Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background

Owing to their extensive utilization as pesticides, heterocycles assume a fundamental role in the management of vector-borne diseases. Despite the presence of numerous heterocyclic compounds in commercial insecticides and larvicides, resistance to pesticides still demands novel strategies to current pest control methods. Considering these facts, this review aims to survey the synthesis and SAR of heterocyclic molecules with larvicidal activity against Linn.

Methods

Comprehensive searches across the major databases were conducted to identify heterocyclic compounds exhibiting larvicidal efficacy against with the goal to unveil the main characteristics that are essential for exhibiting larvicidal activity.

Results

Active compounds display LC values varying from 0.36 to 2907 µM. Fifteen heterocyclic compounds displayed larvicidal activities below 20 µM. Five-membered ring molecules containing nitrogen and oxygen have displayed larvicidal activity according to the position of heteroatoms in the ring. Molecules bearing 1,2,4-oxadiazole and 1,2-oxazole moieties have been shown to be more active than 1,3,4-oxadiazole derivatives. Compounds possessing the indole scaffold have proven to be more potent than isatin and pyrimidine derivatives. Structural characteristics other than a heterocyclic moiety, such as the presence of halogens and less ionized and polar molecules, may also play a role in determining the final larvicidal activity.

Conclusion

The rationale behind this review is to stimulate the discovery of innovative heterocyclic larvicides. Thus, it is important to continue synthesizing new scaffolds to comprehensively elucidate the structure-activity relationship for each heterocyclic moiety outlined in this investigation.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064345432241120101422
2025-12-01
2025-11-30
Loading full text...

Full text loading...

References

  1. Puccioni-SohlerM. Nascimento SoaresC. ChristoP.P. AlmeidaS.M. Review of dengue, zika and chikungunya infections in nervous system in endemic areas.Arq. Neuropsiquiatr.202381121112112410.1055/s‑0043‑1777104 38157877
    [Google Scholar]
  2. SantosL.L.M. de AquinoE.C. FernandesS.M. TernesY.M.F. FeresV.C.R. Dengue, chikungunya, and Zika virus infections in Latin America and the Caribbean: a systematic review.Rev. Panam. Salud Publica202347110.26633/RPSP.2023.34 36788963
    [Google Scholar]
  3. TarganskiS.K. SousaJ.R. de PáduaG.M.S. de SousaJ.M. VieiraL.C.C. SoaresM.A. Larvicidal activity of substituted chalcones against Aedes aegypti (Diptera: Culicidae) and non‐target organisms.Pest Manag. Sci.202177132533410.1002/ps.6021 32729190
    [Google Scholar]
  4. FontanaJ.D. FerreiraR.L. ZuccolottoT. de Borba DallagassaC. WielewskiL.P. ChalcoskiB.M.S. da SilvaM.A.N. RichardiV.S. GolartJ. de Melo RodovalhoC. Accelerating the morphogenetic cycle of the viral vector Aedes aegypti larvae for faster larvicidal bioassays.BioMed Res. Int.202020201910.1155/2020/7405421 32908910
    [Google Scholar]
  5. CouretJ. BenedictM.Q. A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae).BMC Ecol.2014141310.1186/1472‑6785‑14‑3 24495345
    [Google Scholar]
  6. Soares-PinheiroV.C. Dasso-PinheiroW. Trindade-BezerraJ.M. TadeiW.P. Eggs viability of Aedes aegypti Linnaeus (Diptera, Culicidae) under different environmental and storage conditions in Manaus, Amazonas, Brazil.Braz. J. Biol.201677239640110.1590/1519‑6984.19815 27533732
    [Google Scholar]
  7. PadmanabhaH. LordC.C. LounibosL.P. Temperature induces trade-offs between development and starvation resistance in Aedes aegypti (L.) larvae.Med. Vet. Entomol.201125444545310.1111/j.1365‑2915.2011.00950.x 21410734
    [Google Scholar]
