Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

The escalating prevalence of lifestyle and microbial diseases poses a significant threat to human well-being, necessitating the discovery and development of novel drugs with distinct modes of action. Addressing this challenge involves employing innovative strategies, and one current approach involves utilizing heterocyclic compounds to synthesize hybrid molecules. These hybrids have resulted from the fusion of two or more bioactive heterocyclic moieties into a single molecule. The focus of this review revolves around the strategic incorporation of heterocycles, particularly thiazole derivatives. Thiazole derivatives, due to their unique structural features, are explored in depth within this review paper. The paper comprehensively outlines diverse hybridization strategies of thiazole derivatives, highlighting their vibrant biological activities mainly in the last decade, 2014-2024. By presenting an extensive overview, the review aims to provide valuable insights into the potential of thiazole derivatives as promising candidates for drug development. The insights garnered from this paper are expected to offer valuable guidance for future drug design endeavors, providing a foundation for developing novel and effective drugs to combat lifestyle diseases and microbial resistance.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064365060250116103320
2025-12-01
2025-11-30
Loading full text...

Full text loading...

References

  1. HortonD.A. BourneG.T. SmytheM.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures.Chem. Rev.2003103389393010.1021/cr020033s 12630855
    [Google Scholar]
  2. ParitS. ManchareA. GhodseS. HatvateN. Comparative review on homogeneous and heterogeneous catalyzed synthesis of 1,3-thiazole.Synth. Commun.202454232003202310.1080/00397911.2024.2399187
    [Google Scholar]
  3. KushwahaP. PandeyS. 1,3-thiazole derivatives as a promising scaffold in medicinal chemistry: A recent overview.Antiinflamm. Antiallergy Agents Med. Chem.202322313316310.2174/0118715230276678231102150158 37997807
    [Google Scholar]
  4. AliS.H. SayedA.R. Review of the synthesis and biological activity of thiazoles.Synth. Commun.202151567070010.1080/00397911.2020.1854787
    [Google Scholar]
  5. PortsmouthS. Veenhuyzenv.D. EcholsR. MachidaM. FerreiraJ.C.A. AriyasuM. TenkeP. NagataT.D. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial.Lancet Infect. Dis.201818121319132810.1016/S1473‑3099(18)30554‑1 30509675
    [Google Scholar]
  6. GhonchehM. PournamdarZ. SalehiniyaH. Incidence and mortality and epidemiology of breast cancer in the world.Asian Pac. J. Cancer Prev.201617sup3434610.7314/APJCP.2016.17.S3.4327165206
    [Google Scholar]
  7. ShytajI.L. FaresM. GallucciL. LucicB. TolbaM.M. ZimmermannL. AdlerJ.M. XingN. BusheJ. GruberA.D. AmbielI. AyoubT.A. CorteseM. NeufeldtC.J. StolpB. SobhyM.H. FathyM. ZhaoM. LaketaV. DiazR.S. SuttonR.E. ChlandaP. BoulantS. BartenschlagerR. StaniferM.L. FacklerO.T. TrimpertJ. SavarinoA. LusicM. The fda-approved drug cobicistat synergizes with remdesivir to inhibit sars-cov-2 replication in vitro and decreases viral titers and disease progression in syrian hamsters.MBio2022132e037052110.1128/mbio.03705‑21 35229634
    [Google Scholar]
