Skip to content
2000
image of Emerging Trends in Magnetic Nanoparticle Delivery, Synthesis and Applications in Biomedicine

Abstract

Magnetic nanoparticles have become adaptable tools with multifaceted uses in different areas of science and technology. The review overviews recent developments in magnetic nanoparticle research, synthesis, and applications, emphasizing their promise in biomedicine, environmental remediation, and energy storage. The paper discusses the speciality of magnetic nanoparticles in possessing a large surface area-to-volume ratio, super-paramagnetism, and biocompatibility, rendering them extremely useful in targeted drug delivery, magnetic resonance imaging, and hyperthermia therapy. The latest advances in synthesis techniques, especially the transition toward environmentally friendly biological methods, are reviewed. It also highlights the obstacles facing the production of Magnetic nanoparticles, including the need to standardize size distribution, increase targeting effectiveness and preserve prolonged stability in biological systems. This review also focused on new applications in neuroscience, gene therapy, and combination therapies, demonstrating that magnetic nanoparticles are multifunctional. Magnetic nanoparticles offer tremendous potential for use in medical applications such as therapeutic targeting and tracking, and environmental technologies, and their integration with other advanced technologies holds great promise for boosting their applications in personalized medicine and environmental technologies. However, progress has also come with challenges ranging from scaling up production to harmonizing evaluation processes and ensuring safety. Magnetic nanoparticles will play an increasingly important role in developing solutions to some of the world's most significant challenges, from medicine to energy to environmental sustainability. They will only further facilitate a better, more technologically advanced future.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031400035251014115919
2025-11-04
2026-02-01
Loading full text...

Full text loading...

References

  1. Kim D.Y. Kadam A. Shinde S. Saratale R.G. Patra J. Ghodake G. Recent developments in nanotechnology transforming the agricultural sector: A transition replete with opportunities. J. Sci. Food Agric. 2018 98 3 849 864 10.1002/jsfa.8749
    [Google Scholar]
  2. Yadav S.K. Yadav R.D. Tabassum H. Arya M. Recent developments in nanotechnology-based biosensors for the diagnosis of coronavirus. Plasmonics 2023 18 3 955 969 10.1007/s11468‑023‑01822‑z
    [Google Scholar]
  3. Campos E.V.R. de Oliveira J.L. Abrantes D.C. Rogério C.B. Bueno C. Miranda V.R. Monteiro R.A. Fraceto L.F. Recent developments in nanotechnology for detection and control of aedes aegypti-borne diseases. Front. Bioeng. Biotechnol. 2020 8 102 10.3389/fbioe.2020.00102
    [Google Scholar]
  4. Ambaye A.D. Kefeni K.K. Mishra S.B. Nxumalo E.N. Ntsendwana B. Recent developments in nanotechnology-based printing electrode systems for electrochemical sensors. Talanta 2021 225 121951 10.1016/j.talanta.2020.121951
    [Google Scholar]
  5. Sindhi K. Kanugo A. Recent developments in nanotechnology and immunotherapy for the diagnosis and treatment of pancreatic cancer. Curr. Pharm. Biotechnol. 2024 10.2174/0113892010284407240212110745
    [Google Scholar]
  6. Thangavelu L. Veeraragavan G.R. A survey on nanotechnology‐based bioremediation of wastewater. Bioinorg. Chem. Appl. 2022 2022 1 5063177 10.1155/2022/5063177
    [Google Scholar]
  7. Peng H. Fan H. He E.Z. Li J. Recent development of nanotechnology-empowered antigen assay methods for the control of infectious diseases. Analyst 2023 148 13 2892 2900 10.1039/D3AN00328K
    [Google Scholar]
  8. Yang Q. Recent developments of nanotechnology in tissue adhesives. Earth Environ. Sci. 2021 714 032089 10.1088/1755‑1315/714/3/032089
    [Google Scholar]
  9. Kiss É.Kiss. Nanotechnology in food systems: A review. Acta Aliment. 2020 49 4 460 474 10.1556/066.2020.49.4.12
    [Google Scholar]
  10. Chakravarty M. Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv. Transl. Res. 2021 11 3 748 787 10.1007/s13346‑020‑00818‑0
    [Google Scholar]
  11. Almoselhy R.I.M. Nanotechnology in food systems with applications in oils and fats. Egypt Sch J. 2023 2 1 1 6 10.52649/egscj230053101
    [Google Scholar]
  12. Jasmani L. Rusli R. Khadiran T. Jalil R. Adnan S. Application of nanotechnology in wood-based products industry: A review. Nanoscale Res. Lett. 2020 15 1 207 10.1186/s11671‑020‑03438‑2
    [Google Scholar]
  13. Mobeen H. Safdar M. Fatima A. Afzal S. Zaman H. Mehdi Z. Emerging applications of nanotechnology in context to immunology: A comprehensive review. Front. Bioeng. Biotechnol. 2022 10 1024871 10.3389/fbioe.2022.1024871
    [Google Scholar]
  14. Madhura L. Kanchi S. Sabela M.I. Singh S. Bisetty K. Membrane technology for water purification. Environ. Chem. Lett. 2018 16 343 365 10.1007/s10311‑017‑0699‑y
    [Google Scholar]
  15. Raghav S.B. Dinesh V. Recent developments on nanotechnology in solar energy. Int. J. Eng. Comput. Sci. 2016 5 2 15829 15834 10.18535/ijecs/v5i2.28
    [Google Scholar]
