Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

The complex interaction between carboxylic acids and molecular signaling pathways, particularly the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, is of growing interest in medicinal chemistry due to its potential therapeutic benefits. Carboxylic acids, which are widely distributed in nature, are versatile regulators of cellular responses due to their ability to interact with multiple signaling pathways, especially those involved in combating oxidative stress and inflammation. Several carboxylic acids exhibit significant antioxidant and anti-inflammatory activities. They have been identified as potential activators of the NRF2 transcription factor, a key regulator of endogenous antioxidants that maintains cellular redox homeostasis and modulates the production of several antioxidant proteins and detoxifying enzymes. The potential effects of carboxylic acid-NRF2 crosstalk are exhibited in a variety of physiological processes, such as attenuation of oxidative stress and inflammation, detoxification of xenobiotics, and modulation of the immune system. The molecular docking of some carboxylic acids with NRF2 protein showed that their binding affinities were comparable to dimethyl fumarate, a reference drug. The current review explores the evolving landscape of carboxylic acid-NRF2 interactions and their mechanisms of action, highlighting the possible impact of their antioxidant and anti-inflammatory effects on inflammation and oxidative stress-mediated diseases. The natural and synthetic sources of NRF2-activating carboxylic acids and the role of their chemical and physical properties in influencing NRF2-inducing activities were discussed. Their potential challenges as future drugs and clinical trial prospects were also highlighted. Carboxylic acid-NRF2 interactions offer potential for developing therapies that will attenuate oxidative stress and inflammation.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064335901241101025220
2024-11-08
2025-12-13
Loading full text...

Full text loading...

References

  1. Cuevas-CiancaS.I. Romero-CastilloC. Gálvez-RomeroJ.L. JuárezZ.N. HernándezL.R. Antioxidant and anti-inflammatory compounds from edible plants with anti-cancer activity and their potential use as drugs.Molecules2023283148810.3390/molecules28031488 36771154
    [Google Scholar]
  2. DhalariaR. VermaR. KumarD. PuriS. TapwalA. KumarV. NepovimovaE. KucaK. Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life.Antioxidants2020911112310.3390/antiox9111123 33202871
    [Google Scholar]
  3. EgbujorM.C. EguS.A. OkonkwoV.I. JacobA.D. EgwuatuP.I. AmasiatuI.S. Antioxidant drug design: Historical and recent developments.J. Pharm. Res. Int.20213241365610.9734/jpri/2020/v32i4131042
    [Google Scholar]
  4. LiZ. LiuS. ZhaoY. WangJ. MaX. Compound organic acid could improve the growth performance, immunity and antioxidant properties, and intestinal health by altering the microbiota profile of weaned piglets.J. Anim. Sci.2023101skad19610.1093/jas/skad196 37314321
    [Google Scholar]
  5. HussenE.M. EndalewS.A. In vitro antioxidant and free-radical scavenging activities of polar leaf extracts of Vernonia amygdalina.BMC Complement. Med. Ther.202323114610.1186/s12906‑023‑03923‑y 37143058
    [Google Scholar]
  6. KocamanA. Combined interactions of amino acids and organic acids in heavy metal binding in plants.Plant Signal. Behav.2023181206407210.1080/15592324.2022.2064072 35491815
    [Google Scholar]
  7. HuchzermeyerB. MenghaniE. KhardiaP. ShiluA. Metabolic pathway of natural antioxidants, antioxidant enzymes, and ROS providence.Antioxidants202211476110.3390/antiox11040761 35453446
    [Google Scholar]
  8. PonnampalamE.N. KianiA. SanthiravelS. HolmanB.W.B. LauridsenC. DunsheaF.R. The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: Antioxidant action, animal health, and product quality-invited review.Animals (Basel)20221223327910.3390/ani12233279 36496798
    [Google Scholar]
  9. EgbujorM.C. OkoroU.C. OkaforS.N. NwankwoN.E. Synthesis, characterization, and in silico studies of novel alkanoylated 4-methylphenyl sulphonamoyl carboxylic acids as potential antimicrobial and antioxidant agents.Int. J. Pharm. Phytopharmacol. Res.2019938997
    [Google Scholar]
  10. LiuP. WangL. LiH. TanL. YingX. JuB. Two new organic acids from Portulaca oleracea L. and their anti-inflammatory and anticholinesterase activities.Nat. Prod. Res.202236174395440310.1080/14786419.2021.1999945 34749551
    [Google Scholar]
  11. DuK. FooteM.S. MousaviS. BuczkowskiA. SchmidtS. PehE. KittlerS. BereswillS. HeimesaatM.M. Combination of organic acids benzoate, butyrate, caprylate, and sorbate provides a novel antibiotics-independent treatment option in the combat of acute campylobacteriosis.Front. Microbiol.202314112850010.3389/fmicb.2023.1128500 37007531
    [Google Scholar]
  12. EgbujorM.C. OkoroU.C. OkaforS. Design, synthesis, molecular docking, antimicrobial, and antioxidant activities of new phenylsulfamoyl carboxylic acids of pharmacological interest.Med. Chem. Res.201928122118212710.1007/s00044‑019‑02440‑3
    [Google Scholar]
  13. EgbujorM.C. OkoroU.C. EguA.S. OkonkwoV.I. OkaforS.N. EmeruwaC.N. EgwuatuP.I. UmehO.R. EziafakaegoM.I. AmasiatuI.S. NwobodoD.C. Synthesis and biological evaluation of sulfamoyl carboxamide derivatives from sulfur-containing α-amino acids.Chiang Mai J. Sci.20224941100111510.12982/CMJS.2022.070
    [Google Scholar]
  14. SrinivasanM. SudheerA.R. MenonV.P. Ferulic Acid: Therapeutic potential through its antioxidant property.J. Clin. Biochem. Nutr.20074029210010.3164/jcbn.40.92 18188410