  8. LeagueG.P. DegnerE.C. PitcherS.A. HafeziY. TennantE. CruzP.C. KrishnanR.S. Garcia CastilloS.S. Alfonso-ParraC. AvilaF.W. WolfnerM.F. HarringtonL.C. The impact of mating and sugar feeding on blood-feeding physiology and behavior in the arbovirus vector mosquito Aedes aegypti.PLoS Negl. Trop. Dis.2021159e000981510.1371/journal.pntd.0009815 34591860
    [Google Scholar]
  9. DiengH. SathoT. AbangF. WydiamalaE. Abu KassimN.F. HashimN.A. ZuharahW.F. NowegG.T. Sex before or after blood feeding: Mating activities of Aedes aegypti males under conditions of different densities and female blood feeding opportunities.J. Asia Pac. Entomol.201922127428010.1016/j.aspen.2018.12.025
    [Google Scholar]
  10. OliveiraL.M.S. BritoT.B. de Sena FilhoJ.G. CavalcantiS.C.H. Synthesis of natural product derivatives as larvicides against Aedes aegypti.Rev. Bras. Farmacogn.2023341486410.1007/s43450‑023‑00445‑z
    [Google Scholar]
  11. Carrillo-HernándezM.Y. Ruiz-SaenzJ. VillamizarL.J. Gómez-RangelS.Y. Martínez-GutierrezM. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border.BMC Infect. Dis.20181816110.1186/s12879‑018‑2976‑1 29382300
    [Google Scholar]
  12. RasmussenS.A. JamiesonD.J. HoneinM.A. PetersenL.R. Zika virus and birth defects — reviewing the evidence for causality.N. Engl. J. Med.2016374201981198710.1056/NEJMsr1604338 27074377
    [Google Scholar]
  13. BrasilP. PereiraJ.P.Jr MoreiraM.E. Ribeiro NogueiraR.M. DamascenoL. WakimotoM. RabelloR.S. ValderramosS.G. HalaiU.A. SallesT.S. ZinA.A. HorovitzD. DaltroP. BoechatM. RajaG.C. Carvalho de SequeiraP. PilottoJ.H. Medialdea-CarreraR. Cotrim da CunhaD. Abreu de CarvalhoL.M. PoneM. MachadoS.A. CalvetG.A. Rodrigues BaiãoA.E. NevesE.S. Nassar de CarvalhoP.R. HasueR.H. MarschikP.B. EinspielerC. JanzenC. CherryJ.D. Bispo de FilippisA.M. Nielsen-SainesK. Zika virus infection in pregnant women in rio de janeiro.N. Engl. J. Med.2016375242321233410.1056/NEJMoa1602412 26943629
    [Google Scholar]
  14. de AraújoT.V.B. RodriguesL.C. de Alencar XimenesR.A. de Barros Miranda-FilhoD. MontarroyosU.R. de MeloA.P.L. ValongueiroS. de AlbuquerqueM.F.P.M. SouzaW.V. BragaC. FilhoS.P.B. CordeiroM.T. VazquezE. Di Cavalcanti Souza CruzD. HenriquesC.M.P. BezerraL.C.A. da Silva CastanhaP.M. DhaliaR. Marques-JúniorE.T.A. MartelliC.M.T. Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study.Lancet Infect. Dis.201616121356136310.1016/S1473‑3099(16)30318‑8 27641777
    [Google Scholar]
  15. SoniS. GillV.J.S. Anusheel SinghJ. ChhabraJ. GillG.J.S. BakshiR. Dengue, chikungunya, and zika: The causes and threats of emerging and re-emerging arboviral diseases.Cureus2023157e4171710.7759/cureus.41717 37575782
    [Google Scholar]
  16. ZaraA.L.S.A. SantosS.M. Fernandes-OliveiraE.S. CarvalhoR.G. CoelhoG.E. [Aedes aegypti control strategies: a review].Epidemiol. Serv. Saude2016252391404 27869956
    [Google Scholar]
  17. SilvaJ.J. MendesJ. Susceptibility of Aedes aegypti (L) to the insect growth regulators diflubenzuron and methoprene in uberlândia, state of minas gerais.Rev. Soc. Bras. Med. Trop.200740661261610.1590/S0037‑86822007000600002 18200410
    [Google Scholar]
  18. FirminoP.P. QueirozJ.E. DiasL.D. WenceslauP.R.S. de SouzaL.M. IermakI. VazW.F. CustódioJ.M.F. OliverA.G. de AquinoG.L.B. NapolitanoH.B. Synthesis, molecular structure, thermal and spectroscopic analysis of a novel bromochalcone derivative with larvicidal activity.Crystals (Basel)202212444010.3390/cryst12040440
    [Google Scholar]
  19. VersariA. SukendraD.M. WulandhariS.A. Overview of domestic and agricultural pesticides use contributing to Aedes aegypti resistence in ambarawa subdistrict, Indonesia.Unnes Journal of Public Health202110110010910.15294/ujph.v10i1.39923
    [Google Scholar]
  20. SantosV.S.V. PereiraB.B. Low toxicity and high efficacy in use of novel approaches to control Aedes aegypti.J. Toxicol. Environ. Health B Crit. Rev.202023624325410.1080/10937404.2020.1776655 32515686
