Skip to content
2000
image of Advancements and Implementations of Injectable Hydrogels in the Medical Field: A Comprehensive Review

Abstract

Innovations in the development and application of injectable hydrogels within biomedical engineering highlight their distinct characteristics and promising roles in tissue engineering and controlled release systems. Injectable hydrogels, distinguished by their three-dimensional network topologies, in-situ gelation process, and stimuli-responsive behaviour, have outstanding biocompatibility, mechanical properties, and the capacity to deliver therapeutic drugs to specific areas with little invasiveness. This review focuses on the advancements in hydrogel formulations, particularly natural and synthetic hydrogels, and their effectiveness in stimulating tissue regeneration. It specifically emphasizes cardiac applications following myocardial infarction. Hydrogels have received significant attention due to their exceptional porosity, mechanical behaviour, and biological compatibility, making them convenient for cancer therapy. Injectable hydrogels, known for their favourable physicochemical properties, have shown promising results in treating various conditions, including ocular diseases, cancer, wound healing, cardiovascular disorders, and rheumatoid arthritis. It highlights the diversity in study methodologies and the necessity for large-scale animal trials, which pose challenges for clinical translation. Furthermore, emphasizes the importance of enhancing hydrogel properties to improve therapeutic efficacy and calls for additional research to fully realize their potential in regenerative medicine. This study explores injectable hydrogels for cardiac tissue regeneration post-myocardial infarction (MI), a less-studied area compared to wound healing and drug delivery. It highlights their applications in ocular diseases, cancer therapy, rheumatoid arthritis, and personalized medicine, addressing challenges like clinical translation, biocompatibility, and mechanical property optimization. Emphasis is placed on improving hydrogel porosity, strength, and stimuli-responsiveness for enhanced outcomes. Unique insights include their role as targeted drug carriers for localized cancer therapy. Future directions involve biopolymer innovations, 3D bioprinting, and regenerative medicine advancements.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031371020251005051531
2025-10-15
2026-02-01
Loading full text...

Full text loading...

References

  1. Hayashi K Okamoto F Hoshi S Katashima T Zujur DC Li X Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body. Nat. Biomed. Eng. 2017 1 3 0044 10.1038/s41551‑017‑0044
    [Google Scholar]
  2. Chao Y. Chen Q. Liu Z. Smart injectable hydrogels for cancer immunotherapy. Adv. Funct. Mater. 2020 30 2 1902785 10.1002/adfm.201902785
    [Google Scholar]
  3. De Leon-Oliva D. Boaru D.L. Perez-Exposito R.E. Fraile-Martinez O. García-Montero C. Diaz R. Bujan J. García-Honduvilla N. Lopez-Gonzalez L. Álvarez-Mon M. Saz J.V. de la Torre B. Ortega M.A. Advanced hydrogel-based strategies for enhanced bone and cartilage regeneration: A comprehensive review. Gels 2023 9 11 885 10.3390/gels9110885 37998975
    [Google Scholar]
  4. Sanjaykumar S.G. Malviya R. Srivastava S. Ahmad I. Uniyal P. Singh B. Nisar N. Chitosan-peptide composites for tissue engineering applications: Advances in treatment strategies. Curr. Protein Pept. Sci. 2025 26 3 185 200 10.2174/0113892037323136240910052119 39350425
    [Google Scholar]
  5. Basu S. Pacelli S. Paul A. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta Biomater. 2020 105 159 169 10.1016/j.actbio.2020.01.021 31972367
    [Google Scholar]