    [Google Scholar]
  15. KumarN. GoelN. Phenolic acids: Natural versatile molecules with promising therapeutic applications.Biotechnol. Rep. (Amst.)201924e0037010.1016/j.btre.2019.e00370 31516850
    [Google Scholar]
  16. LassalasP. GayB. LasfargeasC. JamesM.J. TranV. VijayendranK.G. BrundenK.R. KozlowskiM.C. ThomasC.J. SmithA.B. HurynD.M. BallatoreC. Structure property relationships of carboxylic acid isosteres.J. Med. Chem.20165973183320310.1021/acs.jmedchem.5b01963 26967507
    [Google Scholar]
  17. IversonC. BacongA. LiuS. BaumgartnerS. LundströmT. OscarssonJ. MinerJ.N. Omega-3-carboxylic acids provide efficacious anti-inflammatory activity in models of crystal-mediated inflammation.Sci. Rep.201881121710.1038/s41598‑018‑19252‑x 29352206
    [Google Scholar]
  18. NenadisN. SamaraE. MantzouridouF.T. On the role of the carboxyl group to the protective effect of o-dihydroxybenzoic acids to Saccharomyces cerevisiae cells upon induced oxidative stress.Antioxidants202211116110.3390/antiox11010161 35052665
    [Google Scholar]
  19. ItohH. YamashitaN. KamijoS. MasudaK. KatoH. YamaoriS. Effects of acidic non-steroidal anti-inflammatory drugs on human cytochrome P450 4A11 activity: Roles of carboxylic acid and a sulfur atom in potent inhibition by sulindac sulfide.Chem. Biol. Interact.202338211064410.1016/j.cbi.2023.110644 37499995
    [Google Scholar]
  20. MunteanuI.G. ApetreiC. Analytical methods used in determining antioxidant activity: A review.Int. J. Mol. Sci.2021227338010.3390/ijms22073380 33806141
    [Google Scholar]
  21. MahmoodF. KhanJ.A. MahnashiM.H. JanM.S. JavedM.A. RashidU. SadiqA. HassanS.S. BungauS. Anti-inflammatory, analgesic, and antioxidant potential of new (2S,3S)-2-(4-isopropylbenzyl)-2-methyl-4-nitro-3-phenylbutanals and their corresponding carboxylic acids through in vitro, in silico, and in vivo studies.Molecules20222713406810.3390/molecules27134068 35807316
    [Google Scholar]
  22. Gulcinİ. AlwaselS.H. Metal ions, metal chelators and metal chelating assay as antioxidant method.Processes (Basel)202210113210.3390/pr10010132
    [Google Scholar]
  23. KelleyM. VesseyD.A. Techniques for measuring the activity of carboxylic acid:CoA ligase and acyl-CoA:amino acid N-acyltransferase: The amino acid conjugation pathway.Curr. Protoc. Toxicol.200314110.1002/0471140856.tx0411s14 20945302
    [Google Scholar]
  24. DeRuiterJ. Carboxylic acid structure and chemistry: Part 1 In: Principles of Drug Action 1;Hoeber Medical Division, Harper & Row200511
    [Google Scholar]
  25. EgbujorM.C. ButtariB. ProfumoE. Telkoparan-AkillilarP. SasoL. An overview of NRF2-activating compounds bearing α,β-unsaturated moiety and their antioxidant effects.Int. J. Mol. Sci.20222315846610.3390/ijms23158466 35955599
    [Google Scholar]
  26. GugliandoloA. BramantiP. MazzonE. Activation of Nrf2 by natural bioactive compounds: A promising approach for stroke?Int. J. Mol. Sci.20202114487510.3390/ijms21144875 32664226
    [Google Scholar]
  27. EgbujorM.C. SahaS. ButtariB. ProfumoE. SasoL. Activation of Nrf2 signaling pathway by natural and synthetic chalcones: A therapeutic road map for oxidative stress.Expert Rev. Clin. Pharmacol.202114446548010.1080/17512433.2021.1901578 33691555
    [Google Scholar]
  28. KansanenE. BonacciG. SchopferF.J. KuosmanenS.M. TongK.I. LeinonenH. WoodcockS.R. YamamotoM. CarlbergC. Ylä-HerttualaS. FreemanB.A. LevonenA.L. Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism.J. Biol. Chem.201128616140191402710.1074/jbc.M110.190710 21357422
    [Google Scholar]
  29. EgbujorM.C. TucciP. OnyeijeU.C. EmeruwaC.N. SasoL. NRF2 activation by nitrogen heterocycles: A review.Molecules2023286275110.3390/molecules28062751 36985723
    [Google Scholar]
  30. AbikoY. ToribaA. KumagaiY. Phytochemicals to regulate oxidative and electrophilic stress through Nrf2 activation.Redox Exp. Med.202320231e22002110.1530/REM‑22‑0021
    [Google Scholar]
  31. EgbujorM.C. GarridoJ. BorgesF. SasoL. Sulfonamide, a valid scaffold for antioxidant drug development.Mini Rev. Org. Chem.202320219020910.2174/1570193X19666220411134006
    [Google Scholar]
  32. Sharifi-RadJ. SeidelV. IzabelaM. Monserrat-MequidaM. SuredaA. OrmazabalV. ZunigaF.A. MangalpadyS.S. PezzaniR. YdyrysA. TussupbekovaG. MartorellM. CalinaD. ChoW.C. Phenolic compounds as Nrf2 inhibitors: Potential applications in cancer therapy.Cell Commun. Signal.20232118910.1186/s12964‑023‑01109‑0 37127651
    [Google Scholar]
  33. WangQ. BotchwayB.O.A. ZhangY. LiuX. Ellagic acid activates the Keap1-Nrf2-ARE signaling pathway in improving Parkinson’s disease: A review.Biomed. Pharmacother.202215611384810.1016/j.biopha.2022.113848 36242848
    [Google Scholar]
  34. KwakM.K. ItohK. YamamotoM. KenslerT.W. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter.Mol. Cell. Biol.20022292883289210.1128/MCB.22.9.2883‑2892.2002 11940647
    [Google Scholar]
  35. LeeO.H. JainA.K. PapushaV. JaiswalA.K. An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance.J. Biol. Chem.200728250364123642010.1074/jbc.M706517200 17925401
    [Google Scholar]
  36. LiR. JiaZ. ZhuH. Regulation of Nrf2 signaling.React. Oxyg. Species (Apex)2019824312322 31692987
    [Google Scholar]
  37. WenH. YangH. AnY.J. KimJ.M. LeeD.H. JinX. ParkS. MinK.J. ParkS. Enhanced phase II detoxification contributes to beneficial effects of dietary restriction as revealed by multi-platform metabolomics studies.Mol. Cell. Proteomics201312357558610.1074/mcp.M112.021352 23230277
    [Google Scholar]