  8. NishidaY. KawaokaT. ImamuraM. NambaM. FujiiY. UchikawaS. OhyaK. DaijoK. TeraokaY. MorioK. FujinoH. NakaharaT. YamauchiM. HiramatsuA. TsugeM. AikataH. TakahashiS. HayesC.N. FukuharaT. TsujiK. AratakiK. NagaokiY. AisakaY. KamadaK. KodamaH. ChayamaK. Efficacy of lusutrombopag for thrombocytopenia in patients with chronic liver disease scheduled to undergo invasive procedures.Intern. Med.202160682983710.2169/internalmedicine.5930‑20 33087674
    [Google Scholar]
  9. ArshadM.F. AlamA. AlshammariA.A. AlhazzaM.B. AlzimamI.M. AlamM.A. MustafaG. AnsariM.S. AlotaibiA.M. AlotaibiA.A. KumarS. AsdaqS.M.B. ImranM. DebP.K. VenugopalaK.N. JomahS. Thiazole: A versatile standalone moiety contributing to the development of various drugs and biologically active agents.Molecules20222713399410.3390/molecules27133994 35807236
    [Google Scholar]
  10. RozoW.E. NossaD.L. DuchowiczP.R. Antiprotozoal qsar modelling for trypanosomiasis (chagas disease) based on thiosemicarbazone and thiazole derivatives.J. Mol. Graph. Model.2021103107821
    [Google Scholar]
  11. GraebinC.S. UchoaF.D. BernardesL.S.C. CampoV.L. Carvalho, I Antiprotozoal agents: An overview. Anti-Infect. Agent. Medici.Chem.200984345366
    [Google Scholar]
  12. de Oliveira FilhoG.B. CardosoM.V.O. EspíndolaJ.W.P. Oliveira e SilvaD.A. FerreiraR.S. CoelhoP.L. AnjosP.S. SantosE.S. MeiraC.S. MoreiraD.R.M. SoaresM.B.P. LeiteA.C.L. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi.Eur. J. Med. Chem.201714134636110.1016/j.ejmech.2017.09.047 29031078
    [Google Scholar]
  13. ZuazoN.C. SilvaC.F. PucM.R. BacabC.M.J. MoralesO.B.O. DíazM.H. CoutiñoD.D. NúñezN.E. VázquezN.G. 2-acylamino-5-nitro-1,3-thiazoles: Preparation and in vitro bioevaluation against four neglected protozoan parasites.Bioorg. Med. Chem.20142251626163310.1016/j.bmc.2014.01.029 24529307
    [Google Scholar]
  14. BorceaA.M. IonuțI. CrișanO. OnigaO. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives.Molecules202126362410.3390/molecules26030624 33504100
    [Google Scholar]
  15. PetrouA. FesatidouM. GeronikakiA. Thiazole ring—a biologically active scaffold.Molecules20212611316610.3390/molecules26113166 34070661
    [Google Scholar]
  16. JadhavP.M. KantevariS. TekaleA.B. BhosaleS.V. PawarR.P. TekaleS.U. A review on biological and medicinal significance of thiazoles.Phosphorus Sulfur Silicon Relat. Elem.20211961087989510.1080/10426507.2021.1945601
    [Google Scholar]
  17. DylevychK.A. KaminskyyD. LesykR. In‐vitro antiviral screening of some thiopyranothiazoles.Chem. Biol. Interact.202338611073810.1016/j.cbi.2023.110738 37816448
    [Google Scholar]
  18. SokolovaA.S. YarovayaО.I. BaevD.S. ShernyukovА.V. ShtroA.A. ZarubaevV.V. SalakhutdinovN.F. Aliphatic and alicyclic camphor imines as effective inhibitors of influenza virus h1n1.Eur. J. Med. Chem.201712766167010.1016/j.ejmech.2016.10.035 27823881
    [Google Scholar]
  19. AlamN. AroraS. IbrahimA. DevalP. Current synthesis routes of thiazole and its derivatives and their broad spectrum therapeutic activity: A review.J. Basic Appl. Res. Biomed.202281354010.51152/jbarbiomed.v8i1.216
    [Google Scholar]
  20. DawoodK.M. EldebssT.M.A. ZahabiE.H.S.A. YousefM.H. Synthesis and antiviral activity of some new bis-1,3-thiazole derivatives.Eur. J. Med. Chem.201510226627610.1016/j.ejmech.2015.08.005 26291036
    [Google Scholar]
  21. AlghamdiA. AbouziedA.S. AlamriA. AnwarS. AnsariM. KhadraI. ZakiY.H. GomhaS.M. Synthesis, molecular docking, and dynamic simulation targeting main protease (mpro) of new, thiazole clubbed pyridine scaffolds as potential COVID-19 inhibitors.Curr. Issues Mol. Biol.20234521422144210.3390/cimb45020093 36826038
