, and molecular modeling studies of novel oxadiazole derivatives of nipecotic acid as potential anticonvulsant and antidepressant agents.Med. Chem. Res.201827113715210.1007/s00044‑017‑2047‑y
    [Google Scholar]
  24. ZhaoL. WengY. ZhouX. WuG. Aminoselenation and dehydroaromatization of cyclohexanones with anilines and diselenides.Org. Lett.202426224835483910.1021/acs.orglett.4c01799 38809603
    [Google Scholar]
  25. AhsanM.J. 1,3,4-oxadiazole containing compounds as therapeutic targets for cancer therapy.Mini Rev. Med. Chem.202222116419710.2174/1389557521666210226145837 33634756
    [Google Scholar]
  26. ChenS. SemenovI. ZhangF. YangY. GengJ. FengX. MengQ. LeiK. An effective framework for predicting drug–drug interactions based on molecular substructures and knowledge graph neural network.Comput. Biol. Med.202416910790010.1016/j.compbiomed.2023.107900 38199213
    [Google Scholar]
  27. KhanA.A. RahimF. TahaM. RehmanW. IqbalN. WadoodA. AhmadN. ShahS.A.A. GhoneimM.M. AlshehriS. SalahuddinM. KhanK.M. New biologically dynamic hybrid pharmacophore triazinoindole-based-thiadiazole as potent α-glucosidase inhibitors: In vitro and in silico study.Int. J. Biol. Macromol.2022199778510.1016/j.ijbiomac.2021.12.147 34968547
    [Google Scholar]
  28. NayakS. GaonkarS.L. MusadE.A. DawsarA.M.A.L. 1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships.J. Saudi Chem. Soc.202125810128410.1016/j.jscs.2021.101284
    [Google Scholar]
  29. MouscadetJ.F. TchertanovL. Raltegravir: Molecular basis of its mechanism of action.Eur. J. Med. Res.200914Suppl. 351610.1186/2047‑783X‑14‑S3‑5 19959411
    [Google Scholar]
  30. HassanA. KhanA.H. SaleemF. AhmadH. KhanK.M. A patent review of pharmaceutical and therapeutic applications of oxadiazole derivatives for the treatment of chronic diseases (2013–2021).Expert Opin. Ther. Pat.202232969100110.1080/13543776.2022.2116312
    [Google Scholar]
  31. SiwachA. VermaP.K. Therapeutic potential of oxadiazole or furadiazole containing compounds.BMC Chem.20201417010.1186/s13065‑020‑00721‑2 33372629
    [Google Scholar]
  32. DesaiN. MonaparaJ. JethawaA. KhedkarV. ShingateB. Oxadiazole: A highly versatile scaffold in drug discovery.Arch. Pharm.20223559220012310.1002/ardp.202200123 35575467
    [Google Scholar]
  33. DingC. ZhangG. YuY. ZhaoY. XieX. Iron(III)/TEMPO-catalyzed synthesis of 2,5-Disubstituted 1,3,4-Oxadiazoles by oxidative cyclization under mild conditions.Synlett201728111373137710.1055/s‑0036‑1588747
    [Google Scholar]
  34. XuX.C. WuD.N. LiangY.X. YangM. YuanH.Y. ZhaoY.L. Visible light-induced coupling cyclization reaction of α-diazosulfonium triflates with α-oxocarboxylic acids or alkynes.J. Org. Chem.20228724166041661610.1021/acs.joc.2c02267 36469572
    [Google Scholar]
  35. KumarD. PilaniaM. ArunV. MishraB. A facile and expeditious one-pot synthesis of α-Keto-1,3,4-oxadiazoles.Synlett20142581137114110.1055/s‑0033‑1340981
    [Google Scholar]
  36. Wet-osotS. PhakhodeeW. PattarawarapanM. Application of N -Acylbenzotriazoles in the synthesis of 5-Substituted 2-Ethoxy-1,3,4-oxadiazoles as building blocks toward 3,5-Disubstituted 1,3,4-Oxadiazol-2(3 H)-ones.J. Org. Chem.201782189923992910.1021/acs.joc.7b01863 28862855