  38. SuraiP. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives.Antioxidants20154120424710.3390/antiox4010204 26785346
    [Google Scholar]
  39. ZhangM. AnC. GaoY. LeakR.K. ChenJ. ZhangF. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection.Prog. Neurobiol.2013100304710.1016/j.pneurobio.2012.09.003 23025925
    [Google Scholar]
  40. ParkJ.M. KimD.H. NaH.K. SurhY.J. Methylseleninic acid induces NAD(P)H:quinone oxidoreductase-1 expression through activation of NF-E2-related factor 2 in Chang liver cells.Oncotarget2018933014302810.18632/oncotarget.10289 29423025
    [Google Scholar]
  41. EgbujorM.C. PetrosinoM. ZuhraK. SasoL. The role of organosulfur compounds as Nrf2 activators and their antioxidant effects.Antioxidants2022117125510.3390/antiox11071255 35883746
    [Google Scholar]
  42. SteeleM.L. FullerS. PatelM. KersaitisC. OoiL. MünchG. Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells.Redox Biol.20131144144510.1016/j.redox.2013.08.006 24191238
    [Google Scholar]
  43. Di GiacomoC. MalfaG.A. TomaselloB. BianchiS. AcquavivaR. Natural compounds and glutathione: Beyond mere antioxidants.Antioxidants2023127144510.3390/antiox12071445 37507985
    [Google Scholar]
  44. GiustariniD. MilzaniA. Dalle-DonneI. RossiR. How to increase cellular glutathione.Antioxidants2023125109410.3390/antiox12051094 37237960
    [Google Scholar]
  45. LuS.C. Glutathione synthesis.Biochim. Biophys. Acta, Gen. Subj.2013183053143315310.1016/j.bbagen.2012.09.008 22995213
    [Google Scholar]
  46. GaoW. GuoL. YangY. WangY. XiaS. GongH. ZhangB.K. YanM. Dissecting the crosstalk between Nrf2 and NF-κB response pathways in drug-induced toxicity.Front. Cell Dev. Biol.2022980995210.3389/fcell.2021.809952 35186957
    [Google Scholar]
  47. GadoF. FerrarioG. Della VedovaL. ZoanniB. AltomareA. CariniM. AldiniG. D’AmatoA. BaronG. Targeting Nrf2 and NF-κB signaling pathways in cancer prevention: The role of apple phytochemicals.Molecules2023283135610.3390/molecules28031356 36771023
    [Google Scholar]
  48. QaderM. XuJ. YangY. LiuY. CaoS. Natural Nrf2 activators from juices, wines, coffee, and cocoa.Beverages2020646810.3390/beverages6040068
    [Google Scholar]
  49. AzouzA.A. OmarH.A. HersiF. AliF.E.M. Hussein ElkelawyA.M.M. Impact of the ACE2 activator xanthenone on tacrolimus nephrotoxicity: Modulation of uric acid/ERK/p38 MAPK and Nrf2/SOD3/GCLC signaling pathways.Life Sci.202228812015410.1016/j.lfs.2021.120154 34800514
    [Google Scholar]
  50. Nabil-AdamA. AshourM.L. ShreadahM.A. Modulation of MAPK/NF-κB pathway and NLRP3 inflammasome by secondary metabolites from red algae: A mechanistic study.ACS Omega2023841379713799010.1021/acsomega.3c03480 37867644
    [Google Scholar]
  51. BhattacharjeeS. DashwoodR.H. Epigenetic regulation of NRF2/KEAP1 by phytochemicals.Antioxidants20209986510.3390/antiox9090865 32938017
    [Google Scholar]
  52. LeeJ.H. ShuL. FuentesF. SuZ.Y. KongA-N.T. Cancer chemoprevention by traditional chinese herbal medicine and dietary phytochemicals: Targeting nrf2-mediated oxidative stress/anti-inflammatory responses, epigenetics, and cancer stem cells.J. Tradit. Complement. Med.201331697910.4103/2225‑4110.107700 24716158
    [Google Scholar]
  53. ZhangJ. PanW. ZhangY. TanM. YinY. LiY. ZhangL. HanL. BaiJ. JiangT. LiH. Comprehensive overview of Nrf2-related epigenetic regulations involved in ischemia-reperfusion injury.Theranostics202212156626664510.7150/thno.77243 36185600
    [Google Scholar]
  54. GuoY. YuS. ZhangC. KongA.N. Epigenetic regulation of Keap1-Nrf2 signaling Free Radic.Biol. Med.201588 Part B33734910.1016/j.freeradbiomed.2015.06.013
    [Google Scholar]
  55. AshrafizadehM. AhmadiZ. SamarghandianS. MohammadinejadR. YaribeygiH. SathyapalanT. SahebkarA. MicroRNA-mediated regulation of Nrf2 signaling pathway: Implications in disease therapy and protection against oxidative stress.Life Sci.202024411732910.1016/j.lfs.2020.117329 31954747
    [Google Scholar]
  56. WilliamsN.C. O’NeillL.A.J. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation.Front. Immunol.2018914110.3389/fimmu.2018.00141 29459863
    [Google Scholar]
  57. TretterL. PatocsA. ChinopoulosC. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis.Biochim. Biophys. Acta Bioenerg.2016185781086110110.1016/j.bbabio.2016.03.012 26971832
    [Google Scholar]
  58. GuoL. LiuY. LuoL. HussainS.B. BaiY. AlamS.M. Comparative metabolites and citrate-degrading enzymes activities in citrus fruits reveal the role of balance between ACL and Cyt-ACO in metabolite conversions.Plants20209335010.3390/plants9030350 32164290
    [Google Scholar]
  59. RyanE.M. DuryeeM.J. HollinsA. DoverS.K. PirruccelloS. SaylesH. RealK.D. HunterC.D. ThieleG.M. MikulsT.R. Antioxidant properties of citric acid interfere with the uricase-based measurement of circulating uric acid.J. Pharm. Biomed. Anal.201916446046610.1016/j.jpba.2018.11.011 30447534
    [Google Scholar]
  60. SmeriglioA. DenaroM. D’AngeloV. GermanòM.P. TrombettaD. Antioxidant, anti-inflammatory and anti-angiogenic properties of Citrus lumia juice.Front. Pharmacol.20201159350610.3389/fphar.2020.593506 33343362
    [Google Scholar]
  61. WuX. DaiH. LiuL. XuC. YinY. YiJ. BielecM.D. HanY. LiS. Citrate reduced oxidative damage in stem cells by regulating cellular redox signaling pathways and represent a potential treatment for oxidative stress-induced diseases.Redox Biol.20192110105710.1016/j.redox.2018.11.015 30576924
    [Google Scholar]
  62. YaoH. ZhangW. YangF. AiF. DuD. LiY. Discovery of caffeoylisocitric acid as a Keap1-dependent Nrf2 activator and its effects in mesangial cells under high glucose.J. Enzyme Inhib. Med. Chem.202237117818810.1080/14756366.2021.1998025 34894983