    [Google Scholar]
  22. MishchenkoM. ShtrygolS. KaminskyyD. LesykR. Thiazole-bearing 4-thiazolidinones as new anticonvulsant agents.Sci. Pharm.202088116
    [Google Scholar]
  23. MishraC.B. KumariS. TiwariM. Thiazole: A promising heterocycle for the development of potent cns active agents.Eur. J. Med. Chem.20159213410.1016/j.ejmech.2014.12.031 25544146
    [Google Scholar]
  24. ŁączkowskiK.Z. SałatK. MisiuraK. PodkowaA. MalikowskaN. Synthesis and anticonvulsant activities of novel 2-(cyclopentylmethylene)hydrazinyl-1,3-thiazoles in mouse models of seizures.J. Enzyme Inhib. Med. Chem.20163161576158210.3109/14756366.2016.1158172 27052195
    [Google Scholar]
  25. SiddiquiN. AhsanW. Triazole incorporated thiazoles as a new class of anticonvulsants: Design, synthesis and in vivo screening.Eur. J. Med. Chem.20104541536154310.1016/j.ejmech.2009.12.062 20116140
    [Google Scholar]
  26. SiddiquiA.A. PartapS. KhisalS. YarM.S. MishraR. Synthesis, anti-convulsant activity and molecular docking study of novel thiazole pyridazinone hybrid analogues.Bioorg. Chem.20209910358410.1016/j.bioorg.2020.103584 32229345
    [Google Scholar]
  27. AhangarN. AyatiA. AlipourE. PashapourA. ForoumadiA. EmamiS. 1-[(2-arylthiazol-4-yl)methyl]azoles as a new class of anticonvulsants: Design, synthesis, in vivo screening, and in silico drug-like properties.Chem. Biol. Drug Des.201178584485210.1111/j.1747‑0285.2011.01211.x 21827633
    [Google Scholar]
  28. AyatiA. EmamiS. AsadipourA. ShafieeA. ForoumadiA. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery.Eur. J. Med. Chem.20159769971810.1016/j.ejmech.2015.04.015 25934508
    [Google Scholar]
  29. GhabbourH.A. KadiA.A. ElTahirK.E.H. AngawiR.F. SubbaghE.H.I. Synthesis, biological evaluation and molecular docking studies of thiazole-based pyrrolidinones and isoindolinediones as anticonvulsant agents.Med. Chem. Res.20152483194321110.1007/s00044‑015‑1371‑3
    [Google Scholar]
  30. AminK.M. RahmanD.E.A. EryaniA.Y.A. Synthesis and preliminary evaluation of some substituted coumarins as anticonvulsant agents.Bioorg. Med. Chem.200816105377538810.1016/j.bmc.2008.04.021 18467106
    [Google Scholar]
  31. IbrahimD.A. Synthesis and biological evaluation of 3,6-disubstituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole derivatives as a novel class of potential anti-tumor agents.Eur. J. Med. Chem.20094472776278110.1016/j.ejmech.2009.01.003 19203813
    [Google Scholar]
  32. ThomasR. MaryY.S. ResmiK.S. NarayanaB. SarojiniB.K. VijayakumarG. Alsenoyv.C. Two neoteric pyrazole compounds as potential anti-cancer agents: Synthesis, electronic structure, physico-chemical properties and docking analysis.J. Mol. Struct.2019118145546610.1016/j.molstruc.2019.01.003
    [Google Scholar]
  33. SayedA.R. GomhaS.M. TaherE.A. MuhammadZ.A. SeediE.H.R. GaberH.M. AhmedM.M. One-pot synthesis of novel thiazoles as potential anti-cancer agents.Drug Des. Devel. Ther.2020141363137510.2147/DDDT.S221263 32308369
    [Google Scholar]
  34. NallaS. PavaniY. GollapudiR. PoodariS. MannamS. Synthesis and biological evaluation of amide derivatives of 1,2,4-thiadiazole-thiazole-pyridine as anticancer agents.Chem. Data Collect.20244910110810.1016/j.cdc.2023.101108
    [Google Scholar]
  35. AgarwalS. KalalP. GandhiD. PrajapatP. Thiazole containing heterocycles with cns activity.Curr. Drug Discov. Technol.201815317819510.2174/1570163814666170724170152 28745208