    [Google Scholar]
  21. DzeK.C. Heterocycles, their synthesis and industrial applications: A review.Int. J. Res. Appl. Sci. Eng. Technol.2020810365610.22214/ijraset.2020.31786
    [Google Scholar]
  22. LamberthC. Heterocyclic chemistry in crop protection.Pest Manag. Sci.201369101106111410.1002/ps.3615 23908156
    [Google Scholar]
  23. GujjarappaR. SravaniS. KabiA.K. GargA. VodnalaN. TyagiU. KaldhiD. SinghV. GuptaS. MalakarC.C. An overview on biological activities of oxazole, isoxazoles and 1,2,4-oxadiazoles derivatives. Nanostructured Biomaterials: Basic Structures and Applications. SwainB.P. SingaporeSpringer202237940010.1007/978‑981‑16‑8399‑2_10
    [Google Scholar]
  24. WHOVector control product list-World Health Organization.Available from: https://extranet.who.int/prequal/vector-control-products/prequalified-product-list
  25. BaranwalJ. KushwahaS. SinghS. JyotiA. A review on the synthesis and pharmacological activity of heterocyclic compounds.Curr. Phys. Chem.202213219
    [Google Scholar]
  26. KhallafA. WangP. ZhuoS. ZhuH. LiuH. Structural design and insecticidal activity of 1,3,4‐oxadiazole‐ring containing pyridylpyrazole‐4‐carboxamides.J. Heterocycl. Chem.202360114515510.1002/jhet.4571
    [Google Scholar]
  27. LiuX.H. WenY.H. ChengL. XuT.M. WuN.J. Design, synthesis, and pesticidal activities of pyrimidin-4-amine derivatives bearing a 5-(trifluoromethyl)-1,2,4-oxadiazole moiety.J. Agric. Food Chem.202169256968698010.1021/acs.jafc.1c00236 34137594
    [Google Scholar]
  28. GlombT. ŚwiątekP. Antimicrobial activity of 1,3,4-oxadiazole derivatives.Int. J. Mol. Sci.20212213697910.3390/ijms22136979 34209520
    [Google Scholar]
  29. PengF. LiuT. CaoX. WangQ. LiuF. LiuL. HeM. XueW. Antiviral activities of novel myricetin derivatives containing 1,3,4‐oxadiazole bisthioether.Chem. Biodivers.2022193e20210093910.1002/cbdv.202100939 35092138
    [Google Scholar]
  30. StecozaC.E. NitulescuG.M. DraghiciC. CaproiuM.T. OlaruO.T. BostanM. MihailaM. Synthesis and anticancer evaluation of new 1,3,4-oxadiazole derivatives.Pharmaceuticals (Basel)202114543810.3390/ph14050438 34066442
    [Google Scholar]
  31. GalenkoA.V. KhlebnikovA.F. NovikovM.S. PakalnisV.V. RostovskiiN.V. Recent advances in isoxazole chemistry.Russ. Chem. Rev.201584433537710.1070/RCR4503
    [Google Scholar]
  32. UludagN. New synthesis of some isoxazole derivatives and their antioxidant properties.Russ. J. Org. Chem.202460349049410.1134/S1070428024030175
    [Google Scholar]
  33. PandhurnekarC.P. PandhurnekarH.C. MungoleA.J. ButoliyaS.S. YadaoB.G. A review of recent synthetic strategies and biological activities of isoxazole.J. Heterocycl. Chem.202360453756510.1002/jhet.4586
    [Google Scholar]
  34. de FreitasJ.J.R. de FreitasJ.C.R. da SilvaL.P. de Freitas FilhoJ.R. KimuraG.Y.V. SrivastavaR.M. Microwave-induced one-pot synthesis of 4-[3-(aryl)-1,2,4-oxadiazol-5-yl]-butan-2-ones under solvent free conditions.Tetrahedron Lett.200748356195619810.1016/j.tetlet.2007.06.116
    [Google Scholar]
  35. La MottaC. SartiniS. SalernoS. SimoriniF. TalianiS. MariniA.M. Da SettimoF. MarinelliL. LimongelliV. NovellinoE. Acetic acid aldose reductase inhibitors bearing a five-membered heterocyclic core with potent topical activity in a visual impairment rat model.J. Med. Chem.200851113182319310.1021/jm701613h 18452283
    [Google Scholar]
  36. OliveiraV.S. PimenteiraC. da Silva-AlvesD.C.B. LealL.L.L. Neves-FilhoR.A.W. NavarroD.M.A.F. SantosG.K.N. DutraK.A. dos AnjosJ.V. SoaresT.A. The enzyme 3-hydroxykynurenine transaminase as potential target for 1,2,4-oxadiazoles with larvicide activity against the dengue vector Aedes aegypti.Bioorg. Med. Chem.201321226996700310.1016/j.bmc.2013.09.020 24095017