  6. Chen X. Wang M. Yang X. Wang Y. Yu L. Sun J. Ding J. Injectable hydrogels for the sustained delivery of a HER2-targeted antibody for preventing local relapse of HER2+ breast cancer after breast-conserving surgery. Theranostics 2019 9 21 6080 6098 10.7150/thno.36514 31534538
    [Google Scholar]
  7. Bharti D. Pradhan B. Banerjee I. Pal K. Injectable In Situ Hydrogels for Regenerative Medicine Applications Functional Bio-based Materials for Regenerative Medicine From Bench to Bedside (Part 1). UAE Bentham Science Publishers 2023
    [Google Scholar]
  8. Saharan R. Kaur J. Dhankhar S. Garg N. Chauhan S. Beniwal S. Sharma H. Hydrogel-based drug delivery system in diabetes management. Pharm. Nanotechnol. 2024 12 4 289 299 10.2174/0122117385266276230928064235 37818559
    [Google Scholar]
  9. Sudhir Dhote N. Dineshbhai Patel R. Kuwar U. Agrawal M. Alexander A. Jain P. Ajazuddin, Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting. Curr. Cancer Drug Targets 2024 24 4 375 396 10.2174/1568009623666230803111718 37534485
    [Google Scholar]
  10. Shin D.Y. Cheon K.H. Song E.H. Seong Y.J. Park J.U. Kim H.E. Jeong S.H. Fluorine-ion-releasing injectable alginate nanocomposite hydrogel for enhanced bioactivity and antibacterial property. Int. J. Biol. Macromol. 2019 123 866 877 10.1016/j.ijbiomac.2018.11.108 30447366
    [Google Scholar]
  11. Pacelli S. Paolicelli P. Moretti G. Petralito S. Di Giacomo S. Vitalone A. Casadei M.A. Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. Eur. Polym. J. 2016 77 114 123 10.1016/j.eurpolymj.2016.02.007
    [Google Scholar]
  12. Ahmad U. Sohail M. Ahmad M. Minhas M.U. Khan S. Hussain Z. Kousar M. Mohsin S. Abbasi M. Shah S.A. Rashid H. Chitosan based thermosensitive injectable hydrogels for controlled delivery of loxoprofen: Development, characterization and in-vivo evaluation. Int. J. Biol. Macromol. 2019 129 233 245 10.1016/j.ijbiomac.2019.02.031 30738157
    [Google Scholar]
  13. Shah S.A. Sohail M. Minhas M.U. Nisar-ur-Rehman; Khan, S.; Hussain, Z.; Mudassir; Mahmood, A.; Kousar, M.; Mahmood, A. Retracted article: PH-responsive CAP-co-poly(methacrylic acid)-based hydrogel as an efficient platform for controlled gastrointestinal delivery: Fabrication, characterization, in vitro and in vivo toxicity evaluation. Drug Deliv. Transl. Res. 2019 9 2 555 577 10.1007/s13346‑018‑0486‑8 29450805
    [Google Scholar]
  14. Zia M.A. Sohail M. Minhas M.U. Sarfraz R.M. Khan S. de Matas M. Hussain Z. Abbasi M. Shah S.A. Kousar M. Ahmad N. HEMA based pH-sensitive semi IPN microgels for oral delivery; a rationale approach for ketoprofen. Drug Dev. Ind. Pharm. 2020 46 2 272 282 10.1080/03639045.2020.1716378 31928342
    [Google Scholar]
  15. Shah S.A. Sohail M. Khan S. Minhas M.U. de Matas M. Sikstone V. Hussain Z. Abbasi M. Kousar M. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. Int. J. Biol. Macromol. 2019 139 975 993 10.1016/j.ijbiomac.2019.08.007 31386871
    [Google Scholar]
  16. Qu J. Zhao X. Liang Y. Zhang T. Ma P.X. Guo B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 2018 183 185 199 10.1016/j.biomaterials.2018.08.044 30172244
    [Google Scholar]
  17. Qu J. Zhao X. Ma P.X. Guo B. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized “smart” drug release. Acta Biomater. 2018 72 55 69 10.1016/j.actbio.2018.03.018 29555459
    [Google Scholar]
  18. Ren Y. Zhao X. Liang X. Ma P.X. Guo B. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease. Int. J. Biol. Macromol. 2017 105 Pt 1 1079 1087 10.1016/j.ijbiomac.2017.07.130 28746885
    [Google Scholar]
  19. Singhal R. Sarangi M.K. Rath G. Injectable hydrogels: A paradigm tailored with design, characterization, and multifaceted approaches. Macromol. Biosci. 2024 24 7 2400049 10.1002/mabi.202400049 38577905
    [Google Scholar]