  16. Abaszadeh F. Ashoub M.H. Khajouie G. Amiri M. Nanotechnology development in surgical applications: Recent trends and developments. Eur. J. Med. Res. 2023 28 1 537 10.1186/s40001‑023‑01429‑4
    [Google Scholar]
  17. Wang X. Wang Y. Chen Z.G. Shin D.M. Advances of cancer therapy by nanotechnology. Cancer Res. Treat. 2009 41 1 1 10.4143/crt.2009.41.1.1
    [Google Scholar]
  18. Pusta A. Tertis M. Crăciunescu I. Turcu R. Mirel S. Cristea C. Recent advances in the development of drug delivery applications of magnetic nanomaterials. Pharmaceutics 2023 15 7 1872 10.3390/pharmaceutics15071872
    [Google Scholar]
  19. Rarokar N. Yadav S. Saoji S. Bramhe P. Agade R. Gurav S. Khedekar P. Subramaniyan V. Wong L.S. Kumarasamy V. Magnetic nanosystem a tool for targeted delivery and diagnostic application: Current challenges and recent advancement. Int. J. Pharm. X 2024 7 100231 10.1016/j.ijpx.2024.100231
    [Google Scholar]
  20. Pheeha S.M. Tamuzi J.L. Chale-Matsau B. Manda S. Nyasulu P.S. A scoping review evaluating the current state of gut microbiota research in Africa. Microorganisms 2023 11 8 2118 10.3390/microorganisms11082118
    [Google Scholar]
  21. Rezaei B. Yari P. Sanders S.M. Wang H. Chugh V.K. Liang S. Mostufa S. Xu K. Wang J-P. Gómez-Pastora J. Wu K. Magnetic nanoparticles: A review on synthesis, characterization, functionalization, and biomedical applications. Small 2024 20 5 2304848 10.1002/smll.202304848
    [Google Scholar]
  22. Abdel Maksoud M.I.A. Ghobashy M.M. Kodous A.S. Fahim R.A. Osman A.I. Al-Muhtaseb A.H. Rooney D.W. Mamdouh M.A. Nady N. Ashour A.H. Insights on magnetic spinel ferrites for targeted drug delivery and hyperthermia applications. Nanotechnol. Rev. 2022 11 1 372 413 10.1515/ntrev‑2022‑0027
    [Google Scholar]
  23. Aslam H. Shukrullah S. Naz M.Y. Fatima H. Hussain H. Ullah S. Assiri M.A. Current and future perspectives of multifunctional magnetic nanoparticles based controlled drug delivery systems. J. Drug Deliv. Sci. Technol. 2022 67 102946 10.1016/j.jddst.2021.102946
    [Google Scholar]
  24. Zhi D. Yang T. Yang J. Fu S. Zhang S. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater. 2020 102 13 34 10.1016/j.actbio.2019.11.027
    [Google Scholar]
  25. Włodarczyk A. Gorgoń S. Radoń A. Bajdak-Rusinek K. Magnetite nanoparticles in magnetic hyperthermia and cancer therapies: Challenges and perspectives. Nanomaterials 2022 12 11 1807 10.3390/nano12111807
    [Google Scholar]
  26. Zhu J. Wang J. Li Y. Recent advances in magnetic nanocarriers for tumor treatment. Biomed. Pharmacother. 2023 159 114227 10.1016/j.biopha.2023.114227
    [Google Scholar]
  27. Murali N. Rainu S.K. Singh N. Betal S. Advanced materials and processes for magnetically driven micro- and nano-machines for biomedical application. Biosensor. and Bioelectronics. X 2022 11 100206 10.1016/j.biosx.2022.100206
    [Google Scholar]
  28. Amiri M. Khazaeli P. Salehabadi A. Salavati-Niasari M. Hydrogel beads-based nanocomposites in novel drug delivery platforms: Recent trends and developments. Adv. Colloid Interface Sci. 2021 288 102316 10.1016/j.cis.2020.102316
    [Google Scholar]
  29. Majidi S. Zeinali Sehrig F. Farkhani S.M. Soleymani Goloujeh M. Akbarzadeh A. Current methods for synthesis of magnetic nanoparticles. Artif. Cells Nanomed. Biotechnol. 2016 44 2 722 734 10.3109/21691401.2014.982802
    [Google Scholar]
  30. Divakara SG. Mahesh B. A comprehensive review on current trends in greener and sustainable synthesis of ferrite nanoparticles and their promising applications. Results Eng. 2024 21 101702 10.1016/j.rineng.2023.101702
    [Google Scholar]
  31. Kumari S. Raturi S. Kulshrestha S. Chauhan K. Dhingra S. András K. Thu K. Khargotra R. Singh T. A comprehensive review on various techniques used for synthesizing nanoparticles. J. Mater. Res. Technol. 2023 27 1739 1763 10.1016/j.jmrt.2023.09.291
    [Google Scholar]
  32. Akhlaghi N. Najafpour-Darzi G. Manganese ferrite (MnFe2O4) Nanoparticles: From synthesis to application - A review. J. Ind. Eng. Chem. 2021 103 292 304 10.1016/j.jiec.2021.07.043
    [Google Scholar]
  33. Fernández-Barahona I. Gutiérrez L. Veintemillas-Verdaguer S. Pellico J. Morales M.P. Catala M. del Pozo M.A. Ruiz-Cabello J. Herranz F. Cu-doped extremely small iron oxide nanoparticles with large longitudinal relaxivity: One-pot synthesis and in vivo targeted molecular imaging. ACS Omega 2019 4 2 2719 2727 10.1021/acsomega.8b03004
    [Google Scholar]
  34. Kandasamy G. Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm. 2015 496 2 191 218 10.1016/j.ijpharm.2015.10.058
    [Google Scholar]
  35. Zhao S. Yu X. Qian Y. Chen W. Shen J. Multifunctional magnetic iron oxide nanoparticles: An advanced platform for cancer theranostics. Theranostics 2020 10 14 6278 6309 10.7150/thno.42564
    [Google Scholar]
  36. Martins P.M. Lima A.C. Ribeiro S. Lanceros-Mendez S. Martins P. Magnetic nanoparticles for biomedical applications: From the soul of the earth to the deep history of ourselves. ACS Appl. Bio Mater. 2021 4 8 5839 5870 10.1021/acsabm.1c00440
    [Google Scholar]
  37. Herranz F. Almarza E. Rodríguez I. Salinas B. Rosell Y. Desco M. Bulte J.W. Ruiz-Cabello J. The application of nanoparticles in gene therapy and magnetic resonance imaging. Microsc. Res. Tech. 2011 74 7 577 591 10.1002/jemt.20992