    [Google Scholar]
  63. SaxenaR.K. SaranS. IsarJ. KaushikR. Production and applications of succinic acid. Current Developments in Biotechnology and Bioengineering. PandeyA. NegiS. SoccolC.R. Elsevier201760163010.1016/B978‑0‑444‑63662‑1.00027‑0
    [Google Scholar]
  64. ZarubinaI.V. LukkM.V. ShabanovP.D. Antihypoxic and antioxidant effects of exogenous succinic acid and aminothiol succinate-containing antihypoxants.Bull. Exp. Biol. Med.2012153333633910.1007/s10517‑012‑1709‑5 22866305
    [Google Scholar]
  65. ChienS.C. ChenM.L. KuoH.T. TsaiY.C. LinB.F. KuoY.H. Anti-inflammatory activities of new succinic and maleic derivatives from the fruiting body of Antrodia camphorata.J. Agric. Food Chem.200856167017702210.1021/jf801171x 18642845
    [Google Scholar]
  66. RybalkaE. GoodmanC.A. CampeljD.G. HayesA. TimpaniC.A. Adenylosuccinic acid: a novel inducer of the cytoprotectant Nrf2 with efficacy in Duchenne muscular dystrophy.Curr. Med. Res. Opin.202137346546710.1080/03007995.2020.1865699 33331789
    [Google Scholar]
  67. BellezzaI. GrottelliS. GatticchiL. MierlaA.L. MinelliA. α-Tocopheryl succinate pre-treatment attenuates quinone toxicity in prostate cancer PC3 cells.Gene201453911710.1016/j.gene.2014.02.009 24530478
    [Google Scholar]
  68. MashiguchiK. TanakaK. SakaiT. SugawaraS. KawaideH. NatsumeM. HanadaA. YaenoT. ShirasuK. YaoH. McSteenP. ZhaoY. HayashiK. KamiyaY. KasaharaH. The main auxin biosynthesis pathway in Arabidopsis.Proc. Natl. Acad. Sci. USA201110845185121851710.1073/pnas.1108434108 22025724
    [Google Scholar]
  69. SugawaraS. HishiyamaS. JikumaruY. HanadaA. NishimuraT. KoshibaT. ZhaoY. KamiyaY. KasaharaH. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis.Proc. Natl. Acad. Sci. USA2009106135430543510.1073/pnas.0811226106 19279202
    [Google Scholar]
  70. JohnsonH.E. CrosbyD.G. Indole-3-acetic acid.Org. Synth.20034410.1002/0471264180.os044.21
    [Google Scholar]
  71. JiY. YinW. LiangY. SunL. YinY. ZhangW. Anti-inflammatory and anti-oxidative activity of indole-3-acetic acid involves induction of HO-1 and neutralization of free radicals in RAW264.7 cells.Int. J. Mol. Sci.2020215157910.3390/ijms21051579 32106625
    [Google Scholar]
  72. KimD. KimH. KimK. RohS. The protective effect of indole-3-acetic acid (IAA) on H2O2-damaged human dental pulp stem cells is mediated by the AKT pathway and involves increased expression of the transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) and its downstream target heme oxygenase 1 (HO-1).Oxid. Med. Cell. Longev.201720171863948510.1155/2017/8639485 28694916
    [Google Scholar]
  73. MengD. SommellaE. SalviatiE. CampigliaP. GanguliK. DjebaliK. ZhuW. WalkerW.A. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine.Pediatr. Res.202088220921710.1038/s41390‑019‑0740‑x 31945773
    [Google Scholar]
  74. ZhangQ. ZhaoQ. LiT. LuL. WangF. ZhangH. LiuZ. MaH. ZhuQ. WangJ. ZhangX. PeiY. LiuQ. XuY. QieJ. LuanX. HuZ. LiuX. Lactobacillus plantarum-derived indole-3-lactic acid ameliorates colorectal tumorigenesis via epigenetic regulation of CD8+ T cell immunity.Cell Metab.2023356943960.e910.1016/j.cmet.2023.04.015 37192617
    [Google Scholar]
  75. ZhangF.L. ChenX.W. WangY.F. HuZ. ZhangW.J. ZhouB.W. CiP.F. LiuK.X. Microbiota-derived tryptophan metabolites indole-3-lactic acid is associated with intestinal ischemia/reperfusion injury via positive regulation of YAP and Nrf2.J. Transl. Med.202321126410.1186/s12967‑023‑04109‑3 37072757
    [Google Scholar]
  76. FelterH. LloydJ. King’s American dispensatory.Available from: https://www.henriettes-herb.com/eclectic/kings/index.html 1898
  77. MarchJ. March’s Advanced Organic Chemistry.New JerseyWiley1992
    [Google Scholar]
  78. Moustafa-FaragM. MohamedH.I. MahmoudA. ElkelishA. MisraA.N. GuyK.M. KamranM. AiS. ZhangM. Salicylic acid stimulates antioxidant defense and osmolyte metabolism to alleviate oxidative stress in watermelons under excess boron.Plants20209672410.3390/plants9060724 32521755
    [Google Scholar]
  79. KangS. KimW. JeongS. LeeY. NamJ. LeeS. JungY. Oxidized 5-aminosalicylic acid activates Nrf2-HO-1 pathway by covalently binding to Keap1: Implication in anti-inflammatory actions of 5-aminosalicylic acid.Free Radic. Biol. Med.201710871572410.1016/j.freeradbiomed.2017.04.366 28473247
    [Google Scholar]
  80. MannF.G. SaundersB.C. Practical Organic Chemistry.Longan Inc.1974
    [Google Scholar]
  81. JianZ. TangL. YiX. LiuB. ZhangQ. ZhuG. WangG. GaoT. LiC. Aspirin induces Nrf2‐mediated transcriptional activation of haem oxygenase‐1 in protection of human melanocytes from H2O2‐induced oxidative stress.J. Cell. Mol. Med.20162071307131810.1111/jcmm.12812 26969214
    [Google Scholar]
  82. DewickP.M. HaslamE. Phenol biosynthesis in higher plants. Gallic acid.Biochem. J.1969113353754210.1042/bj1130537 5807212
    [Google Scholar]
  83. GoldbergI. RokemJ.S. Encyclopedia of Microbiology.3rd edAcademic Press2009
    [Google Scholar]
  84. RadanM. DianatM. BadaviM. MardS.A. BayatiV. GoudarziG. In vivo and in vitro evidence for the involvement of Nrf2-antioxidant response element signaling pathway in the inflammation and oxidative stress induced by particulate matter (PM10): The effective role of gallic acid.Free Radic. Res.201953221022510.1080/10715762.2018.1563689 30585515
    [Google Scholar]
  85. SohrabiF. DianatM. BadaviM. RadanM. MardS.A. Gallic acid suppresses inflammation and oxidative stress through modulating Nrf2-HO-1-NF-κB signaling pathways in elastase-induced emphysema in rats.Environ. Sci. Pollut. Res. Int.20212840568225683410.1007/s11356‑021‑14513‑1 34080114