  20. Shahid N. Erum A. Hanif S. Malik N.S. Tulain U.R. Syed M.A. Nanocomposite hydrogels-a promising approach towards enhanced bioavailability and controlled drug delivery. Curr. Pharm. Des. 2024 30 1 48 62 10.2174/0113816128283466231219071151 38155469
    [Google Scholar]
  21. Zielińska A. Eder P. Rannier L. Cardoso J.C. Severino P. Silva A.M. Souto E.B. Hydrogels for modified-release drug delivery systems. Curr. Pharm. Des. 2022 28 8 609 618 10.2174/1381612828666211230114755 34967292
    [Google Scholar]
  22. Li A. Ma B. Hua S. Ping R. Ding L. Tian B. Zhang X. Chitosan-based injectable hydrogel with multifunction for wound healing: A critical review. Carbohydr. Polym. 2024 333 121952 10.1016/j.carbpol.2024.121952 38494217
    [Google Scholar]
  23. Kallepalli B. Garg U. Jain N. Nagpal R. Malhotra S. Tiwari T. Kaul S. Nagaich U. Intelligent drug delivery: Pioneering stimuli-responsive systems to revolutionize disease management- an in-depth exploration. Curr. Drug Deliv. 2025 22 2 195 214 10.2174/0115672018278641231221051359 38310439
    [Google Scholar]
  24. Ouyang C. Yu H. Wang L. Ni Z. Liu X. Shen D. Yang J. Shi K. Wang H. Tough adhesion enhancing strategies for injectable hydrogel adhesives in biomedical applications. Adv. Colloid Interface Sci. 2023 319 102982 10.1016/j.cis.2023.102982 37597358
    [Google Scholar]
  25. Almawash S. Osman S.K. Mustafa G. El Hamd M.A. Current and future prospective of injectable hydrogels—design challenges and limitations. Pharmaceuticals 2022 15 3 371 10.3390/ph15030371 35337169
    [Google Scholar]
  26. Overstreet D.J. Dutta D. Stabenfeldt S.E. Vernon B.L. Injectable hydrogels. J. Polym. Sci., B, Polym. Phys. 2012 50 13 881 903 10.1002/polb.23081
    [Google Scholar]
  27. Cheng Y. Zhang H. Wei H. Yu C.Y. Injectable hydrogels as emerging drug-delivery platforms for tumor therapy. Biomater. Sci. 2024 12 5 1151 1170 10.1039/D3BM01840G 38319379
    [Google Scholar]
  28. Dong R. Zhao X. Guo B. Ma P.X. Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy. ACS Appl. Mater. Interfaces 2016 8 27 17138 17150 10.1021/acsami.6b04911 27311127
    [Google Scholar]
  29. Taylor D.L. in het Panhuis, M. Self‐healing hydrogels. Adv. Mater. 2016 28 41 9060 9093 10.1002/adma.201601613 27488822
    [Google Scholar]
  30. Bastings M.M.C. Koudstaal S. Kieltyka R.E. Nakano Y. Pape A.C.H. Feyen D.A.M. van Slochteren F.J. Doevendans P.A. Sluijter J.P.G. Meijer E.W. Chamuleau S.A.J. Dankers P.Y.W. A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv. Healthc. Mater. 2014 3 1 70 78 10.1002/adhm.201300076 23788397
    [Google Scholar]
  31. Zhang H. Xia H. Zhao Y. Poly (vinyl alcohol) hydrogel can autonomously self-heal. ACS Macro Lett. 2012 1 11 1233 1236 10.1021/mz300451r 35607147
    [Google Scholar]
  32. Rumon M.M.H. Sarkar S.D. Uddin M.M. Alam M.M. Karobi S.N. Ayfar A. Azam M.S. Roy C.K. Graphene oxide based crosslinker for simultaneous enhancement of mechanical toughness and self-healing capability of conventional hydrogels. RSC Advances 2022 12 12 7453 7463 10.1039/D2RA00122E 35424695
    [Google Scholar]
  33. Qu J. Zhao X. Ma P.X. Guo B. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater. 2017 58 168 180 10.1016/j.actbio.2017.06.001 28583902
    [Google Scholar]
  34. Eufrásio-da-Silva T. Erezuma I. Dolatshahi-Pirouz A. Orive G. Enhancing regenerative medicine with self-healing hydrogels: A solution for tissue repair and advanced cyborganic healthcare devices. Biomater. Adv. 2024 161 213869 10.1016/j.bioadv.2024.213869 38718714
    [Google Scholar]
  35. Pishavar E. Khosravi F. Naserifar M. Rezvani Ghomi E. Luo H. Zavan B. Seifalian A. Ramakrishna S. Multifunctional and self-healable intelligent hydrogels for cancer drug delivery and promoting tissue regeneration in vivo. Polymers 2021 13 16 2680 10.3390/polym13162680 34451220
    [Google Scholar]