    [Google Scholar]
  37. MacielL.G. BarbosaA.S. de Alencar-FilhoE.B. SoaresT.A. dos AnjosJ.V. A second generation of 1,2,4-oxadiazole derivatives with enhanced solubility for inhibition of 3-hydroxykynurenine transaminase (HKT) from Aedes aegypti.RSC Med. Chem.202112222223610.1039/D0MD00305K 34046611
    [Google Scholar]
  38. MacielL.G. OliveiraA.A. RomãoT.P. LealL.L.L. GuidoR.V.C. Silva-FilhaM.H.N.L. dos AnjosJ.V. SoaresT.A. Discovery of 1,2,4-oxadiazole derivatives as a novel class of noncompetitive inhibitors of 3-hydroxykynurenine transaminase (HKT) from Aedes aegypti.Bioorg. Med. Chem.202028211525210.1016/j.bmc.2019.115252 31864777
    [Google Scholar]
  39. HuisgenR. Kinetics and mechanism of 1,3‐dipolar cycloadditions.Angew. Chem. Int. Ed. Engl.196321163364510.1002/anie.196306331
    [Google Scholar]
  40. da Silva-AlvesD.C.B. dos AnjosJ.V. CavalcanteN.N.M. SantosG.K.N. NavarroD.M.A.F. SrivastavaR.M. Larvicidal isoxazoles: Synthesis and their effective susceptibility towards Aedes aegypti larvae.Bioorg. Med. Chem.201321494094710.1016/j.bmc.2012.12.006 23321014
    [Google Scholar]
  41. GomesJ.P.A. MourãoE.D.S. dos AnjosJ.V. de Alencar FilhoE.B. QSAR modelling and structural aspects concerning synthetic heterocycles with larvicidal activity against Aedes aegypti.Struct. Chem.20203162501251210.1007/s11224‑020‑01597‑7
    [Google Scholar]
  42. SampaioA.B.S. MoriM.S.S. AlbernazL.C. EspindolaL.S. SalvadorC.E.M. AndradeC.K.Z. Continuous flow photochemical synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones through organic photoredox catalysis and investigation of their larvicidal activity.Catalysts202313351810.3390/catal13030518
    [Google Scholar]
  43. KaymakçioğluB. Oruç-EmreE. ÜnsalanS. TabancaN. KhanS. WedgeD. IscanG. DemirciF. RollasS. Synthesis and biological activity of hydrazide-hydrazones and their corresponding 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazoles.Med. Chem. Res.2011201110
    [Google Scholar]
  44. TabancaN. AliA. BernierU.R. KhanI.A. Kocyigit-KaymakciogluB. Oruç-EmreE.E. UnsalanS. RollasS. Biting deterrence and insecticidal activity of hydrazide‐hydrazones and their corresponding 3‐acetyl‐2,5‐disubstituted‐2,3‐dihydro‐1,3,4‐oxadiazoles against Aedes aegypti.Pest Manag. Sci.201369670370810.1002/ps.3424 23117879
    [Google Scholar]
  45. Neves FilhoR.A.W. da SilvaC.A. da SilvaC.S.B. BrusteinV.P. NavarroD.M.A.F. dos SantosF.A.B. AlvesL.C. CavalcantiM.G.S. SrivastavaR.M. Carneiro-Da-CunhaM.G. Improved microwave-mediated synthesis of 3-(3-aryl-1,2,4-oxadiazol-5-yl)propionic acids and their larvicidal and fungal growth inhibitory properties.Chem. Pharm. Bull. (Tokyo)200957881982510.1248/cpb.57.819 19652406
    [Google Scholar]
  46. da SilvaA. NavarroD.M. SantosG. de AguiarJ.C. de FrançaK. TébékaI.R. dos AnjosJ. da SilvaJ.B. KanisL. SrivastavaR. Neves FilhoR.A. RamosM. Enhanced larvicidal activity of new 1,2,4-oxadiazoles against Aedes aegypti mosquitos: QSAR and docking studies.J. Braz. Chem. Soc.20233433334510.21577/0103‑5053.20220112
    [Google Scholar]
  47. MiyauraN. SuzukiA. Palladium-catalyzed cross-coupling reactions of organoboron compounds.Chem. Rev.19959572457248310.1021/cr00039a007
    [Google Scholar]
  48. ChaudharyA. GuptaK.K. Potentials of plant-derived sterol carrier protein inhibitors in insect management.Acta Ecol. Sin.202343692593210.1016/j.chnaes.2022.10.004
    [Google Scholar]
  49. TokF. Kocyigit-KaymakciogluB. TabancaN. EstepA.S. GrossA.D. GeldenhuysW.J. BecnelJ.J. BloomquistJ.R. Synthesis and structure–activity relationships of carbohydrazides and 1,3,4‐oxadiazole derivatives bearing an imidazolidine moiety against the yellow fever and dengue vector, Aedes aegypti.Pest Manag. Sci.201874241342110.1002/ps.4722 28869331
    [Google Scholar]