    [Google Scholar]
  36. RazaR. SaeedA. ArifM. MahmoodS. MuddassarM. RazaA. IqbalJ. Synthesis and biological evaluation of 3-thiazolocoumarinyl schiff-base derivatives as cholinesterase inhibitors.Chem. Biol. Drug Des.201280460561510.1111/j.1747‑0285.2012.01435.x 22726458
    [Google Scholar]
  37. AbbasiA.M. RazaH. Aziz-ur-Rehman SiddiquiZ.S. Adnan Ali ShahS. HassanM. SeoS.Y. Synthesis of novel n-(1,3-thiazol-2-yl)benzamide clubbed oxadiazole scaffolds: Urease inhibition, lipinski rule and molecular docking analyses.Bioorg. Chem.201983637510.1016/j.bioorg.2018.10.018 30342387
    [Google Scholar]
  38. ShiradkarM.R. AkulaK.C. DasariV. BaruV. ChiningiriB. GandhiS. KaurR. Clubbed thiazoles by maos: A novel approach to cyclin-dependent kinase 5/p25 inhibitors as a potential treatment for Alzheimer’s disease.Bioorg. Med. Chem.20071572601261010.1016/j.bmc.2007.01.043 17291769
    [Google Scholar]
  39. PhungO.J. SoodN.A. SillB.E. ColemanC.I. Oral anti‐diabetic drugs for the prevention of type 2 diabetes.Diabet. Med.201128894896410.1111/j.1464‑5491.2011.03303.x 21429006
    [Google Scholar]
  40. IidaT. UbukataM. MitaniI. NakagawaY. MaedaK. ImaiH. OgoshiY. HottaT. SakataS. SanoR. MorinagaH. NegoroT. OshidaS. TanakaM. InabaT. Discovery of potent liver-selective stearoyl-coa desaturase-1 (scd1) inhibitors, thiazole-4-acetic acid derivatives, for the treatment of diabetes, hepatic steatosis, and obesity.Eur. J. Med. Chem.201815883285210.1016/j.ejmech.2018.09.003 30248655
    [Google Scholar]
  41. OballaR.M. BelairL. BlackW.C. BleasbyK. ChanC.C. DesrochesC. DuX. GordonR. GuayJ. GuiralS. HafeyM.J. HamelinE. HuangZ. KennedyB. LachanceN. LandryF. LiC.S. ManciniJ. NormandinD. PocaiA. PowellD.A. RamtohulY.K. SkoreyK. SørensenD. SturkenboomW. StyhlerA. WaddletonD.M. WangH. WongS. XuL. ZhangL. Development of a liver-targeted stearoyl-coa desaturase (scd) inhibitor (mk-8245) to establish a therapeutic window for the treatment of diabetes and dyslipidemia.J. Med. Chem.201154145082509610.1021/jm200319u 21661758
    [Google Scholar]
  42. KangS.Y. SongK.S. LeeJ. LeeS.H. LeeJ. Synthesis of pyridazine and thiazole analogs as sglt2 inhibitors.Bioorg. Med. Chem.201018166069607910.1016/j.bmc.2010.06.076 20637636
    [Google Scholar]
  43. HeM. LiY.J. ShaoJ. LiY.S. CuiZ.N. Synthesis and biological evaluation of 2,5-disubstituted furan derivatives containing 1,3-thiazole moiety as potential α‐glucosidase inhibitors.Bioorg. Med. Chem. Lett.20238312917310.1016/j.bmcl.2023.129173 36764471
    [Google Scholar]
  44. MoraskiG.C. SeegerN. MillerP.A. OliverA.G. BoshoffH.I. ChoS. MulugetaS. AndersonJ.R. FranzblauS.G. MillerM.J. Arrival of imidazo[2,1- b]thiazole-5-carboxamides: Potent anti-tuberculosis agents that target qcrb.ACS Infect. Dis.20162639339810.1021/acsinfecdis.5b00154 27627627
    [Google Scholar]
  45. KhaldanA. BouamraneS. mernissiE.R. MaghatH. AjanaM.A. SbaiA. In silico study of 2,4,5-trisubstituted thiazoles as inhibitors of tuberculosis using 3d-qsar, molecular docking, and admet analysis.El-Cezeri Fen ve Mühendislik Dergisi20229245246810.31202/ecjse.961940
    [Google Scholar]
  46. AridossG. AmirthaganesanS. KimM.S. KimJ.T. JeongY.T. Synthesis, spectral and biological evaluation of some new thiazolidinones and thiazoles based on t-3-alkyl-r-2,c-6-diarylpiperidin-4-ones.Eur. J. Med. Chem.200944104199421010.1016/j.ejmech.2009.05.015 19535178