  36. Xiao L. Xie P. Ma J. Shi K. Dai Y. Pang M. Luo J. Tan Z. Ma Y. Wang X. Rong L. He L. A bioinspired injectable, adhesive, and self‐healing hydrogel with dual hybrid network for neural regeneration after spinal cord injury. Adv. Mater. 2023 35 41 2304896 10.1002/adma.202304896 37462613
    [Google Scholar]
  37. Peña B. Laughter M. Jett S. Rowland T.J. Taylor M.R.G. Mestroni L. Park D. Injectable hydrogels for cardiac tissue engineering. Macromol. Biosci. 2018 18 6 1800079 10.1002/mabi.201800079 29733514
    [Google Scholar]
  38. Hong L.T.A. Kim Y.M. Park H.H. Hwang D.H. Cui Y. Lee E.M. Yahn S. Lee J.K. Song S.C. Kim B.G. An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling. Nat. Commun. 2017 8 1 533 10.1038/s41467‑017‑00583‑8 28912446
    [Google Scholar]
  39. Li Z. Guo X. Matsushita S. Guan J. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels. Biomaterials 2011 32 12 3220 3232 10.1016/j.biomaterials.2011.01.050 21296413
    [Google Scholar]
  40. Chen C. Liu J. Zhang H. Zhang H. Liang Y. Ye Q. Shen W. Luo H. Guo L. A bait-and-hook hydrogel for net tumor cells to enhance chemotherapy and mitigate metastatic dissemination. Pharmaceutics 2024 16 12 1516 10.3390/pharmaceutics16121516 39771496
    [Google Scholar]
  41. Zhou C. Cai Z. Guo J. Li C. Qin C. Yan J. Yang D. Injective hydrogel loaded with liposomes-encapsulated MY-1 promotes wound healing and increases tensile strength by accelerating fibroblast migration via the PI3K/AKT-Rac1 signaling pathway. J. Nanobiotechnology 2024 22 1 396 10.1186/s12951‑024‑02666‑3 38965546
    [Google Scholar]
  42. Kruczkowska W. Gałęziewska J. Grabowska K. Liese G. Buczek P. Kłosiński K.K. Kciuk M. Pasieka Z. Kałuzińska-Kołat Ż. Kołat D. Biomedical trends in stimuli-responsive hydrogels with emphasis on chitosan-based formulations. Gels 2024 10 5 295 10.3390/gels10050295 38786212
    [Google Scholar]
  43. Zengin A. Castro J.P.O. Habibovic P. van Rijt S. Injectable, self-healing mesoporous silica nanocomposite hydrogels with improved mechanical properties. Nanoscale 2021 13 2 1 7 10.1039/D0NR07406C
    [Google Scholar]
  44. Miclotte M.P.J. Varlas S. Reynolds C.D. Rashid B. Chapman E. O’Reilly R.K. Thermoresponsive block copolymer core–shell nanoparticles with tunable flow behavior in porous media. ACS Appl. Mater. Interfaces 2022 14 48 54182 54193 10.1021/acsami.2c15024 36401811
    [Google Scholar]
  45. Matsumoto K. Sakikawa N. Miyata T. Thermo-responsive gels that absorb moisture and ooze water. Nat. Commun. 2018 9 1 2315 10.1038/s41467‑018‑04810‑8 29899417
    [Google Scholar]
  46. Pardeshi S. Damiri F. Zehravi M. Joshi R. Kapare H. Prajapati M.K. Munot N. Berrada M. Giram P.S. Rojekar S. Ali F. Rahman M.H. Barai H.R. Functional thermoresponsive hydrogel molecule to material design for biomedical applications. Polymers 2022 14 15 3126 10.3390/polym14153126 35956641
    [Google Scholar]
  47. Chatterjee S. Hui P.C. Kan C. Hui PC-l, Kan C-w. Thermoresponsive hydrogels and their biomedical applications: Special insight into their applications in textile based transdermal therapy. Polymers 2018 10 5 480 10.3390/polym10050480 30966514
    [Google Scholar]
  48. Ferreira N.N. Ferreira L.M.B. Cardoso V.M.O. Boni F.I. Souza A.L.R. Gremião M.P.D. Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches. Eur. Polym. J. 2018 99 117 133 10.1016/j.eurpolymj.2017.12.004
    [Google Scholar]
  49. Klouda L. Thermoresponsive hydrogels in biomedical applications. Eur J. Pharm. Biopharm 2015 97 Pt B 338 349 10.1016/j.ejpb.2015.05.017 26614556
    [Google Scholar]
  50. Lv Z. Hu T. Bian Y. Wang G. Wu Z. Li H. Liu X. Yang S. Tan C. Liang R. Weng X. A MgFe‐LDH nanosheet‐incorporated smart thermo‐responsive hydrogel with controllable growth factor releasing capability for bone regeneration. Adv. Mater. 2023 35 5 2206545 10.1002/adma.202206545 36426823