  50. PraveenK.C.H. KatagiM.S. SamuelJ. NandeshwarappaB.P. Synthesis, characterization and structural studies of novel pyrazoline derivatives as potential inhibitors of NAD+ synthetase in bacteria and cytochrome P450 51 in fungi.ChemistrySelect2023812e20230042710.1002/slct.202300427
    [Google Scholar]
  51. KolbH.C. FinnM.G. SharplessK.B. Click chemistry: Diverse chemical function from a few good reactions.Angew. Chem. Int. Ed.200140112004202110.1002/1521‑3773(20010601)40:11<2004::AID‑ANIE2004>3.0.CO;2‑5 11433435
    [Google Scholar]
  52. KumarR. SinghH. MazumderA. Salahuddin YadavR.K. Synthetic approaches, biological activities, and structure–activity relationship of pyrazolines and related derivatives.Top. Curr. Chem. (Cham)202338131210.1007/s41061‑023‑00422‑z 37029841
    [Google Scholar]
  53. MatinM.M. MatinP. RahmanM.R. Ben HaddaT. AlmalkiF.A. MahmudS. GhoneimM.M. AlruwailyM. AlshehriS. Triazoles and their derivatives: chemistry, synthesis, and therapeutic applications.Front. Mol. Biosci.2022986428610.3389/fmolb.2022.864286 35547394
    [Google Scholar]
  54. HuangZ.H. GuoX.Y. XiongL.T. DongL. JianJ.T. WeiL.H. TangR.Y. XuH.H. Versatile triazole selenoureas against pests, fungi, and weeds.ACS Agric. Sci Technol.20222475476010.1021/acsagscitech.2c00053
    [Google Scholar]
  55. LiZ. YangB. DingY. ZhouX. FangZ. LiuS. YangJ. YangS. Discovery of phosphonate derivatives containing different substituted 1,2,3‐triazole motif as promising tobacco mosaic virus (TMV) helicase inhibitors for controlling plant viral diseases.Pest Manag. Sci.202379103979399210.1002/ps.7592 37271938
    [Google Scholar]
  56. SantosG.C. KappenbergY.G. RosaJ.M.L. KetzerA. TisocoI. MartinsM.A.P. ZanattaN. FrizzoC.P. IglesiasB.A. BonacorsoH.G. Hybrid pyrazoline-triazole fluorescent dyes: Synthesis, photophysics, electrochemical, and antioxidative activity.J. Photochem. Photobiol. Chem.202344411490010.1016/j.jphotochem.2023.114900
    [Google Scholar]
  57. GrosscurtA.C. Van HesR. WellingaK. 1-Phenylcarbamoyl-2-pyrazolines, a new class of insecticides. 3. Synthesis and insecticidal properties of 3,4-diphenyl-1-phenylcarbamoyl-2-pyrazolines.J. Agric. Food Chem.197927240640910.1021/jf60222a061
    [Google Scholar]
  58. da SilvaJ.B.P. NavarroD.M.A.F. da SilvaA.G. SantosG.K.N. DutraK.A. MoreiraD.R. RamosM.N. EspíndolaJ.W.P. de OliveiraA.D.T. BrondaniD.J. LeiteA.C.L. HernandesM.Z. PereiraV.R.A. da RochaL.F. de CastroM.C.A.B. de OliveiraB.C. LanQ. MerzK.M.Jr Thiosemicarbazones as Aedes aegypti larvicidal.Eur. J. Med. Chem.201510016217510.1016/j.ejmech.2015.04.061 26087027
    [Google Scholar]
  59. OhK. KamadaH. YamadaK. YoshizawaY. Mosquito larvicidal activity of triazole type brassinosteroid biosynthesis inhibitors.Int. J. Biosci. Biochem. Bioinform.20166311412010.17706/ijbbb.2016.6.3.114‑120
    [Google Scholar]
  60. YamadaK. YoshizawaY. OhK. Synthesis of 2RS,4RS-1-[2-Phenyl-4-[2-(2-trifluromethoxy-phenoxy)-ethyl]-1,3-dioxolan-2-yl-methyl]-1H-1,2,4-triazole derivatives as potent inhibitors of brassinosteroid biosynthesis.Molecules20121744460447310.3390/molecules17044460 22504831
    [Google Scholar]
  61. PelizaroB.I. BragaF.C. CrispimB.A. de BarrosL.G.M.L. PessattoL.R. OliveiraE.J.T. VaniJ.M. de SouzaA.P. GrisoliaA.B. Antoniolli-SilvaA.C.M.B. de LimaD.P. dos Santos JaquesJ.A. BeatrizA. OliveiraR.J. Assessment of acute toxicity and cytotoxicity of fluorescent markers produced by cardanol and glycerol, which are industrial waste, to different biological models.Environ. Sci. Pollut. Res. Int.20192699193920210.1007/s11356‑019‑04376‑y 30719661
    [Google Scholar]
  62. RajbongshiK.K. DamB. PatelB.K. Pyridines, dihydropyridines and piperidines: An outline on synthesis and biological activities. N-Heterocycles: Synthesis and Biological EvaluationSpringer NatureSingapore202214910.1007/978‑981‑19‑0832‑3_1
    [Google Scholar]