    [Google Scholar]
  37. YadavL. KapoorrR. SinghS. TripathiS. Photocatalytic oxidative heterocyclization of semicarbazones: An efficient approach for the synthesis of 1,3,4-Oxadiazoles.Synlett20152691201120610.1055/s‑0034‑1380493
    [Google Scholar]
  38. DolmanS.J. GosselinF. O’SheaP.D. DaviesI.W. Superior reactivity of thiosemicarbazides in the synthesis of 2-amino-1,3,4-oxadiazoles.J. Org. Chem.200671259548955110.1021/jo0618730 17137395
    [Google Scholar]
  39. YangS.J. LeeS.H. KwakH.J. GongY.D. Regioselective synthesis of 2-amino-substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives via reagent-based cyclization of thiosemicarbazide intermediate.J. Org. Chem.201378243844410.1021/jo302324r 23215154
    [Google Scholar]
  40. FanY. HeY. LiuX. HuT. MaH. YangX. LuoX. HuangG. Iodine-mediated domino oxidative cyclization: One-pot synthesis of 1,3,4-oxadiazoles via oxidative cleavage of C(sp 2)–H or C(sp)–H bond.J. Org. Chem.201681156820682510.1021/acs.joc.6b01135 27387390
    [Google Scholar]
  41. GaoQ. LiuS. WuX. ZhangJ. WuA. Direct annulation of hydrazides to 1,3,4-Oxadiazoles via oxidative C(CO)–C(Methyl) bond cleavage of methyl ketones.Org. Lett.201517122960296310.1021/acs.orglett.5b01241 26035338
    [Google Scholar]
  42. FangT. TanQ. DingZ. LiuB. XuB. Pd-catalyzed oxidative annulation of hydrazides with isocyanides: Synthesis of 2-amino-1,3,4-oxadiazoles.Org. Lett.20141692342234510.1021/ol5006449 24725151
    [Google Scholar]
  43. ChauhanJ. RavvaM.K. SenS. Harnessing autoxidation of aldehydes: In situ iodoarene catalyzed synthesis of substituted 1,3,4-Oxadiazole, in the presence of molecular oxygen.Org. Lett.201921166562656510.1021/acs.orglett.9b02542 31368711
    [Google Scholar]
  44. PattarawarapanM. YamanoD. WiriyaN. PhakhodeeW. Wet-osotS. Mechanochemical synthesis of 2,5-disubstituted 1,3,4-oxadiazoles mediated by PPh3-TCCA.Synlett202233141458146210.1055/s‑0040‑1719867
    [Google Scholar]
  45. WangL. CaoJ. ChenQ. HeM. One-pot synthesis of 2,5-Diaryl 1,3,4-Oxadiazoles via Di- tert -butyl peroxide promoted N -Acylation of aryl tetrazoles with aldehydes.J. Org. Chem.20158094743474810.1021/acs.joc.5b00207 25860162
    [Google Scholar]
  46. NiuP. KangJ. TianX. SongL. LiuH. WuJ. YuW. ChangJ. Synthesis of 2-amino-1,3,4-oxadiazoles and 2-amino-1,3,4-thiadiazoles via sequential condensation and I2-mediated oxidative C–O/C–S bond formation.J. Org. Chem.20158021018102410.1021/jo502518c 25506709
    [Google Scholar]
  47. GeorgeN. SabahiB.A. AbuKhaderM. BalushiK.A. AkhtarM.J. KhanS.A. Design, synthesis and in vitro biological activities of coumarin linked 1,3,4-oxadiazole hybrids as potential multi-target directed anti-Alzheimer agents.J. King Saud Univ. Sci.202234410197710.1016/j.jksus.2022.101977
    [Google Scholar]
  48. MalladiS.A. IsloorA.M. PeethambarS.K. FunH.K. Synthesis and biological evaluation of newer analogues of 2,5- disubstituted-1,3,4-Oxadiazole as anti-microbial, antioxidant and anticonvulsant agents.Arabian J. Chem.2013761185119110.1016/j.arabjc.2013.12.020
    [Google Scholar]