    [Google Scholar]
  38. Vivero-Escoto J.L. Huxford-Phillips R.C. Lin W. Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem. Soc. Rev. 2012 41 7 2673 10.1039/c2cs15229k
    [Google Scholar]
  39. Visheratina A. Hesami L. Wilson A.K. Baalbaki N. Noginova N. Noginov M.A. Kotov N.A. Hydrothermal synthesis of chiral carbon dots. Chirality 2022 34 12 1503 1514 10.1002/chir.23509
    [Google Scholar]
  40. Wang C Meyer J Teichert N Auge A Heusler nanoparticles for spintronics and ferromagnetic shape memory alloys. J. Vac Sci. Technol B Microelectron Nanom Struct. Process. Meas Phenom 2014 32 2 020802 02080213.Mar; 10.1116/1.4866418
  41. Al-Anazi A. Iron-based magnetic nanomaterials in environmental and energy applications: a short review. Curr. Opin. Chem. Eng. 2022 36 100794 10.1016/j.coche.2022.100794
    [Google Scholar]
  42. Ghazzy A. Nsairat H. Said R. Sibai O.A. AbuRuman A. Shraim A.S. Al hunaiti, A. Magnetic iron oxide-based nanozymes: From synthesis to application. Nanoscale Adv. 2024 6 6 1611 1642 10.1039/D3NA00903C
    [Google Scholar]
  43. Clemons T.D. Kerr R.H. Joos A. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. In: Comprehensive Nanoscience and Nanotechnology, 2nd; Elsevier, 2019 3, pp. 193 210, 10.1016/B978‑0‑12‑803581‑8.10462‑X
    [Google Scholar]
  44. Lin X.M. Samia A.C.S. Synthesis, assembly and physical properties of magnetic nanoparticles. J. Magn. Magn. Mater. 2006 305 1 100 109 10.1016/j.jmmm.2005.11.042
    [Google Scholar]
  45. Guo J. Jiang H. Teng Y. Xiong Y. Chen Z. You L. Xiao D. Recent advances in magnetic carbon nanotubes: Synthesis, challenges and highlighted applications. J. Mater. Chem. B Mater. Biol. Med. 2021 9 44 9076 9099 10.1039/D1TB01242H
    [Google Scholar]
  46. Wahul D.B. Katkar S.S. A mini-review on recent advances in synthesis of dihydropyrano [3, 2-c] chromenes using magnetic nanocatalysts. Curr. Org. Synth. 2024 21 1 20 36 10.2174/1570179420666230327144202
    [Google Scholar]
  47. Duan M. Shapter J.G. Qi W. Yang S. Gao G. Recent progress in magnetic nanoparticles: Synthesis, properties, and applications. Nanotechnology 2018 29 45 452001 10.1088/1361‑6528/aadcec
    [Google Scholar]
  48. García-Merino B. Bringas E. Ortiz I. Synthesis and applications of surface-modified magnetic nanoparticles: Progress and future prospects. Rev. Chem. Eng. 2022 38 7 821 842 10.1515/revce‑2020‑0072
    [Google Scholar]
  49. Ha M. Kim J.H. You M. Li Q. Fan C. Nam J.M. Multicomponent plasmonic nanoparticles: From heterostructured nanoparticles to colloidal composite nanostructures. Chem. Rev. 2019 119 24 12208 12278 10.1021/acs.chemrev.9b00234
    [Google Scholar]
  50. Philip, J. Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Adv. Colloid Interface Sci. 2023 311 102810 10.1016/j.cis.2022.102810
    [Google Scholar]
  51. Quarta A. Piccirillo C. Mandriota G. Di Corato R. Nanoheterostructures (NHS) and their applications in nanomedicine: Focusing on in vivo studies. Materials 2019 12 1 139 10.3390/ma12010139
    [Google Scholar]
  52. Rahim S. Jan Iftikhar F. Malik M.I. Biomedical applications of magnetic nanoparticles. In: Metal Nanoparticles for Drug Delivery and Diagnostic Applications. Elsevier 2019 301 328 10.1016/B978‑0‑12‑816960‑5.00016‑1
    [Google Scholar]
  53. Materón EM. Miyazaki CM. Carr O. Joshi N. Picciani PHS. Dalmaschio CJ. Davis F. Shimizu FM. Magnetic nanoparticles in biomedical applications: A review. Appl. Surf Sci. Adv. 2021 6 100163 10.1016/j.apsadv.2021.100163
    [Google Scholar]
  54. Anik M.I. Hossain M.K. Hossain I. Mahfuz A.M.U.B. Rahman M.T. Ahmed I. Recent progress of magnetic nanoparticles in biomedical applications: A review. Nano Select, 2021 2 6 1146-1186 1186. 10.1002/nano.202000162,
  55. Sun S.N. Wei C. Zhu Z.Z. Hou Y.L. Venkatraman S.S. Xu Z.C. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chin. Phys. B 2014 23 3 037503 10.1088/1674‑1056/23/3/037503
    [Google Scholar]
  56. Zhuo Z. Wang J. Luo Y. Zeng R. Zhang C. Zhou W. Guo K. Wu H. Sha W. Chen H. Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanoparticles. Acta Biomater. 2021 134 13 31 10.1016/j.actbio.2021.07.027
    [Google Scholar]
  57. Friedrich R.P. Cicha I. Alexiou C. Iron oxide nanoparticles in regenerative medicine and tissue engineering. Nanomaterials 2021 11 9 2337 10.3390/nano11092337
    [Google Scholar]
  58. Bujňáková Z. Processing of natural mineral magnetite for medical applications. In: Biocompatible Hybrid Oxide Nanoparticles for Human Health. Elsevier 2019 125 147 10.1016/B978‑0‑12‑815875‑3.00008‑4
    [Google Scholar]
  59. Bora M. Recent Bio-medical applications of iron oxide magnetic nanoparticles. J. Isas 2023 1 4 56 72 10.59143/isas.jisas.1.4.COWE4565
    [Google Scholar]
  60. Hu P. Pan D. Zhang S. Tian J. Volinsky A.A. Mn–Zn soft magnetic ferrite nanoparticles synthesized from spent alkaline Zn–Mn batteries. J. Alloys Compd. 2011 509 9 3991 3994 10.1016/j.jallcom.2010.12.204
    [Google Scholar]
  61. Prozorov T. Palo P. Wang L. Nilsen-Hamilton M. Jones D.A. Orr D. Mallapragada S.K. Narasimhan B. Canfield P.C. Prozorov R. Cobalt ferrite nanocrystals: Out-performing magnetotactic bacteria. ACS Nano 2007 1 3 228 233 10.1021/nn700194h
    [Google Scholar]