  63. Li PetriG. RaimondiM.V. SpanòV. HollR. BarrajaP. MontalbanoA. Pyrrolidine in drug discovery: A versatile scaffold for novel biologically active compounds.Top. Curr. Chem. (Cham)202137953410.1007/s41061‑021‑00347‑5 34373963
    [Google Scholar]
  64. TzaraA. XanthopoulosD. KourounakisA.P. Morpholine as a scaffold in medicinal chemistry: An update on synthetic strategies.ChemMedChem202015539240310.1002/cmdc.201900682 32017384
    [Google Scholar]
  65. KramerV.C. SchnellD.J. NickersonK.W. Relative toxicity of organic solvents to Aedes aegypti larvae.J. Invertebr. Pathol.198342228528710.1016/0022‑2011(83)90076‑9 6631047
    [Google Scholar]
  66. CamposK.B. MartinsA.J. RodovalhoC.M. BellinatoD.F. DiasL.S. MacorisM.L.G. AndrighettiM.T.M. LimaJ.B.P. ObaraM.T. Assessment of the susceptibility status of Aedes aegypti (Diptera: Culicidae) populations to pyriproxyfen and malathion in a nation-wide monitoring of insecticide resistance performed in Brazil from 2017 to 2018.Parasit. Vectors202013153110.1186/s13071‑020‑04406‑6 33109249
    [Google Scholar]
  67. MackD.J. IsoeJ. MiesfeldR.L. NjardarsonJ.T. Distinct biological effects of golgicide a derivatives on larval and adult mosquitoes.Bioorg. Med. Chem. Lett.201222165177518110.1016/j.bmcl.2012.06.076 22818079
    [Google Scholar]
  68. de FátimaÂ. FernandesS.A. Ferreira de PaivaW. de Freitas RegoY. The povarov reaction: A versatile method to synthesize tetrahydroquinolines, quinolines and julolidines.Synthesis202254143162317910.1055/a‑1794‑8355
    [Google Scholar]
  69. OliveiraM.F. LemosT.L.G. MattosM.C.D. SegundoT.A. SantiagoG.M.P. Braz-FilhoR. New enamine derivatives of lapachol and biological activity.An. Acad. Bras. Cienc.200274221122110.1590/S0001‑37652002000200004 12098751
    [Google Scholar]
  70. StreckerA. Ueber die künstliche bildung der milchsäure und einen neuen, dem glycocoll homologen körper.Justus Liebigs Ann. Chem.1850751274510.1002/jlac.18500750103
    [Google Scholar]
  71. BorreroL.M.A. Carreño OteroA.L. KouznetsovV.V. Duque LunaJ.E. Mendez-SanchezS.C. Alterations of mitochondrial electron transport chain and oxidative stress induced by alkaloid-like α-aminonitriles on Aedes aegypti larvae.Pestic. Biochem. Physiol.2018144647010.1016/j.pestbp.2017.11.006 29463410
    [Google Scholar]
  72. CarreñoO.A.L. VargasM.L.Y. Duque LJ.E. KouznetsovV.V. Design, synthesis, acetylcholinesterase inhibition and larvicidal activity of girgensohnine analogs on Aedes aegypti, vector of dengue fever.Eur. J. Med. Chem.20147839240010.1016/j.ejmech.2014.03.067 24704612
    [Google Scholar]
  73. BringmannG. HolenzJ. WiesenB. NugrohoB.W. ProkschP. Dioncophylline A as a growth-retarding agent against the herbivorous insect Spodoptera littoralis: structure-activity relationships.J. Nat. Prod.199760434234710.1021/np960707s 9134743
    [Google Scholar]
  74. YadavP. ShahK. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry.Bioorg. Chem.202110910463910.1016/j.bioorg.2021.104639 33618829
    [Google Scholar]
  75. BharathiA. RoopanS.M. RahumanA.A. RajakumarG. In vitro larvicidal and antioxidant activity of dihydrophenanthroline-3-carbonitriles.BioMed Res. Int.201420141810.1155/2014/915797 24868553
    [Google Scholar]
  76. RoopanS.M. BharathiA. Al-DhabiN.A. ArasuM.V. MadhumithaG. Synthesis and insecticidal activity of acridone derivatives to Aedes aegypti and Culex quinquefasciatus larvae and non-target aquatic species.Sci. Rep.2017713975310.1038/srep39753 28059104
    [Google Scholar]
  77. SubashiniR. BharathiA. RoopanS.M. RajakumarG. Abdul RahumanA. GullankiP.K. Synthesis, spectral characterization and larvicidal activity of acridin-1(2H)-one analogues.Spectrochim. Acta A Mol. Biomol. Spectrosc.20129544244510.1016/j.saa.2012.04.015 22579326
    [Google Scholar]