    [Google Scholar]
  86. SinglaE. PuriG. DharwalV. NauraA.S. Gallic acid ameliorates COPD-associated exacerbation in mice.Mol. Cell. Biochem.2021476129330210.1007/s11010‑020‑03905‑5 32965595
    [Google Scholar]
  87. LinY. LuoT. WengA. HuangX. YaoY. FuZ. LiY. LiuA. LiX. ChenD. PanH. Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling.Front. Immunol.20201158059310.3389/fimmu.2020.580593 33365024
    [Google Scholar]
  88. ZhouD. YangQ. TianT. ChangY. LiY. DuanL.R. LiH. WangS.W. Gastroprotective effect of gallic acid against ethanol-induced gastric ulcer in rats: Involvement of the Nrf2/HO-1 signaling and anti-apoptosis role.Biomed. Pharmacother.202012611007510.1016/j.biopha.2020.110075 32179202
    [Google Scholar]
  89. SanjayS. GirishC. ToiP.C. BobbyZ. Gallic acid attenuates isoniazid and rifampicin-induced liver injury by improving hepatic redox homeostasis through influence on Nrf2 and NF-κB signalling cascades in Wistar Rats.J. Pharm. Pharmacol.202173447348610.1093/jpp/rgaa048 33793834
    [Google Scholar]
  90. VogtT. Phenylpropanoid biosynthesis.Mol. Plant20103122010.1093/mp/ssp106 20035037
    [Google Scholar]
  91. GarbeD. Cinnamic acid. Ullmann’s Encyclopedia of Industrial Chemistry.WeinheimWiley-VCH201210.1002/14356007.a07_099
    [Google Scholar]
  92. ZhuoR. ChengX. LuoL. YangL. ZhaoY. ZhouY. PengL. JinX. CuiL. LiuF. YangL. Cinnamic acid improved lipopolysaccharide-induced depressive-like behaviors by inhibiting neuroinflammation and oxidative stress in mice.Pharmacology20221075-628128910.1159/000520990 35325888
    [Google Scholar]
  93. WondrakG.T. CabelloC.M. VilleneuveN.F. ZhangS. LeyS. LiY. SunZ. ZhangD.D. Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress.Free Radic. Biol. Med.200845438539510.1016/j.freeradbiomed.2008.04.023 18482591
    [Google Scholar]
  94. HseuY.C. KoriviM. LinF.Y. LiM.L. LinR.W. WuJ.J. YangH.L. Trans-cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts.J. Dermatol. Sci.201890212313410.1016/j.jdermsci.2018.01.004 29395579
    [Google Scholar]
  95. DukeJ.A. Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants.999th edBoca RatonCRC Press1992
    [Google Scholar]
  96. GálvezM.C. BarrosoC.G. Pérez-BustamanteJ.A. Analysis of polyphenolic compounds of different vinegar samples.Z. Lebensm. Unters. Forsch.1994199293110.1007/BF01192948
    [Google Scholar]
  97. LimM. YoonC.M. AnG. RheeH. Environmentally benign oxidation reaction of aldehydes to their corresponding carboxylic acids using Pd/C with NaBH4 and KOH.Tetrahedron Lett.200748223835383910.1016/j.tetlet.2007.03.151
    [Google Scholar]
  98. Calixto-CamposC. CarvalhoT.T. HohmannM.S.N. Pinho-RibeiroF.A. FattoriV. ManchopeM.F. ZarpelonA.C. BaracatM.M. GeorgettiS.R. CasagrandeR. VerriW.A. Vanillic acid inhibits inflammatory pain by inhibiting neutrophil recruitment, oxidative stress, cytokine production, and NFκB activation in mice.J. Nat. Prod.20157881799180810.1021/acs.jnatprod.5b00246 26192250
    [Google Scholar]
  99. MaW.F. DuanX.C. HanL. ZhangL.L. MengX.M. LiY.L. WangM. Vanillic acid alleviates palmitic acid‐induced oxidative stress in human umbilical vein endothelial cells via adenosine monophosphate‐activated protein kinase signaling pathway.J. Food Biochem.2019437e1289310.1111/jfbc.12893 31353730
    [Google Scholar]
  100. El-HefnawyM.A. YehiaA. NasharE.M.E. SaadS. ObydahW. AlghamdiM.A. AlasmariW.A. HusseinA.M. Effect of vanillic acid on pentylenetetrazole-kindled rats: Nrf2/HO-1, IGF-1 signaling pathways cross talk.J. Integr. Neurosci.20222111510.31083/j.jin2101015 35164451
    [Google Scholar]
  101. MenteseA. DemirS. KucukH. YulugE. AlemdarN.T. DemirE.A. AliyaziciogluY. Vanillic acid abrogates cisplatin-induced ovotoxicity through activating Nrf2 pathway.Tissue Cell20238410216110.1016/j.tice.2023.102161 37478646
    [Google Scholar]
  102. HarrisG.C. SandersonT.F. Abietic acid.Org. Synth.195232110.15227/orgsyn.032.0001
    [Google Scholar]
  103. JustinoG.C. CorreiaC.F. MiraL. Borges dos SantosR.M. MartinhoS.J.A. SilvaA.M. SantosC. GiganteB. Antioxidant activity of a catechol derived from abietic acid.J. Agric. Food Chem.200654234234810.1021/jf052062k 16417289
    [Google Scholar]
  104. FernándezM.A. TornosM.P. GarcíaM.D. de las HerasB. VillarA.M. SáenzM.T. Anti-inflammatory activity of abietic acid, a diterpene isolated from Pimenta racemosa var. grissea.J. Pharm. Pharmacol.201053686787210.1211/0022357011776027 11428663
    [Google Scholar]
  105. WahabN.A.A. GiribabuN. KilariE.K. SallehN. Abietic acid ameliorates nephropathy progression via mitigating renal oxidative stress, inflammation, fibrosis and apoptosis in high fat diet and low dose streptozotocin-induced diabetic rats.Phytomedicine202210715446410.1016/j.phymed.2022.154464 36215789
    [Google Scholar]
  106. AnY. LuoQ. HanD. GuanL. Abietic acid inhibits acetaminophen-induced liver injury by alleviating inflammation and ferroptosis through regulating Nrf2/HO-1 axis.Int. Immunopharmacol.202311811002910.1016/j.intimp.2023.110029 36963265
    [Google Scholar]
  107. AlemikaT.E. OnawunmiG.O. OlugbadeT.O. Antibacterial phenolics from Boswellia dalzielii.Niger. J. Nat. Prod. Med.200610108110
    [Google Scholar]
  108. MallavadhaniU.V. MahapatraA. A new aurone and two rare metabolites from the leaves of Diospyros melanoxylon.Nat. Prod. Res.2005191919710.1080/14786410410001704705 15700652
    [Google Scholar]
  109. PearlI.A. Synthesis of protocatechuic acid.Org. Synth.194929858710.15227/orgsyn.029.0085