  62. Biswal D. Peeples B.N. Peeples C. Pradhan A.K. Tuning of magnetic properties in cobalt ferrite by varying Fe +2 and Co +2 molar ratios. J. Magn. Magn. Mater. 2013 345 1 6 10.1016/j.jmmm.2013.05.052
    [Google Scholar]
  63. Ali S. Ekbbal R. Salar S. Yasheshwar; Ali, S.A.; Jaiswal, A.K.; Singh, M.; Yadav, D.K.; Kumar, S.; Gaurav, Quality standards and pharmacological interventions of natural oils: Current scenario and future perspectives. ACS Omega 2023 8 43 39945 39963 10.1021/acsomega.3c05241
    [Google Scholar]
  64. Ekbbal R. Jaiswal A.K. Aggarwal M. Singh M. Ali S.A. Ali S. Gautam G. Indian medicinal plants for the management of endometriosis: A comprehensive review on their phytopharmacology. Nat. Resour. Human Health. 2023 4 1 75 88 10.53365/nrfhh/174668
    [Google Scholar]
  65. Shamim S. Ali S. Ali T. Sharma H. Kishor B.N. Jha S.K. Recent advances in monodisperse gold nanoparticle delivery, synthesis, and emerging applications in cancer therapy. Plasmonics 2025 20 1 10.1007/s11468‑024‑02732‑4
    [Google Scholar]
  66. Praphakar R.A. Munusamy M.A. Alarfaj A.A. Kumar S.S. Rajan M. Zn 2+ cross-linked sodium alginate-g-allylamine-mannose polymeric carrier of rifampicin for macrophage targeting tuberculosis nanotherapy. New J. Chem. 2017 41 19 11324 11334 10.1039/C7NJ01808H
    [Google Scholar]
  67. Malathi S. Balasubramanian S. Synthesis of biodegradable polymeric nanoparticles and their controlled drug delivery for tuberculosis. J. Biomed. Nanotechnol. 2011 7 1 150 151 10.1166/jbn.2011.1244
    [Google Scholar]
  68. Arum Y. Oh Y.O. Kang H.W. Ahn S.H. Oh J. Chitosan-coated Fe3O4 magnetic nanoparticles as carrier of cisplatin for drug delivery. Fish. Aquat. Sci. 2015 18 1 89 98 10.5657/FAS.2015.0089
    [Google Scholar]
  69. Sun Z. Huang G. Ma Z. Synthesis of theranostic Anti-EGFR ligand conjugate iron oxide nanoparticles for magnetic resonance imaging for treatment of liver cancer. J. Drug Deliv. Sci. Technol. 2020 55 101367 10.1016/j.jddst.2019.101367
    [Google Scholar]
  70. Khosroshahi M.E. Rezvani H.A. Keshvari H. Bonakdar S. Tajabadi M. Evaluation of cell viability and T2 relaxivity of fluorescein conjugated SPION-PAMAM third generation nanodendrimers for bioimaging. Mater. Sci. Eng. C 2016 62 544 552 10.1016/j.msec.2016.01.082
    [Google Scholar]
  71. Ozkan S.Z. Kostev A.I. Karpacheva G.P. Multifunctional nanocomposites based on polydiphenylamine-2-carboxylic acid, magnetite nanoparticles and single-walled carbon nanotubes. Polym. Bull. 2022 79 6 3721 3739 10.1007/s00289‑021‑03558‑4
    [Google Scholar]
  72. Montoro-Leal P. García-Mesa J.C. López Guerrero M.M. Vereda Alonso E. Comparative study of synthesis methods to prepare new functionalized adsorbent materials based on MNPs–GO coupling. Nanomaterials 2020 10 2 304 10.3390/nano10020304
    [Google Scholar]
  73. Abdelhamid H.N. Dowaidar M. Hällbrink M. Langel Ü. Gene delivery using cell penetrating peptides-zeolitic imidazolate frameworks. Microporous Mesoporous Mater. 2020 300 110173 10.1016/j.micromeso.2020.110173
    [Google Scholar]
  74. Unalan I. Occhipinti I. Miola M. Vernè E. Boccaccini A.R. Development of super‐paramagnetic iron oxide nanoparticle‐coated melt electrowritten scaffolds for biomedical applications. Macromol. Biosci. 2024 24 3 2300397 10.1002/mabi.202300397
    [Google Scholar]
  75. Gao F. Qi Q. Liang X. Wen L. Shang Y. Mi Y. Ziener U. Cao Z. Fabrication of Fe 3 O 4/O ‐Carboxylmethyl Chitosan Magnetic Particle Assembles in Inverse Miniemulsions for Loading and Release of Bovine Serum Albumin. ChemistrySelect 2020 5 27 8344 8351 10.1002/slct.202001784
    [Google Scholar]
  76. Luiz M.T. Dutra J.A.P. Viegas J.S.R. de Araújo J.T.C. Tavares Junior A.G. Chorilli M. Hybrid magnetic lipid-based nanoparticles for cancer therapy. Pharmaceutics 2023 15 3 751 10.3390/pharmaceutics15030751
    [Google Scholar]
  77. Pund S.N. Nagwade P.A. Nagawade A.V. Thopate S.R. Bagade A.V. Magnetic, morphological, and photocatalytic studies of Cu 2+ doped Mg-Zn ferrite nanoparticles. IOP Conf Ser Mater. Sci. Eng. 2023 1291 012007 10.1088/1757‑899X/1291/1/012007
    [Google Scholar]
  78. Ribeiro A.I. Dias A.M. Zille A. Synergistic effects between metal nanoparticles and commercial antimicrobial agents: A review. ACS Appl. Nano Mater. 2022 5 3 3030 3064 10.1021/acsanm.1c03891
    [Google Scholar]
  79. Tarhan T. Ulu A. Sariçam M. Çulha M. Ates B. Maltose functionalized magnetic core/shell Fe3O4@Au nanoparticles for an efficient l-asparaginase immobilization. Int. J. Biol. Macromol. 2020 142 443 451 10.1016/j.ijbiomac.2019.09.116
    [Google Scholar]
  80. Michałowska A. Żygieło M. Kudelski A. Fe3O4-protected gold nanoparticles: New plasmonic-magnetic nanomaterial for Raman analysis of surfaces. Appl. Surf. Sci. 2021 562 150220 10.1016/j.apsusc.2021.150220
    [Google Scholar]
  81. A-Jarah N.H.; Wasfi, A.S.; Hamidi, S.M. Tunable random lasing in Au@Fe3O4, Fe3O4@Au core shell nanoparticles under external magnetic field. Opt. Laser Technol. 2022 153 108266 10.1016/j.optlastec.2022.108266
    [Google Scholar]
  82. Alvear-Jiménez A. Zabala Gutierrez I. Shen Y. Villaverde G. Lozano-Chamizo L. Guardia P. Tinoco M. Garcia-Pinel B. Prados J. Melguizo C. López-Romero M. Jaque D. Filice M. Contreras-Cáceres R. Electrospraying as a technique for the controlled synthesis of biocompatible PLGA@Ag2S and PLGA@Ag2S@SPION nanocarriers with drug release capability. Pharmaceutics 2022 14 1 214 10.3390/pharmaceutics14010214