    [Google Scholar]
  47. AlthagafiI. MetwalyE.N. FarghalyT.A. New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and moe docking.Molecules2019249174110.3390/molecules24091741 31060260
    [Google Scholar]
  48. AnuseD.G. ThoratB.R. SawantS. YamgarR.S. ChaudhariH.K. MaliS.N. Synthesis, sar, molecular docking and anti-microbial study of substituted n-bromoamido-2-aminobenzo-thiazoles.Curr. Computeraided Drug Des.202016553054010.2174/1573409915666190902143648 31475902
    [Google Scholar]
  49. KaregoudarP. SithambaramM. Synthesis of some novel 2, 4-disubstituted thiazoles as possible antimicrobial agents.Euro. J. Med. Chem.2008432261267
    [Google Scholar]
  50. BondockS. KhalifaW. FaddaA.A. Synthesis and antimicrobial evaluation of some new thiazole, thiazolidinone and thiazoline derivatives starting from.Eur. J. Med. Chem.2007427948954
    [Google Scholar]
  51. ChengK. XueJ.Y. ZhuH.L. Design, synthesis and antibacterial activity studies of thiazole derivatives as potent eckas iii inhibitors.Bioorg. Med. Chem. Lett.201323144235423810.1016/j.bmcl.2013.05.006 23731945
    [Google Scholar]
  52. AmmarY.A. HafezE.S.M.A.A. HesseinS.A. AliA.M. AskarA.A. RagabA. One-pot strategy for thiazole tethered 7-ethoxy quinoline hybrids: Synthesis and potential antimicrobial agents as dihydrofolate reductase (dhfr) inhibitors with molecular docking study.J. Mol. Struct.2021124213074810.1016/j.molstruc.2021.130748
    [Google Scholar]
  53. ElwahyA.H.M. EidE.M. LatifA.S.A. HassaneenH.M.E. AbdelhamidI.A. Design, synthesis, dft, td-dft/pcm calculations, and molecular docking studies on the anti-COVID-19, and anti-sars activities of some new bis-thiazoles and bis-thiadiazole.Polycycl. Aromat. Compd.20234376407643610.1080/10406638.2022.2117204
    [Google Scholar]
  54. CholkarK. TrinhH.M. PalD. MitraA.K. Discovery of novel inhibitors for the treatment of glaucoma.Expert Opin. Drug Discov.201510329331310.1517/17460441.2015.1000857 25575654
    [Google Scholar]
  55. SupuranC.T. Carbonic anhydrase inhibition with benzenesulfonamides and tetrafluorobenzenesulfonamides obtained via click chemistry.ACS Med. Chem. Lett.201458927930
    [Google Scholar]
  56. MeledduR. MaccioniE. DistintoS. BiancoG. MelisC. AlcaroS. Bioorganic & medicinal chemistry letters activity toward carbonic anhydrase i, ii, ix, xii.Bioorg. Med. Chem. Lett.2015253281328410.1016/j.bmcl.2015.05.076 26073006
    [Google Scholar]
  57. SolimanN.N. Abd El SalamM. FaddaA.A. MotaalA.M. Synthesis, characterization, and biochemical impacts of some new bioactive sulfonamide thiazole derivatives as potential insecticidal agents against the cotton leafworm, Spodoptera littoralis.J. Agric. Food Chem.202068215790580510.1021/acs.jafc.9b06394 32343563
    [Google Scholar]
  58. KılıcaslanS. ArslanM. RuyaZ. BilenÇ. ErgünA. GençerN. ArslanO. Synthesis and evaluation of sulfonamide-bearing thiazole as carbonic anhydrase isoforms hca i and hca ii.J. Enzyme Inhib. Med. Chem.20163161300130510.3109/14756366.2015.1128426 26744900
    [Google Scholar]
  59. SabtA. AbdelrahmanM.T. AbdelraofM. RashdanH.R.M. Investigation of novel mucorales fungal inhibitors: Synthesis, in‐silico study and anti‐fungal potency of novel class of coumarin‐6‐sulfonamides‐thiazole and thiadiazole hybrids.ChemistrySelect2022717e20220069110.1002/slct.202200691
    [Google Scholar]