    [Google Scholar]
  110. ZhangS. GaiZ. GuiT. ChenJ. ChenQ. LiY. Antioxidant effects of protocatechuic acid and protocatechuic aldehyde: Old wine in a new bottle.Evid. Based Complement. Alternat. Med.2021202111910.1155/2021/6139308 34790246
    [Google Scholar]
  111. HuH.C. LeiY.H. ZhangW.H. LuoX.Q. Antioxidant and anti-inflammatory properties of resveratrol in diabetic nephropathy: A systematic review and meta-analysis of animal studies.Front. Pharmacol.20221384181810.3389/fphar.2022.841818 35355720
    [Google Scholar]
  112. VarìR. D’ArchivioM. FilesiC. CarotenutoS. ScazzocchioB. SantangeloC. GiovanniniC. MasellaR. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages.J. Nutr. Biochem.201122540941710.1016/j.jnutbio.2010.03.008 20621462
    [Google Scholar]
  113. VarìR. ScazzocchioB. SantangeloC. FilesiC. GalvanoF. D’ArchivioM. MasellaR. GiovanniniC. Protocatechuic acid prevents oxLDL-induced apoptosis by activating JNK/Nrf2 survival signals in macrophages.Oxid. Med. Cell. Longev.2015201511110.1155/2015/351827 26180584
    [Google Scholar]
  114. BovillaV.R. AnantharajuP.G. DornadulaS. VeereshP.M. KuruburuM.G. BettadaV.G. RamkumarK.M. MadhunapantulaS.R.V. Caffeic acid and protocatechuic acid modulate Nrf2 and inhibit Ehrlich ascites carcinomas in mice.Asian Pac. J. Trop. Biomed.202111624425310.4103/2221‑1691.314045
    [Google Scholar]
  115. SantosS.A.O. FreireC.S.R. DominguesM.R.M. SilvestreA.J.D. NetoC.P. Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography-mass spectrometry.J. Agric. Food Chem.201159179386939310.1021/jf201801q 21761864
    [Google Scholar]
  116. MattilaP. KumpulainenJ. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection.J. Agric. Food Chem.200250133660366710.1021/jf020028p 12059140
    [Google Scholar]
  117. SidorykK. ParapiniS. BasilicoN. Zaremba-CzogallaM. KubiszewskiM. CybulskiM. GubernatorJ. ZagórskaA. JarominA. Efficient one-pot synthesis of novel caffeic acid derivatives as potential antimalarials.J. Parasitol. Res.202320231667508110.1155/2023/6675081 38046256
    [Google Scholar]
  118. EspíndolaK.M.M. FerreiraR.G. NarvaezL.E.M. Silva RosarioA.C.R. da SilvaA.H.M. SilvaA.G.B. VieiraA.P.O. MonteiroM.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma.Front. Oncol.2019954110.3389/fonc.2019.00541 31293975
    [Google Scholar]
  119. YangS.Y. PyoM.C. NamM.H. LeeK.W. ERK/Nrf2 pathway activation by caffeic acid in HepG2 cells alleviates its hepatocellular damage caused by t-butylhydroperoxide-induced oxidative stress.BMC Complement. Altern. Med.201919113910.1186/s12906‑019‑2551‑3 31221142
    [Google Scholar]
  120. ColonnelloA. Aguilera-PortilloG. Rubio-LópezL.C. Robles-BañuelosB. Rangel-LópezE. Cortez-NúñezS. Evaristo-PriegoY. Silva-PalaciosA. Galván-ArzateS. García-ContrerasR. TúnezI. ChenP. AschnerM. SantamaríaA. Comparing the neuroprotective effects of caffeic acid in rat cortical slices and Caenorhabditis elegans: Involvement of Nrf2 and SKN-1 signaling pathways.Neurotox. Res.202037232633710.1007/s12640‑019‑00133‑8 31773641
    [Google Scholar]
  121. da SilveiraJ.C. GottliebO.R. de OliveiraG.G. Zeyherol, a dilignol from Zeyhera digitalis.Phytochemistry19751481829183010.1016/0031‑9422(75)85304‑0
    [Google Scholar]
  122. LintnerC.J. ParksL.M. A note on the synthesis of veratric acid.J. Am. Pharm. Assoc. (Sci. Ed)1948371394010.1002/jps.3030370113 18899770
    [Google Scholar]
  123. SaravanakumarM. RajaB. Veratric acid, a phenolic acid attenuates blood pressure and oxidative stress in l-NAME induced hypertensive rats.Eur. J. Pharmacol.20116711-3879410.1016/j.ejphar.2011.08.052 21937012
    [Google Scholar]
  124. ChoiW.S. ShinP.G. LeeJ.H. KimG.D. The regulatory effect of veratric acid on NO production in LPS-stimulated RAW264.7 macrophage cells.Cell. Immunol.2012280216417010.1016/j.cellimm.2012.12.007 23399843
    [Google Scholar]
  125. YuQ. ChenS. TangH. ZhangX. TaoR. YanZ. ShiJ. GuoW. ZhangS. Veratric acid alleviates liver ischemia/reperfusion injury by activating the Nrf2 signaling pathway.Int. Immunopharmacol.2021101 Part B10829410.1016/j.intimp.2021.108294
    [Google Scholar]
  126. PringsheimT. DavenportW.J. DodickD. Acute treatment and prevention of menstrually related migraine headache.Neurology200870171555156310.1212/01.wnl.0000310638.54698.36 18427072
    [Google Scholar]
  127. Kovala-DemertziD. Hadjipavlou-LitinaD. StaninskaM. PrimikiriA. KotoglouC. DemertzisM.A. Anti-oxidant, in vitro, in vivo anti-inflammatory activity and antiproliferative activity of mefenamic acid and its metal complexes with manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II).J. Enzyme Inhib. Med. Chem.200924374275210.1080/14756360802361589 18720191
    [Google Scholar]
  128. LeeW. MunY. LeeK.Y. ParkJ.M. ChangT.S. ChoiY.J. LeeB.H. Mefenamic acid-upregulated Nrf2/SQSTM1 protects hepatocytes against oxidative stress-induced cell damage.Toxics202311973510.3390/toxics11090735 37755745
    [Google Scholar]
  129. BagchiD. MoriyamaH. SwaroopA. Green Coffee Bean Extract in Human Health.Boca RatonCRC Press201610.1201/9781315371153
    [Google Scholar]
  130. BuranovA.U. MazzaG. Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents.Food Chem.200911541542154810.1016/j.foodchem.2009.01.059
    [Google Scholar]
  131. OuS. KwokK.C. Ferulic acid: Pharmaceutical functions, preparation and applications in foods.J. Sci. Food Agric.200484111261126910.1002/jsfa.1873
    [Google Scholar]
  132. ZduńskaK. DanaA. KolodziejczakA. RotsztejnH. Antioxidant properties of ferulic acid and its possible application.Skin Pharmacol. Physiol.201831633233610.1159/000491755 30235459