  49. TantakM.P. MalikM. KlinglerL. OlsonZ. KumarA. SadanaR. KumarD. Indolyl-α-keto-1,3,4-oxadiazoles: Synthesis, anti-cell proliferation activity, and inhibition of tubulin polymerization.Bioorg. Med. Chem. Lett.20213712784210.1016/j.bmcl.2021.127842 33556575
    [Google Scholar]
  50. Al-WahaibiL.H. MohamedA.A.B. TawfikS.S. HassanH.M. El-EmamA.A. 1,3,4-oxadiazole N-mannich bases: Synthesis, antimicrobial, and anti-proliferative activities.Molecules2021268211010.3390/molecules26082110 33916955
    [Google Scholar]
  51. LiT. WenG. LiJ. ZhangW. WuS. A useful synthesis of 2-acylamino-1,3,4-oxadiazoles from acylthiosemicarbazides using potassium iodate and the discovery of new antibacterial compounds.Molecules2019248149010.3390/molecules24081490 30988267
    [Google Scholar]
  52. AboraiaA.S. Abdel-RahmanH.M. MahfouzN.M. EL-GendyM.A. Novel 5-(2-hydroxyphenyl)-3-substituted-2,3-dihydro-1,3,4-oxadiazole-2-thione derivatives: Promising anticancer agents.Bioorg. Med. Chem.20061441236124610.1016/j.bmc.2005.09.053 16242340
    [Google Scholar]
  53. BahriF. ShadiM. MohammadianR. JavanbakhtS. ShaabaniA. Cu-decorated cellulose through a three-component Betti reaction: An efficient catalytic system for the synthesis of 1,3,4-oxadiazoles via imine C H functionalization of N-acylhydrazones.Carbohydr. Polym.202126511806710.1016/j.carbpol.2021.118067 33966831
    [Google Scholar]
  54. Matheau-RavenD. DixonD.J. General α‐amino 1,3,4‐oxadiazole synthesis via late‐stage reductive functionalization of tertiary amides and lactams**.Angew. Chem. Int. Ed.20216036197251972910.1002/anie.202107536 34191400
    [Google Scholar]
  55. HuangH. ZouX. CaoS. PengZ. PengY. WangX. N -heterocyclic carbene-catalyzed cyclization of aldehydes with α-diazo iodonium triflate: Facile access to 2,5-Disubstituted 1,3,4-Oxadiazoles.Org. Lett.202123114185419010.1021/acs.orglett.1c01128 33989007
    [Google Scholar]
  56. GuinS. GhoshT. RoutS.K. BanerjeeA. PatelB.K. Cu(II) catalyzed imine C-H functionalization leading to synthesis of 2,5-substituted 1,3,4-oxadiazoles.Org. Lett.201113225976597910.1021/ol202409r 22007797
    [Google Scholar]
  57. AdibM. KeshehM.R. AnsariS. BijanzadehH.R. Reaction between N-Isocyaniminotriphenylphosphorane, Aldehydes, and Carboxylic acids: A one-pot and three-component synthesis of 2-Aryl-5-hydroxyalkyl-1,3,4-oxadiazoles.Synlett200920091575157810.1055/s‑0029‑1217337
    [Google Scholar]
  58. GodhaniD.R. MulaniV.B. MehtaJ.P. Cyclization and antimicrobial evolution of 1,3,4-oxadiazoles by carbohydrazide.World Sci. News2019124304311
    [Google Scholar]
  59. TriloknadhS. RaoC. NagarajuB. BalajiH. BalajiM. Design and synthesis of novel 1,3,4-oxadiazole and 1,2,4-triazolo[3,4- B]1,3,4-thiadiazole derivatives and their antimicrobial studies.Eur. J. Biomed. Pharm. Sci.201857575558
    [Google Scholar]
  60. PolothiR. RaoljiG.S.B. KuchibhotlaV.S. SheelamK. TunikiB. ThodupunuriP. Synthesis and biological evaluation of 1,2,4-oxadiazole linked 1,3,4-oxadiazole derivatives as tubulin binding agents.Synth. Commun.201949131603161210.1080/00397911.2018.1535076
    [Google Scholar]