  60. SharmaP.C. SainiA. BansalK.K. SharmaA. GuptaG.K. Design, synthesis and molecular docking studies of some thiazole clubbed heterocyclic compounds as possible anti-infective agents.Lett. Org. Chem.201815871672610.2174/1570178615666180425120039
    [Google Scholar]
  61. AlegaonS.G. UV. AlagawadiK.R. KumarD. KavalapureR.S. RanadeS.D. AP.S. JalalpureS.S. Synthesis, molecular docking and adme studies of thiazole-thiazolidinedione hybrids as antimicrobial agents.J. Biomol. Struct. Dyn.202240146211622710.1080/07391102.2021.1880479 33538239
    [Google Scholar]
  62. MelhaA.S. Molecular modeling and docking studies of new antimicrobial antipyrine-thiazole hybrids.Arab. J. Chem.202215710389810.1016/j.arabjc.2022.103898
    [Google Scholar]
  63. GangurdeK.B. MoreR.A. AdoleV.A. GhotekarD.S. Design, synthesis and biological evaluation of new series of benzotriazole-pyrazole clubbed thiazole hybrids as bioactive heterocycles: Antibacterial, antifungal, antioxidant, cytotoxicity study.J. Mol. Struct.2024129913676010.1016/j.molstruc.2023.136760
    [Google Scholar]
  64. AnkaliK.N. RangaswamyJ. ShalavadiM. NaikN. KrishnamurthyG. Synthesis and molecular docking of novel 1,3-thiazole derived 1,2,3-triazoles and in vivo biological evaluation for their anti anxiety and anti inflammatory activity.J. Mol. Struct.2021123613035710.1016/j.molstruc.2021.130357
    [Google Scholar]
  65. JacobP.J. ManjuS.L. Identification and development of thiazole leads as cox-2/5-lox inhibitors through in-vitro and in-vivo biological evaluation for anti-inflammatory activity.Bioorg. Chem.202010010388210.1016/j.bioorg.2020.103882 32361295
    [Google Scholar]
  66. MoharebR.M. omranA.F AbdelazizMA IbrahimRA Anti-inflammatory and anti-ulcer activities of new fused thiazole derivatives derived from 2-(2-oxo-2h-chromen-3-yl) thiazol-4 (5h)-one.Acta Chimica Slovenica2017642349364
    [Google Scholar]
  67. MansuriM. AhmedA. ShaikhA. HaqueN. ShethA.K. MolviK.I. Synthesis, antibacterial, anti-inflammatory and antiplatelet activities of some trisubstituted thiazoles.Inventi2012201216
    [Google Scholar]
  68. OsmaniyeD. Saglik bn. synthesis, characterization and biological activity evaluation of novel thiazole derivatives containing acetic acid residue as selective cox-1 inhibitors.Cumh. Sci. J.202041160168
    [Google Scholar]
  69. NovichikhinaN.P. AshrafovaZ.E. StolpovskayaN.V. LedenyovaI.V. KholyavkaM.G. PodoplelovaN.A. PanteleevM.A. ShikhalievK.S. Synthesis and properties of novel hybrid molecules bearing 4h-pyrrolo[3,2,1-ij]quinolin-2-one and thiazole moieties.Russ. Chem. Bull.20227191969197510.1007/s11172‑022‑3615‑y
    [Google Scholar]
  70. M, P.H.; Ostoot, A.F.H.; Kameshwar, H.V.; Khamees, H.; Khanum, S.A. Design, synthesis, characterization, docking studies of novel 4-phenyl acrylamide-1,3-thiazole derivatives as anti-inflammatory and anti-ulcer agents.J. Mol. Struct.2023129213612610.1016/j.molstruc.2023.136126
    [Google Scholar]
  71. AngeliA. FerraroniM. SupuranC.T. Famotidine, an antiulcer agent, strongly inhibits Helicobacter pylori and human carbonic anhydrases.ACS Med. Chem. Lett.20189101035103810.1021/acsmedchemlett.8b00334 30344913
    [Google Scholar]
  72. RathoreS.S. Analytical techniques for nizatidine: A review.Separ. Sci. Plus2019232934210.1002/sscp.201900028
    [Google Scholar]
/content/journals/mc/10.2174/0115734064365060250116103320
Loading
/content/journals/mc/10.2174/0115734064365060250116103320
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test