    [Google Scholar]
  133. SinghS. ArthurR. UpadhayayS. KumarP. Ferulic acid ameliorates neurodegeneration via the Nrf2/ARE signalling pathway: A Review.Pharmacol. Res. Mod. Chin. Med.2022510019010.1016/j.prmcm.2022.100190
    [Google Scholar]
  134. CatinoS. PacielloF. MiceliF. RolesiR. TroianiD. CalabreseV. SantangeloR. MancusoC. Ferulic acid regulates the Nrf2/Heme oxygenase-1 system and counteracts trimethyltin-induced neuronal damage in the human neuroblastoma cell line SH-SY5Y.Front. Pharmacol.2016630510.3389/fphar.2015.00305 26779023
    [Google Scholar]
  135. YuC. PanS. ZhangJ. LiX. NiuY. Ferulic acid exerts Nrf2-dependent protection against prenatal lead exposure-induced cognitive impairment in offspring mice.J. Nutr. Biochem.20219110860310.1016/j.jnutbio.2021.108603 33548475
    [Google Scholar]
  136. MahmoudA.M. HusseinO.E. HozayenW.G. Bin-JumahM. Abd El-TwabS.M. Ferulic acid prevents oxidative stress, inflammation, and liver injury via upregulation of Nrf2/HO-1 signaling in methotrexate-induced rats.Environ. Sci. Pollut. Res. Int.20202787910792110.1007/s11356‑019‑07532‑6 31889292
    [Google Scholar]
  137. ChenY. ZhuL. MengH. SunX. XueC. Ferulic acid protects human lens epithelial cells against ionizing radiation-induced oxidative damage by activating Nrf2/HO-1 signal pathway.Oxid. Med. Cell. Longev.2022202211110.1155/2022/6932188 35592532
    [Google Scholar]
  138. DroletJ. Buchner-DubyB. StykelM.G. CoackleyC. KangJ.X. MaD.W.L. RyanS.D. Docosahexanoic acid signals through the Nrf2–Nqo1 pathway to maintain redox balance and promote neurite outgrowth.Mol. Biol. Cell202132751152010.1091/mbc.E20‑09‑0599 33502893
    [Google Scholar]
  139. BatesD.J.P. SmithermanP.K. TownsendA.J. KingS.B. MorrowC.S. Nitroalkene fatty acids mediate activation of Nrf2/ARE-dependent and PPARγ-dependent transcription by distinct signaling pathways and with significantly different potencies.Biochemistry201150367765777310.1021/bi2005784 21827153
    [Google Scholar]
  140. AbresciaP. TreppiccioneL. RossiM. BergamoP. Modulatory role of dietary polyunsaturated fatty acids in Nrf2-mediated redox homeostasis.Prog. Lipid Res.20208010106610.1016/j.plipres.2020.101066 32979455
    [Google Scholar]
  141. HenryG.E. MominR.A. NairM.G. DewittD.L. Antioxidant and cyclooxygenase activities of fatty acids found in food.J. Agric. Food Chem.20025082231223410.1021/jf0114381 11929276
    [Google Scholar]
  142. SongY. LiX. LiY. LiN. ShiX. DingH. ZhangY. LiX. LiuG. WangZ. Non-esterified fatty acids activate the ROS–p38–p53/Nrf2 signaling pathway to induce bovine hepatocyte apoptosis in vitro.Apoptosis201419698499710.1007/s10495‑014‑0982‑3 24699798
    [Google Scholar]
  143. CremerD.R. RabelerR. RobertsA. LynchB. Long-term safety of α-lipoic acid (ALA) consumption: A 2-year study.Regul. Toxicol. Pharmacol.200646319320110.1016/j.yrtph.2006.06.003 16899332
    [Google Scholar]
  144. SkibskaB. KochanE. StanczakA. LipertA. SkibskaA. Antioxidant and anti-inflammatory effects of α-lipoic acid on lipopolysaccharide-induced oxidative stress in rat kidney.Arch. Immunol. Ther. Exp. (Warsz.)20237111610.1007/s00005‑023‑00682‑z 37378741
    [Google Scholar]
  145. KyungS. LimJ.W. KimH. α-lipoic acid inhibits IL-8 expression by activating Nrf2 signaling in Helicobacter pylori-infected gastric epithelial cells.Nutrients20191110252410.3390/nu11102524 31635029
    [Google Scholar]
  146. FayezA.M. ZakariaS. MoustafaD. Alpha lipoic acid exerts antioxidant effect via Nrf2/HO-1 pathway activation and suppresses hepatic stellate cells activation induced by methotrexate in rats.Biomed. Pharmacother.201810542843310.1016/j.biopha.2018.05.145 29879626
    [Google Scholar]
  147. PilarV.M. Prieto-HontoriaP.L. PardoV. MódolT. SantamaríaB. WeberM. HerreroL. SerraD. MuntanéJ. CuadradoA. Moreno-AliagaM.J. AlfredoM.J. ValverdeÁ.M. Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes.Free Radic. Biol. Med.20158426327810.1016/j.freeradbiomed.2015.03.019 25841776
    [Google Scholar]
  148. XiaD. ZhaiX. WangH. ChenZ. FuC. ZhuM. Alpha lipoic acid inhibits oxidative stress‐induced apoptosis by modulating of Nrf2 signalling pathway after traumatic brain injury.J. Cell. Mol. Med.20192364088409610.1111/jcmm.14296 30989783
    [Google Scholar]
  149. Beare-RogersJ.L. DieffenbacherA. HolmJ.V. Lexicon of lipid nutrition (IUPAC technical report).Pure Appl. Chem.200173468574410.1351/pac200173040685
    [Google Scholar]
  150. IsabelleM.E. LeitchL.C. Organic deuterium compounds xix. Synthesis of some deuterated lauric acids and their methyl esters.Can. J. Chem.195836344044810.1139/v58‑063
    [Google Scholar]
  151. AnuarN.S. ShafieS.A. MaznanM.A.F. ZinN.S.N.M. AzmiN.A.S. RaoofR.A. MyrzakozhaD. SamsulrizalN. Lauric acid improves hormonal profiles, antioxidant properties, sperm quality and histomorphometric changes in testis and epididymis of streptozotocin-induced diabetic infertility rats.Toxicol. Appl. Pharmacol.202347011655810.1016/j.taap.2023.116558 37211320
    [Google Scholar]
  152. NishimuraY. MoriyamaM. KawabeK. SatohH. TakanoK. AzumaY.T. NakamuraY. Lauric acid alleviates neuroinflammatory responses by activated microglia: Involvement of the GPR40-dependent pathway.Neurochem. Res.20184391723173510.1007/s11064‑018‑2587‑7 29947014
    [Google Scholar]
  153. ShaheryarZ.A. KhanM.A. HameedH. ZaidiS.A.A. AnjumI. RahmanM.S.U. Lauric acid provides neuroprotection against oxidative stress in mouse model of hyperglycaemic stroke.Eur. J. Pharmacol.202395617599010.1016/j.ejphar.2023.175990 37572940
    [Google Scholar]