  61. JafariE. HassanzadehF. Sadeghi-AliabadiH. SharifzadehA. DanaN. Synthesis and cytotoxic evaluation of some quinazolinone- 5-(4-chlorophenyl) 1, 3, 4-oxadiazole conjugates.Res. Pharm. Sci.201914540841310.4103/1735‑5362.268201 31798657
    [Google Scholar]
  62. GuW. JinX.Y. LiD.D. WangS.F. TaoX.B. ChenH. Design, synthesis and in vitro anticancer activity of novel quinoline and oxadiazole derivatives of ursolic acid.Bioorg. Med. Chem. Lett.201727174128413210.1016/j.bmcl.2017.07.033 28733083
    [Google Scholar]
  63. RoyP.P. BajajS. MaityT.K. SinghJ. Synthesis and evaluation of anticancer activity of 1, 3, 4-oxadiazole derivatives against Ehrlich ascites carcinoma bearing mice and their correlation with histopathology of liver.Indian J. Pharm. Educ.20171516
    [Google Scholar]
  64. ZhangX.M. QiuM. SunJ. ZhangY.B. YangY.S. WangX.L. TangJ.F. ZhuH.L. Synthesis, biological evaluation, and molecular docking studies of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan moiety as potential anticancer agents.Bioorg. Med. Chem.201119216518652410.1016/j.bmc.2011.08.013 21962523
    [Google Scholar]
  65. Al-TamimiA.M.S. MaryY.S. MiniyarP.B. Al-WahaibiL.H. El-EmamA.A. ArmakovićS. ArmakovićS.J. Synthesis, spectroscopic analyses, chemical reactivity and molecular docking study and anti-tubercular activity of pyrazine and condensed oxadiazole derivatives.J. Mol. Struct.2018116445946910.1016/j.molstruc.2018.03.085
    [Google Scholar]
  66. GholapS. TambeM. NawaleL. SarkarD. SangshettiJ. DamaleM. Design, synthesis, and pharmacological evaluation of fluorinated azoles as anti‐tubercular agents.Arch. Pharm.20183512170029410.1002/ardp.201700294 29292534
    [Google Scholar]
  67. SajjaY. VanguruS. VulupalaH.R. NagarapuL. PerumalY. SriramD. NanuboluJ.B. Design, synthesis, and in vitro antituberculosis activity of benzo[6,7]cyclohepta[1,2‐ b]pyridine‐1,3,4‐oxadiazole derivatives.Chem. Biol. Drug Des.201790449650010.1111/cbdd.12969 28267891
    [Google Scholar]
  68. SapariyaN.H. VaghasiyaB.K. ThummarR.P. KamaniR.D. PatelK.H. RavalD.K. An efficient iodobenzene diacetate (IBD) catalyzed tetrazolo [1, 5-a] quinoline incorporated 1, 3, 4-oxadiazole nucleus: Synthesis, characterization and biological evaluation.Heterocycl. Lett.20177745762
    [Google Scholar]
  69. KaradS.C. PurohitV.B. AvalaniJ.R. SapariyaN.H. RavalD.K. Design, synthesis, and characterization of a fluoro substituted novel pyrazole nucleus clubbed with 1,3,4-oxadiazole scaffolds and their biological applications.RSC Advances2016647415324154110.1039/C6RA01349J
    [Google Scholar]
  70. LoleB. WaghmaleS. PisteP. Solid supported microwave assisted rapid synthesis of 1, 3, 4 oxadiazoles.Int. J. Pharm. Sci. Res.201672231
    [Google Scholar]
  71. DesaiN.C. VaghaniH.V. JethawaA.M. KhedkarV.M. In silico molecular docking studies of oxadiazole and pyrimidine bearing heterocyclic compounds as potential antimicrobial agents.Arch. Pharm.202135410210013410.1002/ardp.202100134 34169569
    [Google Scholar]
  72. PatelB.Y. KarkarT.J. BhattM.J. Synthesis of 5-substituted-1,3,4-oxadiazole clubbed pyrazole and dihydropyrimidine derivatives as potent bioactive agents.Eur. Chem. Bull.2021101131310.17628/ecb.2021.10.13‑20