    [Google Scholar]
  83. Zhang Y. García-Gabilondo M. Rosell A. Roig A. Mri/photoluminescence dual-modal imaging magnetic PLGA nanocapsules for theranostics. Pharmaceutics 2020 12 1 16 10.3390/pharmaceutics12010016
    [Google Scholar]
  84. Flood-Garibay J.A. Méndez-Rojas M.A. Synthesis and characterization of magnetic wrinkled mesoporous silica nanocomposites containing Fe3O4 or CoFe2O4 nanoparticles for potential biomedical applications. Colloids Surf. A Physicochem. Eng. Asp. 2021 615 126236 10.1016/j.colsurfa.2021.126236
    [Google Scholar]
  85. Musab L. Al-Abodi E.E. Preparation and characterization composites contain of magnetic iron oxide nanoparticles with different weight ratios of dextrin, and using it to removal of heavy metals from aqueous solutions. Energy Procedia 2019 157 752 762 10.1016/j.egypro.2018.11.241
    [Google Scholar]
  86. Dong Z. Wang Y. Guo J. Tian C. Pan W. Wang H. Yan J. Prostate cancer therapy using docetaxel and formononetin combination: Hyaluronic acid and epidermal growth factor receptor targeted peptide dual ligands modified binary nanoparticles to facilitate the in vivo anti-tumor activity. Drug Des. Devel. Ther. 2022 16 2683 2693 10.2147/DDDT.S366622
    [Google Scholar]
  87. Al-Omoush M.K. Bryleva M.A. Dmitriev V.O. Polozhentsev O.E. Soldatov A.V. Heating efficiency of PEGylated Mn–Zn ferrite nanoparticles for magnetic fluid hyperthermia. Appl. Phys., A Mater. Sci. Process. 2024 130 3 160 10.1007/s00339‑024‑07337‑6
    [Google Scholar]
  88. Song Y. Chen J. Yang X. Zhang D. Zou Y. Ni D. Ye J. Yu Z. Chen Q. Jin S. Liang P. Fabrication of Fe3O4@Ag magnetic nanoparticles for highly active SERS enhancement and paraquat detection. Microchem. J. 2022 173 107019 10.1016/j.microc.2021.107019
    [Google Scholar]
  89. Koksharov Y.A. Gubin S.P. Taranov I.V. Khomutov G.B. Gulyaev Y.V. Magnetic nanoparticles in medicine: Progress, problems, and advances. J. Commun. Technol. Electron. 2022 67 2 101 116 10.1134/S1064226922020073
    [Google Scholar]
  90. Ngema L.M. Adeyemi S.A. Marimuthu T. Choonara Y.E. A review on engineered magnetic nanoparticles in Non-Small-Cell lung carcinoma targeted therapy. Int. J. Pharm. 2021 606 120870 10.1016/j.ijpharm.2021.120870
    [Google Scholar]
  91. Chen W.H. Luo G-F. Lei Q. Cao F-Y. Fan J-X. Qiu W-X. Jia H-Z. Hong S. Fang F. Zeng X. Zhuo R-X. Zhang X-Z. Rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy. Biomaterials 2016 76 87 101 10.1016/j.biomaterials.2015.10.053
    [Google Scholar]
  92. Zákutná D. Nižňanský D. Barnsley L.C. Babcock E. Salhi Z. Feoktystov A. Honecker D. Disch S. Field dependence of magnetic disorder in nanoparticles. Phys. Rev. X 2020 10 3 031019 10.1103/PhysRevX.10.031019
    [Google Scholar]
  93. Yadeta H.B. Shaw S. Contribution of rational design and fractional rheology on magnetic nanoparticle-based drug targeting in a microvessel with Saffman force. Zhongguo Wuli Xuekan 2024 87 677 696 10.1016/j.cjph.2023.12.025
    [Google Scholar]
  94. Kolitsi L.I. Orova M. Yiantsios S.G. A model of magnetic nanoparticle transport and their effects in tumor areas: Assessment of desirable magnetic properties. J. Magn. Magn. Mater. 2022 561 169732 10.1016/j.jmmm.2022.169732
    [Google Scholar]
  95. Altinkaynak C. Özdemir N. Öcsoy İ. A rational synthesis of magnetic nanoparticles incorporated horseradish peroxidase nanoflower and its use for the removal of phenol through oxidative coupling reaction with great reusability. Mugla J. Sci. Technol 2021 7 2 59 66 10.22531/muglajsci.982993
    [Google Scholar]
  96. Baig N. Kammakakam I. Falath W. Kammakakam I. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021 2 6 1821 1871 10.1039/D0MA00807A
    [Google Scholar]
  97. Lanier OL. Korotych OI. Monsalve AG. Wable D. Savliwala S. Grooms NWF. Nacea C. Tuitt OR. Dobson J. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Int. J. Hyperthermia 2019 36 1 687 701 10.1080/02656736.2019.1628313 31340687
    [Google Scholar]
  98. Elrefai A.L. Yoshida T. Enpuku K. Magnetic parameters evaluation of magnetic nanoparticles for use in biomedical applications. J. Magn. Magn. Mater. 2019 474 522 527 10.1016/j.jmmm.2018.11.022
    [Google Scholar]
  99. Baskaran M. Baskaran P. Arulsamy N. Thyagarajan B. Preparation and evaluation of PLGA-coated capsaicin magnetic nanoparticles. Pharm. Res. 2017 34 6 1255 1263 10.1007/s11095‑017‑2142‑2
    [Google Scholar]
  100. Saari M.M. Optimization of an AC/DC High- Tc SQUID magnetometer detection unit for evaluation of magnetic nanoparticles in solution. IEEE Trans. Appl. Supercond. 2015 25 3 1 4 10.1109/TASC.2014.2363633
    [Google Scholar]
  101. Wang J. Xu W. Chen L. Huang X. Liu J. Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water. Chem. Eng. J. 2014 251 25 34 10.1016/j.cej.2014.04.061
    [Google Scholar]
  102. Yu L. Liu J. Wu K. Klein T. Jiang Y. Wang J.P. Evaluation of hyperthermia of magnetic nanoparticles by dehydrating DNA. Sci. Rep. 2014 4 1 7216 10.1038/srep07216
    [Google Scholar]