  154. TardyA.L. MorioB. ChardignyJ.M. Malpuech-BrugèreC. Ruminant and industrial sources of trans -fat and cardiovascular and diabetic diseases.Nutr. Res. Rev.201124111111710.1017/S0954422411000011 21320382
    [Google Scholar]
  155. AlonsoL. FontechaJ. LozadaL. FragaM.J. JuárezM. Fatty acid composition of caprine milk: Major, branched-chain, and trans fatty acids.J. Dairy Sci.199982587888410.3168/jds.S0022‑0302(99)75306‑3 10342226
    [Google Scholar]
  156. NollerC.R. BannerotR.A. The synthesis of unsaturated fatty acids. Synthesis of oleic and elaidic acids.J. Am. Chem. Soc.19345671563156510.1021/ja01322a033
    [Google Scholar]
  157. MaW.W. ZhaoL. YuanL.H. YuH.L. WangH. GongX.Y. WeiF. XiaoR. Elaidic acid induces cell apoptosis through induction of ROS accumulation and endoplasmic reticulum stress in SH-SY5Y cells.Mol. Med. Rep.20171669337934610.3892/mmr.2017.7830 29152653
    [Google Scholar]
  158. TaylorD.C. GuoY. KatavicV. MietkiewskaE. FrancisT. BettgerW. New seed oils for improved human and animal health and as industrial feedstocks: Genetic manipulation of the Brassicaceae to produce oils enriched in nervonic acid. Modification of seed composition to promote health and nutritionEd.; American Society of AgronomyMadison, WI200921923310.2134/agronmonogr51.c10
    [Google Scholar]
  159. HaleJ.B. LycanW.H. AdamsR. Synthesis of nervonic acid.J. Am. Chem. Soc.193052114536453910.1021/ja01374a054
    [Google Scholar]
  160. UmemotoH. YasugiS. TsudaS. YodaM. IshiguroT. KabaN. ItohT. Protective effect of nervonic acid against 6‐Hydroxydopamine‐induced oxidative stress in PC‐12 cells.J. Oleo Sci.20217019510210.5650/jos.ess20262 33431776
    [Google Scholar]
  161. WangX. LiangT. MaoY. LiZ. LiX. ZhuX. CaoF. ZhangJ. Nervonic acid improves liver inflammation in a mouse model of Parkinson’s disease by inhibiting proinflammatory signaling pathways and regulating metabolic pathways.Phytomedicine202311715491110.1016/j.phymed.2023.154911 37276724
    [Google Scholar]
  162. LiuS. SunH. ZhouQ. YuG. QinD. MaQ. Nervonic acid regulates the oxidative imbalance in experimental allergic encephalomyelitis.Food Sci. Technol. Res.202127226928010.3136/fstr.27.269
    [Google Scholar]
  163. EgbujorM.C. Sulfonamide derivatives: Recent compounds with potent anti-alzheimer’s disease activity.Cent. Nerv. Syst. Agents Med. Chem.20242418210410.2174/0118715249278489231128042135 38275073
    [Google Scholar]
  164. El KebbajR. BouchabH. Tahri-JouteyM. RabbaaS. LimamiY. NasserB. EgbujorM.C. TucciP. AndreolettiP. SasoL. Cherkaoui-MalkiM. The potential role of major argan oil compounds as Nrf2 regulators and their antioxidant effects.Antioxidants202413334410.3390/antiox13030344 38539877
    [Google Scholar]
  165. EgbujorM.C. OlaniyanO.T. EmeruwaC.N. SahaS. SasoL. TucciP. An insight into role of amino acids as antioxidants via NRF2 activation.Amino Acids20245612310.1007/s00726‑024‑03384‑8 38506925
    [Google Scholar]
  166. EgbujorM.C. TucciP. ButtariB. NwobodoD.C. MariniP. SasoL. Phenothiazines: Nrf2 activation and antioxidant effects.J. Biochem. Mol. Toxicol.2024383e2366110.1002/jbt.23661 38369721
    [Google Scholar]
  167. KahremanyS. BabaevI. HasinP. TamirT.Y. Ben-ZurT. CohenG. JiangZ. WeintraubS. OffenD. RahimipourS. MajorM.B. SenderowitzH. GruzmanA. Computer-aided design and synthesis of 1-{4-[(3,4-dihydroxybenzylidene)amino] phenyl}-5-oxopyrrolidine-3-carboxylic acid as an Nrf2 enhancer.ChemPlusChem201883532033310.1002/cplu.201700539 31957349
    [Google Scholar]
  168. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  169. ThomaeA.V. Wunderli-AllenspachH. KrämerS.D. Permeation of aromatic carboxylic acids across lipid bilayers: The pH-partition hypothesis revisited.Biophys. J.20058931802181110.1529/biophysj.105.060871 15951388
    [Google Scholar]
  170. YangG. GeS. SinghR. BasuS. ShatzerK. ZenM. LiuJ. TuY. ZhangC. WeiJ. ShiJ. ZhuL. LiuZ. WangY. GaoS. HuM. Glucuronidation: Driving factors and their impact on glucuronide disposition.Drug Metab. Rev.201749210513810.1080/03602532.2017.1293682 28266877
    [Google Scholar]
  171. RussmannS. Kullak-UblickG. GrattaglianoI. Current concepts of mechanisms in drug-induced hepatotoxicity.Curr. Med. Chem.200916233041305310.2174/092986709788803097 19689281
    [Google Scholar]
  172. AttiaS.M. Deleterious effects of reactive metabolites.Oxid. Med. Cell. Longev.20103423825310.4161/oxim.3.4.13246 20972370
    [Google Scholar]
  173. RundleK.I. SharafM.S. StevensD. KamundeC. van den HeuvelM.R. Adamantane carboxylic acids demonstrate mitochondrial toxicity consistent with oil sands-derived naphthenic acids.Environ. Adv.2021510009210.1016/j.envadv.2021.100092
    [Google Scholar]
  174. Ortega-VallbonaR. MéndezR. TolosaL. EscherS.E. CastellJ.V. GozalbesR. Serrano-CandelasE. Uncovering the toxicity mechanisms of a series of carboxylic acids in liver cells through computational and experimental approaches.Toxicology202450415376410.1016/j.tox.2024.153764 38428665
    [Google Scholar]
  175. MorrisonR.T. BoydR.N. Organic Chemistry.6th edLondonPrentice Hall International, Inc.1992
    [Google Scholar]
  176. DunnJ.B. BurnsM.L. HunterS.E. SavageP.E. Hydrothermal stability of aromatic carboxylic acids.J. Supercrit. Fluids200327326327410.1016/S0896‑8446(02)00241‑3
    [Google Scholar]
/content/journals/mc/10.2174/0115734064335901241101025220
Loading
/content/journals/mc/10.2174/0115734064335901241101025220
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-inflammatory; antioxidant; Carboxylic acid; inflammation; NRF2; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test