  78. MuruganK. PanneerselvamC. SubramaniamJ. PaulpandiM. RajaganeshR. VasanthakumaranM. MadhavanJ. ShafiS.S. RoniM. Portilla-PulidoJ.S. MendezS.C. DuqueJ.E. WangL. AzizA.T. ChandramohanB. DineshD. PiramanayagamS. HwangJ.S. Synthesis of new series of quinoline derivatives with insecticidal effects on larval vectors of malaria and dengue diseases.Sci. Rep.2022121476510.1038/s41598‑022‑08397‑5 35306526
    [Google Scholar]
  79. MurieV.E. NishimuraR.H.V. RolimL.A. VessecchiR. LopesN.P. ClososkiG.C. Base-controlled regioselective functionalization of chloro-substituted quinolines.J. Org. Chem.201883287188010.1021/acs.joc.7b02855 29240427
    [Google Scholar]
  80. MurieV.E. NicolinoP.V. dos SantosT. GambacortaG. NishimuraR.H.V. PerovaniI.S. FurtadoL.C. Costa-LotufoL.V. Moraes de OliveiraA. VessecchiR. BaxendaleI.R. ClososkiG.C. Synthesis of 7-chloroquinoline derivatives using mixed lithium-magnesium reagents.J. Org. Chem.20218619134021341910.1021/acs.joc.1c01521 34553940
    [Google Scholar]
  81. UrbinaK. TrespD. SippsK. SzostakM. Recent advances in metal‐catalyzed functionalization of indoles.Adv. Synth. Catal.2021363112723273910.1002/adsc.202100116
    [Google Scholar]
  82. NathR. PathaniaS. GroverG. AkhtarM.J. Isatin containing heterocycles for different biological activities: Analysis of structure activity relationship.J. Mol. Struct.2020122212890010.1016/j.molstruc.2020.128900
    [Google Scholar]
  83. StalinA. DhivyaP. LinD. FengY. AsharajaA.C. GandhiM.R. KannanB.S. KandhasamyS. ReeganA.D. ChenY. Synthesis, molecular docking and mosquitocidal efficacy of lawsone and its derivatives against the dengue vector Aedes aegypti L. (Diptera: Culicidae).Med. Chem.202218217018010.2174/1573406417666210727121654 34315380
    [Google Scholar]
  84. SousaJ.R. SilvaF.A. TarganskiS.K. FazoloB.R. SouzaJ.M. CamposM.G. VieiraL.C.C. de Oliveira MendesT.A. SoaresM.A. Synthesis and larvicidal activity of indole derivatives against Aedes aegypti (Diptera: Culicidae).J. Appl. Entomol.2019143101172118110.1111/jen.12685
    [Google Scholar]
  85. FischerE. HessO. Synthese von Indolderivaten.Ber. Dtsch. Chem. Ges.188417155956810.1002/cber.188401701155
    [Google Scholar]
  86. de Jesus SantosA. MacêdoN.A. de HolandaC.S.C. SarmentoV.H.V. Moreira LiraA.A. dos SantosC.P. La Corte SantosR. Souza NunesR. Larvicidal formulation containing N-tosylindole: A viable alternative to chemical control of Aedes aegypti.Colloids Surf. B Biointerfaces202221311238010.1016/j.colsurfb.2022.112380 35151995
    [Google Scholar]
  87. AkdağK. Synthesis and larvicidal and adult topical activity of some hydrazidehydrazone derivatives against Aedes aegypti.Marmara Pharm. J.201431812012510.12991/mpj.2014187238
    [Google Scholar]
  88. Jeelan BashaN. GoudgaonN.M. A comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential.J. Mol. Struct.2021124613116810.1016/j.molstruc.2021.131168
    [Google Scholar]
  89. KirsteinO.D. CulquichiconC. Che-MendozaA. Navarrete-CarballoJ. WangJ. Bibiano-MarinW. Gonzalez-OlveraG. Ayora-TalaveraG. EarnestJ. Puerta-GuardoH. Pavia-RuzN. Correa-MoralesF. Medina-BarreiroA. Manrique-SaideP. Vazquez-ProkopecG.M. Targeted indoor residual insecticide applications shift Aedes aegypti age structure and arbovirus transmission potential.Sci. Rep.20231312127110.1038/s41598‑023‑48620‑5 38042955
    [Google Scholar]
  90. LamberthC. The power of cross‐indication testing: agrochemicals originally stemming from a different indication.Pest Manag. Sci.202278114438444510.1002/ps.7100 35906817
    [Google Scholar]
  91. WescheJ. WeberR.W.S. Fungicide sensitivity in the european canker fungus, Neonectria ditissima.Erwerbs-Obstbau20236562175218710.1007/s10341‑023‑00936‑2
    [Google Scholar]