  103. Anandhi J.S. Joseyphus R.J. Subsurface thermal sensitivity evaluation of magnetic nanoparticles for theranostics using infrared thermography. Heat Mass Transfer. 2023 59 803 816 10.1007/s00231‑022‑03293‑0
    [Google Scholar]
  104. Amiri M. Salavati-Niasari M. Akbari A. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. 2019 265 29 44 10.1016/j.cis.2019.01.003
    [Google Scholar]
  105. Hajiali S. Daneshjou S. Daneshjoo S. Biomimetic synthesis of iron oxide nanoparticles from Bacillus megaterium to be used in hyperthermia therapy. AMB Express 2022 12 1 145 10.1186/s13568‑022‑01490‑y
    [Google Scholar]
  106. Nordin A. Ahmad Z. Husna S. Ilyas R. Azemi A. Ismail N. Nordin M. Ngadi N. Siti N. Nabgan W. Norfarhana A. Azami M. The state of the art of natural polymer functionalized Fe3O4 magnetic nanoparticle composites for drug delivery applications: A review. Gels 2023 9 2 121 10.3390/gels9020121
    [Google Scholar]
  107. Lourens A. Falch A. Malgas-Enus R. Magnetite immobilized metal nanoparticles in the treatment and removal of pollutants from wastewater: A review. J. Mater. Sci. 2023 58 7 2951 2970 10.1007/s10853‑023‑08167‑2
    [Google Scholar]
  108. Lin C.W. Chen J-M. Lin Y-J. Chao L-W. Wei S-Y. Wu C-H. Jeng C-C. Wang L-M. Chen K-L. Magneto-optical characteristics of streptavidin-coated Fe3O4@Au core-shell nanoparticles for potential applications on biomedical assays. Sci. Rep. 2019 9 1 16466 10.1038/s41598‑019‑52773‑7
    [Google Scholar]
  109. Lim C.C. Chia L.Y. Kumar P.V. Dendrimer-based nanocomposites for the production of RNA delivery systems. OpenNano 2023 13 100173 10.1016/j.onano.2023.100173
    [Google Scholar]
  110. Hu Q. Fang Z. Ge J. Li H. Nanotechnology for cardiovascular diseases. Innovation 2022 3 2 100214 10.1016/j.xinn.2022.100214
    [Google Scholar]
  111. Farooq U. Imran M. Fatima N. Noreen S. Alhushaybari A. Akgül A. De la Sen M. Galal A.M. Analysis of Kerosene oil conveying silver and Manganese zinc ferrite nanoparticles with hybrid Nanofluid: Effects of increasing the Lorentz Force, Suction, and volume fraction. Ain Shams Eng. J. 2024 15 1 102326 10.1016/j.asej.2023.102326
    [Google Scholar]
  112. Francia V. Zhang Y. Cheng M.H.Y. Schiffelers R.M. Witzigmann D. Cullis P.R. A magnetic separation method for isolating and characterizing the biomolecular corona of lipid nanoparticles. Proc. Natl. Acad. Sci. USA 2024 121 11 e2307803120 10.1073/pnas.2307803120
    [Google Scholar]
  113. Farzin A. Etesami S.A. Quint J. Memic A. Tamayol A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv. Healthc. Mater. 2020 9 9 1901058 10.1002/adhm.201901058
    [Google Scholar]
  114. Barran P.E. 7th international symposium on enabling technologies for life sciences (ETP). Rapid Commun. Mass Spectrom. 2013 27 22 2570 2580 10.1002/rcm.6724
    [Google Scholar]
  115. Mahajan K.D. Ruan G. Vieira G. Porter T. Chalmers J.J. Sooryakumar R. Winter J.O. Biomolecular detection, tracking, and manipulation using a magnetic nanoparticle-quantum dot platform. J. Mater. Chem. B Mater. Biol. Med. 2020 8 16 3534 3541 10.1039/C9TB02481F
    [Google Scholar]
  116. Romero G. Park J. Koehler F. Pralle A. Anikeeva P. Modulating cell signalling in vivo with magnetic nanotransducers. Nat. Rev. Methods Primers 2022 2 92 10.1038/s43586‑022‑00170‑2 38111858
    [Google Scholar]
  117. Alven S. Aderibigbe B. Combination therapy strategies for the treatment of malaria. Molecules 2019 24 19 3601 10.3390/molecules24193601
    [Google Scholar]
  118. Zhang Y. Xi K. Fu X. Sun H. Wang H. Yu D. Li Z. Ma Y. Liu X. Huang B. Wang J. Li G. Cui J. Li X. Ni S. Versatile metal-phenolic network nanoparticles for multitargeted combination therapy and magnetic resonance tracing in glioblastoma. Biomaterials 2021 278 121163 10.1016/j.biomaterials.2021.121163
    [Google Scholar]
  119. Khaledian M. Nourbakhsh M.S. Saber R. Hashemzadeh H. Darvishi M.H. Preparation and evaluation of doxorubicin-loaded pla–peg–fa copolymer containing superparamagnetic iron oxide nanoparticles (Spions) for cancer treatment: Combination therapy with hyperthermia and chemotherapy. Int. J. Nanomedicine 2020 15 6167 6182 10.2147/IJN.S261638
    [Google Scholar]
  120. Shabatina T.I. Vernaya O.I. Shimanovskiy N.L. Melnikov M.Y. Metal and metal oxides nanoparticles and nanosystems in anticancer and antiviral theragnostic agents. Pharmaceutics 2023 15 4 1181 10.3390/pharmaceutics15041181
    [Google Scholar]
  121. Ashikbayeva Z. Tosi D. Balmassov D. Schena E. Saccomandi P. Inglezakis V. Application of nanoparticles and nanomaterials in thermal ablation therapy of cancer. Nanomaterials 2019 9 9 1195 10.3390/nano9091195
    [Google Scholar]
  122. Luo Z. Cai K. Hu Y. Li J. Ding X. Zhang B. Xu D. Yang W. Liu P. Redox-responsive molecular nanoreservoirs for controlled intracellular anticancer drug delivery based on magnetic nanoparticles. Adv. Mater. 2012 24 3 431 435 10.1002/adma.201103458
    [Google Scholar]
  123. Hughes K.A. Misra B. Maghareh M. Bobbala S. Use of stimulatory responsive soft nanoparticles for intracellular drug delivery. Nano Res. 2023 16 5 6974 6990 10.1007/s12274‑022‑5267‑5
    [Google Scholar]
  124. Eslami P. Albino M. Scavone F. Chiellini F. Morelli A. Baldi G. Cappiello L. Doumett S. Lorenzi G. Ravagli C. Caneschi A. Laurenzana A. Sangregorio C. Smart magnetic nanocarriers for multi-stimuli on-demand drug delivery. Nanomaterials 2022 12 3 303 10.3390/nano12030303