    [Google Scholar]
  73. ParuchK. PopiołekŁ. BiernasiukA. HordyjewskaA. MalmA. WujecM. Novel 3-Acetyl-2,5-disubstituted-1,3,4-oxadiazolines: Synthesis and biological activity.Molecules20202524584410.3390/molecules25245844 33322054
    [Google Scholar]
  74. BitlaS. SagurthiS.R. DhanavathR. PuchakayalaM.R. BirudarajuS. GayatriA.A. BhukyaV.K. AtchaK.R. Design and synthesis of triazole conjugated novel 2,5-diaryl substituted 1,3,4-oxadiazoles as potential antimicrobial and anti-fungal agents.J. Mol. Struct.2020122012870510.1016/j.molstruc.2020.128705
    [Google Scholar]
  75. HkiriS. HafidhA. CavalierJ.F. TouilS. SamaratA. Design, synthesis, antimicrobial evaluation, and molecular docking studies of novel symmetrical 2,5‐difunctionalized 1,3,4‐oxadiazoles.J. Heterocycl. Chem.20205731044105410.1002/jhet.3837
    [Google Scholar]
  76. HofnyH.A. MohamedM.F.A. GomaaH.A.M. Abdel-AzizS.A. YoussifB.G.M. El-koussiN.A. AboraiaA.S. Design, synthesis, and antibacterial evaluation of new quinoline-1,3,4-oxadiazole and quinoline-1,2,4-triazole hybrids as potential inhibitors of DNA gyrase and topoisomerase IV.Bioorg. Chem.202111210492010.1016/j.bioorg.2021.104920 33910078
    [Google Scholar]
  77. IngaleN. MaddiV. PalkarM. RonadP. MamledesaiS. VishwanathswamyA.H.M. SatyanarayanaD. Synthesis and evaluation of anti-inflammatory and analgesic activity of 3-[(5-substituted-1,3,4-oxadiazol-2-yl-thio)acetyl]-2H-chromen-2-ones.Med. Chem. Res.2012211162610.1007/s00044‑010‑9494‑z
    [Google Scholar]
  78. DewanganD. NakhateK. TripathiD. KashyapP. DhongdeH. Synthesis, characterization and screening for analgesic and anti-inflammatory activities of 2, 5-disubstituted 1, 3, 4-oxadiazole derivatives.Antiinflamm. Antiallergy Agents Med. Chem.201514213814510.2174/1871523014666150820100212 26290079
    [Google Scholar]
  79. AmirM. ShikhaK. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino) phenyl]acetic acid derivatives.Eur. J. Med. Chem.200439653554510.1016/j.ejmech.2004.02.008 15183912
    [Google Scholar]
  80. KatiyarP. SinghM.P. Synthesis of pyridine clubbed 2,5-disubstituted-1,3,4-oxadiazole derivatives shows potent antimicrobial activity.Lett. Org. Chem.2021181082282910.2174/1570178617999201130113440
    [Google Scholar]
  81. YarmohammadiE. BeyzaeiH. AryanR. MoradiA. Ultrasound-assisted, low-solvent and acid/base-free synthesis of 5-substituted 1,3,4-oxadiazole-2-thiols as potent antimicrobial and antioxidant agents.Mol. Divers.20212542367237810.1007/s11030‑020‑10125‑y 32770458
    [Google Scholar]
  82. Bordei TelehoiuA.T. NuțăD.C. CăproiuM.T. DumitrascuF. ZarafuI. IonițăP. BădiceanuC.D. AvramS. ChifiriucM.C. BleotuC. LimbanC. Design, synthesis and in vitro characterization of novel antimicrobial agents based on 6-Chloro-9H-carbazol derivatives and 1,3,4-oxadiazole scaffolds.Molecules202025226610.3390/molecules25020266 31936505
    [Google Scholar]
  83. UpadhyayP.K. MishraP. Synthesis and antimicrobial screening of some 1, 3, 4-oxadiazoles and their molecular properties prediction through ‘rule of five’.Pak. J. Pharm. Sci.201932310251032 31278716