  92. MaroofpourN. MousaviM. HejaziM.J. IranipourS. HamishehkarH. DesneuxN. BiondiA. HaddiK. Comparative selectivity of nano and commercial formulations of pirimicarb on a target pest, Brevicoryne brassicae, and its predator Chrysoperla carnea.Ecotoxicology202130236137210.1007/s10646‑021‑02349‑x 33566273
    [Google Scholar]
  93. MonteZ. NavarroD. AguiarJ. NascimentoJ. ScottiM. ScottiL. BarrosR. SantosA. PereiraV. FalcãoE. MeloS. Pyrimidine derivatives: QSAR studies of larvicidal activity against Aedes aegypti.J. Braz. Chem. Soc.2020311531154010.21577/0103‑5053.20200039
    [Google Scholar]
  94. ShenZ.H. SunZ.H. BecnelJ.J. EstepA. WedgeD.E. TanC.X. WengJ.Q. HanL. LiuX.H. Synthesis and mosquiticidal activity of novel hydrazone containing pyrimidine derivatives against Aedes aegypti.Lett. Drug Des. Discov.201815995195610.2174/1570180815666180102141640
    [Google Scholar]
  95. LiuX.H. WangQ. SunZ.H. WedgeD.E. BecnelJ.J. EstepA.S. TanC.X. WengJ.Q. Synthesis and insecticidal activity of novel pyrimidine derivatives containing urea pharmacophore against Aedes aegypti.Pest Manag. Sci.201773595395910.1002/ps.4370 27448764
    [Google Scholar]
  96. PooventhiranT. ElangovanN. ChinnamaniT. SivakamiR. KolochiT. Dengue virus fever controlling studies on derivatives of cytosine.Int. J. Adv. Res. Biol. Sci.20185152159
    [Google Scholar]
  97. NguyenH.H. NguyenC.T. NgoH.G. NguyenG.T.T. ThuyP.T. SetzerW.N. KuoP.C. BuiH.M. Potential for Aedes aegypti larval control and environmental friendliness of the compounds containing 2-methyl-3,4-dihydroquinazolin-4-one heterocycle.ACS Omega2023828250482505810.1021/acsomega.3c01686 37483229
    [Google Scholar]
  98. BatoolZ. XuD. ZhangX. LiX. LiY. ChenZ. LiB. LiL. A review on furan: Formation, analysis, occurrence, carcinogenicity, genotoxicity and reduction methods.Crit. Rev. Food Sci. Nutr.202161339540610.1080/10408398.2020.1734532 32146825
    [Google Scholar]
  99. FaragH. Al-SayedH. A review on biological and medicinal significance of furan.Alq. J. Med. App. Sci.202364458
    [Google Scholar]
  100. KaurK. UtrejaD. DhillonN.K. Anupam ButtarH.S. Heterocyclic moieties as prospective nematicides: An overview.Curr. Org. Chem.202226181703172410.2174/1385272827666221209094444
    [Google Scholar]
  101. KempurajD. ZhangE. GuptaS. GuptaR.C. SinhaN.R. MohanR.R. Carbofuran pesticide toxicity to the eye.Exp. Eye Res.202322710935510.1016/j.exer.2022.109355 36572166
    [Google Scholar]
  102. YangX.L. WangD.Q. ChenF.H. ZhangZ.N. The synthesis and larvicidal activity of N -aroyl- N ′-(5-aryl-2-furoyl)ureas.Pestic. Sci.199852328228610.1002/(SICI)1096‑9063(199803)52:3<282::AID‑PS723>3.0.CO;2‑J
    [Google Scholar]
  103. MitchellM.J. SmithS.L. JohnsonS. MorganE.D. Effects of the neem tree compounds azadirachtin, salannin, nimbin, and 6-desacetylnimbin on ecdysone 20-monooxygenase activity.Arch. Insect Biochem. Physiol.1997351-219920910.1002/(SICI)1520‑6327(1997)35:1/2<199::AID‑ARCH18>3.0.CO;2‑6 9131784
    [Google Scholar]
  104. RaymondD.N. OmarF. MadyN. AbdoulayeD. JoseacuteM.A. Toxic effects of neem products (Azadirachta indica A. Juss) on Aedes aegypti Linnaeus 1762 larvae.Afr. J. Biotechnol.20076242846285410.5897/AJB2007.000‑2454
    [Google Scholar]
  105. KamalH.A. KhaterE.I.M. The biological effects of the insect growth regulators; pyriproxyfen and diflubenzuron on the mosquito Aedes aegypti.J. Egypt. Soc. Parasitol.2010403565574 21268527
    [Google Scholar]
  106. PhonchevinT. UpathamE.S. PhanthumachindaB. PrasittisukC. SukhapanthN. Effects of cyromazin and methoprene on the developmental stages of Anopheles dirus, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae).Southeast Asian J. Trop. Med. Public Health1985162240247 2866585
    [Google Scholar]
/content/journals/mc/10.2174/0115734064345432241120101422
Loading
/content/journals/mc/10.2174/0115734064345432241120101422
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test