    [Google Scholar]
  125. Lemos T.S.A. de Souza J.F. Fajardo A.R. Magnetic microspheres based on pectin coated by chitosan towards smart drug release. Carbohydr. Polym. 2021 265 118013 10.1016/j.carbpol.2021.118013
    [Google Scholar]
  126. Beagan A.M. Folic acid-terminated poly(2-diethyl amino ethyl methacrylate) brush-gated magnetic mesoporous nanoparticles as a smart drug delivery system. Polymers 2021 13 1 59 10.3390/polym13010059
    [Google Scholar]
  127. Verma C. Verma D.K. Berdimurodov E. Barsoum I. Alfantazi A. Hussain C.M. Green magnetic nanoparticles: a comprehensive review of recent progress in biomedical and environmental applications. J. Mater. Sci. 2024 59 2 325 358 10.1007/s10853‑023‑08914‑5
    [Google Scholar]
  128. Zarandona I. Correia D.M. Moreira J. Costa C.M. Lanceros-Mendez S. Guerrero P. de la Caba K. Magnetically responsive chitosan-pectin films incorporating Fe3O4 nanoparticles with enhanced antimicrobial activity. Int. J. Biol. Macromol. 2023 227 1070 1077 10.1016/j.ijbiomac.2022.11.286
    [Google Scholar]
  129. Dadfar S.M. Camozzi D. Darguzyte M. Roemhild K. Varvarà P. Metselaar J. Banala S. Straub M. Güvener N. Engelmann U. Slabu I. Buhl M. van Leusen J. Kögerler P. Hermanns-Sachweh B. Schulz V. Kiessling F. Lammers T. Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance. J. Nanobiotechnology 2020 18 1 22 10.1186/s12951‑020‑0580‑1
    [Google Scholar]
  130. Vangijzegem T. Lecomte V. Ternad I. Van Leuven L. Muller R.N. Stanicki D. Laurent S. Superparamagnetic iron oxide nanoparticles (SPION): From fundamentals to state-of-the-art innovative applications for cancer therapy. Pharmaceutics 2023 15 1 236 10.3390/pharmaceutics15010236
    [Google Scholar]
  131. Kumar P. Shamim; Muztaba, M.; Ali, T.; Bala, J.; Sidhu, H.S.; Bhatia, A. Fused deposition modeling 3D-printed scaffolds for bone tissue engineering applications: A review. Ann. Biomed. Eng. 2024 52 5 1184 1194 10.1007/s10439‑024‑03479‑z
    [Google Scholar]
  132. Ali S.A. Ali S. Rastogi S. Shivhare B. Muztaba M. A comprehensive review on advancements in nanocarriers-based peptide delivery for cancer therapeutics. Micro Nanosyst. 2025 17 4 283 297 10.2174/0118764029358553250325040749
    [Google Scholar]
  133. Deepty M. Srinivas C. Mohan N.K. Kumar E.R. Singh S. Meena S.S. Bhatt P. Sastry D.L. Chemical synthesis of Mn–Zn magnetic ferrite nanoparticles: Effect of secondary phase on extrinsic magnetic properties of Mn–Zn ferrite nanoparticles. Ceram. Int. 2024 50 11 18446 18453 10.1016/j.ceramint.2024.02.328
    [Google Scholar]
  134. Conceição D.C.O. Neves R.C.S. França E.L.T. Rodrigues A.R. Alves S. Padrón-Hernández E. Development of a new method for the preparation of mesoporous magnetic nanoparticles of cobalt ferrite (CoFe2O4) with applied parameters for magnetic hyperthermia. Nano-Struct. Nano-Objects 2024 37 101073 10.1016/j.nanoso.2023.101073
    [Google Scholar]
  135. Kumar P. Trends of nanobiosensors in modern agriculture systems. Appl. Biochem. Biotechnol. 2024 197 1 667 690 10.1007/s12010‑024‑05039‑6
    [Google Scholar]
  136. Mehdipour M. Gloag L. Hagness D. Lian J. Alam M.S. Chen X. Tilley R.D. Gooding J.J. Flow‐based synthesis of gold‐coated magnetic nanoparticles for magnetoplasmonic sensing applications. Part. Part. Syst. Charact. 2022 39 8 2200051 10.1002/ppsc.202200051
    [Google Scholar]
  137. Mazur T. Mazur Ł. Borkowski M. Kuciel T. Szuwarzyński M. Polymer-nanoparticle thin scaffolds with any-shape magnetic field gradients. Colloids Surf. A Physicochem. Eng. Asp. 2023 677 132413 10.1016/j.colsurfa.2023.132413
    [Google Scholar]
  138. Pazouki N. Irani S. Olov N. Atyabi S.M. Bagheri-Khoulenjani S. Fe3O4 nanoparticles coated with carboxymethyl chitosan containing curcumin in combination with hyperthermia induced apoptosis in breast cancer cells. Prog. Biomater. 2022 11 1 43 54 10.1007/s40204‑021‑00178‑z
    [Google Scholar]
  139. Domac B.H. AlKhatib S. Zirhli O. Akdogan N.G. Öçal Dirican Ş.C. Bulut G. Akdogan O. Effects of PEGylated Fe–Fe3O4 core-shell nanoparticles on NIH3T3 and A549 cell lines. Heliyon 2020 6 1 e03124 10.1016/j.heliyon.2019.e03124
    [Google Scholar]
  140. Ray S. Li Z. Hsu C-H. Hwang L-P. Lin Y-C. Chou P-T. Lin Y-Y. Dendrimer- and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics 2018 8 22 6322 6349 10.7150/thno.27828
    [Google Scholar]
  141. Jaiswal A.K. Yasheshwar; Salar, S.; Shamim; Yadav, D.K.; Aggarwal, M.; Sharma, S.; Ekbbal, R.; Gaurav, Multi-targeted therapeutic exploration of Tamarix gallica flowers for anti-ulcer activity and associated complications. J. Ayurveda Integr. Med. 2024 15 4 100947 10.1016/j.jaim.2024.100947
    [Google Scholar]
  142. Șelaru A. Gelatin meshes enriched with graphene oxide and magnetic nanoparticles support and enhance the proliferation and neuronal differentiation of human adipose-derived stem cells. Int. J. Mol. Sci. 2023 24 1 555 10.3390/ijms24010555
    [Google Scholar]
  143. Sadegha S. Varshochian R. Dadras P. Hosseinzadeh H. Sakhtianchi R. Mirzaie Z.H. Shafiee A. Atyabi F. Dinarvand R. Mesoporous silica coated SPIONs containing curcumin and silymarin intended for breast cancer therapy. Daru 2022 30 2 331 341 10.1007/s40199‑022‑00453‑9