    [Google Scholar]
  84. AraniciuC. OnigaS.D. StoicaC.I. ChifiriucM.C. PopaM. VlaseL. PalageM. OnigaO. Synthesis and antimicrobial assessment of some new 2-(thiazol-5-yl)-1, 3, 4-oxadiazoles.Rev Chim20197019961999
    [Google Scholar]
  85. KaraburunA.Ç. Kaya ÇavuşoğluB. Acar ÇevikU. OsmaniyeD. SağlıkB.N. LeventS. ÖzkayY. AtlıÖ. KoparalA.S. KaplancıklıZ.A. Synthesis and antifungal potential of some novel benzimidazole-1,3,4-oxadiazole compounds.Molecules201924119110.3390/molecules24010191 30621357
    [Google Scholar]
  86. RadiniI. ElsheikhT. El-TelbaniE. KhidreR. New potential antimalarial agents: Design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents.Molecules201621790910.3390/molecules21070909 27428939
    [Google Scholar]
  87. ThakkarS.S. ThakorP. DoshiH. RayA. 1,2,4-Triazole and 1,3,4-oxadiazole analogues: Synthesis, MO studies, in silico molecular docking studies, antimalarial as DHFR inhibitor and antimicrobial activities.Bioorg. Med. Chem.201725154064407510.1016/j.bmc.2017.05.054 28634040
    [Google Scholar]
  88. VermaG. KhanM.F. Mohan NainwalL. IshaqM. AkhterM. BakhtA. AnwerT. AfrinF. IslamuddinM. HusainI. AlamM.M. ShaquiquzzamanM. Targeting malaria and leishmaniasis: Synthesis and pharmacological evaluation of novel pyrazole-1,3,4-oxadiazole hybrids. Part II.Bioorg. Chem.20198910298610.1016/j.bioorg.2019.102986 31146198
    [Google Scholar]
  89. BenmansourF. EydouxC. QueratG. de LamballerieX. CanardB. AlvarezK. GuillemotJ.C. BarralK. Novel 2-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,3,4-oxadiazole and 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole derivatives as dengue virus inhibitors targeting NS5 polymerase.Eur. J. Med. Chem.201610914615610.1016/j.ejmech.2015.12.046 26774922
    [Google Scholar]
  90. TawfikS.S. FarahatA.A. El-SayedM.A-A. TantawyA.S. BagatoO. AliM.A. Synthesis and anti-influenza activity of novel thiadiazole, oxadiazole and triazole based scaffolds.Lett. Drug Des. Discov.20181536337410.2174/1570180814666170512122832
    [Google Scholar]
  91. AlbrattyM. El-SharkawyK.A. AlhazmiH.A. Synthesis and evaluation of some new 1,3,4-oxadiazoles bearing thiophene, thiazole, coumarin, pyridine and pyridazine derivatives as antiviral agents.Acta Pharm.201969226127610.2478/acph‑2019‑0015 31259726
    [Google Scholar]
  92. El MansouriA.E. MaatallahM. Ait BenhassouH. MoumenA. MehdiA. SnoeckR. AndreiG. ZahouilyM. LazrekH.B. Design, synthesis, chemical characterization, biological evaluation, and docking study of new 1,3,4-oxadiazole homonucleoside analogs.Nucleosides Nucleotides Nucleic Acids20203981088110710.1080/15257770.2020.1761982 32397827
    [Google Scholar]
  93. HamdaniS.S. KhanB.A. HameedS. BatoolF. SaleemH.N. MughalE.U. SaeedM. Synthesis and evaluation of novel S-benzyl- and S-alkylphthalimide- oxadiazole -benzenesulfonamide hybrids as inhibitors of dengue virus protease.Bioorg. Chem.20209610356710.1016/j.bioorg.2020.103567 32062063
    [Google Scholar]
/content/journals/mc/10.2174/0115734064354700241202174614
Loading
/content/journals/mc/10.2174/0115734064354700241202174614
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test