    [Google Scholar]
  144. Nosrati H. Davaran S. Kheiri Manjili H. Rezaeejam H. Danafar H. Bovine serum albumin stabilized iron oxide and gold bimetallic heterodimers: Synthesis, characterization and Stereological study. Appl. Organomet. Chem. 2019 33 10 e5155 10.1002/aoc.5155
    [Google Scholar]
  145. Redolfi Riva E. Sinibaldi E. Grillone A.F. Del Turco S. Mondini A. Li T. Takeoka S. Mattoli V. Enhanced in vitro magnetic cell targeting of doxorubicin-loaded magnetic liposomes for localized cancer therapy. Nanomaterials 2020 10 11 2104 10.3390/nano10112104
    [Google Scholar]
  146. Hermann C.A. Hofmann C. Duerkop A. Baeumner A.J. Magnetosomes for bioassays by merging fluorescent liposomes and magnetic nanoparticles: encapsulation and bilayer insertion strategies. Anal. Bioanal. Chem. 2020 412 24 6295 6305 10.1007/s00216‑020‑02503‑0
    [Google Scholar]
  147. Malik M.A. Alshehri A.A. Patel R. Facile one-pot green synthesis of Ag–Fe bimetallic nanoparticles and their catalytic capability for 4-nitrophenol reduction. J. Mater. Res. Technol. 2021 12 455 470 10.1016/j.jmrt.2021.02.063
    [Google Scholar]
  148. Jin R. Song D. Xiong H. Ai L. Ma P. Sun Y. Magnetic core/shell Fe 3 O 4/Au nanoparticles for studies of quinolones binding to protein by fluorescence spectroscopy. Luminescence 2016 31 2 499 506 10.1002/bio.2988
    [Google Scholar]
  149. Xu Y. Dong X. Xu H. Jiao P. Zhao L.X. Su G. Nanomaterial-based drug delivery systems for pain treatment and relief: From the delivery of a single drug to co-delivery of multiple therapeutics. Pharmaceutics 2023 15 9 2309 10.3390/pharmaceutics15092309
    [Google Scholar]
  150. Hafiz M. Hassanein A. Talhami M. AL-Ejji, M.; Hassan, M.K.; Hawari, A.H. Magnetic nanoparticles draw solution for forward osmosis: Current status and future challenges in wastewater treatment. J. Environ. Chem. Eng. 2022 10 6 108955 10.1016/j.jece.2022.108955
    [Google Scholar]
  151. Kouhpanji M.R.Z. Stadler B.J.H. A guideline for effectively synthesizing and characterizing magnetic nanoparticles for advancing nanobiotechnology: A review. Sensors 2020 20 9 2554 10.3390/s20092554 32365832
    [Google Scholar]
  152. Cardoso V.F. Francesko A. Ribeiro C. Bañobre-López M. Martins P. Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater. 2018 7 5 1700845 10.1002/adhm.201700845
    [Google Scholar]
  153. Wu W. Wu Z. Yu T. Jiang C. Kim W.S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015 16 2 023501 10.1088/1468‑6996/16/2/023501
    [Google Scholar]
  154. Ali A. Shah T. Ullah R. Zhou P. Guo M. Ovais M. Tan Z. Rui Y.K. Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications. Front Chem. 2021 9 629054 10.3389/fchem.2021.629054
    [Google Scholar]
  155. Tang S.C.N. Lo I.M.C. Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res. 2013 47 8 2613 2632 10.1016/j.watres.2013.02.039
    [Google Scholar]
  156. Darroudi M. Gholami M. Rezayi M. Khazaei M. An overview and bibliometric analysis on the colorectal cancer therapy by magnetic functionalized nanoparticles for the responsive and targeted drug delivery. J. Nanobiotechnology 2021 19 1 399 10.1186/s12951‑021‑01150‑6
    [Google Scholar]
  157. Dasari A. Xue J. Deb S. Magnetic nanoparticles in bone tissue engineering. Nanomaterials 2022 12 5 757 10.3390/nano12050757
    [Google Scholar]
  158. Sung B. Kim M.H. Abelmann L. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioeng. Transl. Med. 2021 6 1 e10190 10.1002/btm2.10190
    [Google Scholar]
  159. Balaban Hanoglu S. Harmanci D. Ucar N. Evran S. Timur S. Recent approaches in magnetic nanoparticle-based biosensors of miRNA detection. Magnetochemistry 2023 9 1 23 10.3390/magnetochemistry9010023
    [Google Scholar]
  160. Rajan A. Sahu N.K. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. J. Nanopart. Res. 2020 22 11 319 10.1007/s11051‑020‑05045‑9
    [Google Scholar]
  161. Qiao R. Fu C. Forgham H. Javed I. Huang X. Zhu J. Whittaker A.K. Davis T.P. Magnetic iron oxide nanoparticles for brain imaging and drug delivery. Adv. Drug Deliv. Rev. 2023 197 114822 10.1016/j.addr.2023.114822
    [Google Scholar]
  162. Bruschi M.L. de Souza Nunes G.C. Magnetic Gels in Skin Cancer Treatment: A Review of Potential Applications in Diagnostics, Drug Delivery and Hyperthermia. Pharmaceutics 2023 15 4 1244 10.3390/pharmaceutics15041244
    [Google Scholar]
  163. Spoială A. Ilie C-I. Motelica L. Ficai D. Semenescu A. Oprea O-C. Ficai A. Smart magnetic drug delivery systems for the treatment of cancer. Nanomaterials 2023 13 5 876 10.3390/nano13050876
    [Google Scholar]
  164. Streubel R. Liu X. Wu X. Russell T.P. Perspective: Ferromagnetic liquids. Materials 2020 13 12 2712 10.3390/ma13122712
    [Google Scholar]
  165. Wang S. Hou Y. New Types of Magnetic Nanoparticles for Stimuli-Responsive Theranostic Nanoplatforms. Adv. Sci. 2024 10.4028/b‑wjQRP6
    [Google Scholar]
  166. Siddique S. Chow J.C.L. Recent advances in functionalized nanoparticles in cancer theranostics. Nanomaterials 2022 12 16 2826 10.3390/nano12162826
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031400035251014115919
Loading
/content/journals/ddl/10.2174/0122103031400035251014115919
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test