    [Google Scholar]
  51. Zakerikhoob M. Abbasi S. Yousefi G. Mokhtari M. Noorbakhsh M.S. Curcumin-incorporated crosslinked sodium alginate-g-poly (N-isopropyl acrylamide) thermo-responsive hydrogel as an in-situ forming injectable dressing for wound healing: In vitro characterization and in vivo evaluation. Carbohydr. Polym. 2021 271 118434 10.1016/j.carbpol.2021.118434 34364574
    [Google Scholar]
  52. Jiang T. Huang Z. Reng M. Ma Y. Gao B. Song S. Liu F. Zhang X. Huang J. He Z. Zhang H. Ma J. Wang G. Integration of temperature-sensitive hydrogels loaded with realgar and magnetic particles for lung cancer diagnosis and treatment. Cancer Nanotechnol. 2025 16 1 8 10.1186/s12645‑025‑00312‑7
    [Google Scholar]
  53. Durand A. Gréa T. Lebeau G. Jacquot G. Tillement A. Aigle A. Thomas E. Kryza D. Taleb J. Ferrauto G. Gianolio E. Géloën A. Montembault A. Gutiérrez-Blanco M. Pivot X. Harlepp S. Detappe A. David L. Lux F. Tillement O. Functionalization of chitosan with a polycarboxylic macrocycle yields injectable hydrogel with pH and salts responsiveness. Mater. Today Adv. 2025 25 100565 10.1016/j.mtadv.2025.100565
    [Google Scholar]
  54. Huh K.M. Pham H-M. Joo C. Ferdous M.J. Ali I. Kang S-W. Synthesis and characterization of n-octanoyl glycol chitosan as a novel temperature and PH-sensitive injectable hydrogel for biomedical applications. SSRN 5178766 10.2139/ssrn.5178766
    [Google Scholar]
  55. Li W. Tao C. Wang J. Le Y. Zhang J. MMP-responsive in situ forming hydrogel loaded with doxorubicin-encapsulated biodegradable micelles for local chemotherapy of oral squamous cell carcinoma. RSC Advances 2019 9 54 31264 31273 10.1039/C9RA04343H 35527962
    [Google Scholar]
  56. Yang Y. Zheng W. Tan W. Wu X. Dai Z. Li Z. Yan Z. Ji Y. Wang Y. Su W. Zhong S. Li Y. Sun Y. Li S. Huang W. Injectable MMP1-sensitive microspheres with spatiotemporally controlled exosome release promote neovascularized bone healing. Acta Biomater. 2023 157 321 336 10.1016/j.actbio.2022.11.065 36481504
    [Google Scholar]
  57. Noddeland H.K. Lind M. Petersson K. Caruso F. Malmsten M. Heinz A. Protease-responsive hydrogel microparticles for intradermal drug delivery. Biomacromolecules 2023 24 7 3203 3214 10.1021/acs.biomac.3c00265 37307231
    [Google Scholar]
  58. Singh R. Jadhav K. Kamboj R. Malhotra H. Ray E. Jhilta A. Dhir V. Verma R.K. Self-actuating inflammation responsive hydrogel microsphere formulation for controlled drug release in rheumatoid arthritis (RA): Animal trials and study in human fibroblast like synoviocytes (hFLS) of RA patients. Biomater. Adv. 2024 160 213853 10.1016/j.bioadv.2024.213853 38636119
    [Google Scholar]
  59. Zhang D. Sun P. Li P. Xue A. Zhang X. Zhang H. Jin X. A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette–Guérin in the treatment of bladder cancer. Biomaterials 2013 34 38 10258 10266 10.1016/j.biomaterials.2013.09.027 24070571
    [Google Scholar]
  60. Li Y. Chen X. Jin R. Chen L. Dang M. Cao H. Dong Y. Cai B. Bai G. Gooding J.J. Liu S. Zou D. Zhang Z. Yang C. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci. Adv. 2021 7 9 eabd6740 10.1126/sciadv.abd6740 33627421
    [Google Scholar]
  61. Ma P. Da J. Zhao G. Suo F. Li Y. Zhou X. Li Y. Han Y. Zou M. Dou X. Injectable light-responsive hydrogel dressing promotes diabetic wound healing by enhancing wound angiogenesis and inhibiting inflammation. Polymers 2025 17 5 607 10.3390/polym17050607 40076100
    [Google Scholar]
  62. Kim H. Park H. Lee J.W. Lee K.Y. Magnetic field-responsive release of transforming growth factor beta 1 from heparin-modified alginate ferrogels. Carbohydr. Polym. 2016 151 467 473 10.1016/j.carbpol.2016.05.090 27474590
    [Google Scholar]
  63. Kim C. Kim H. Park H. Lee K.Y. Controlling the porous structure of alginate ferrogel for anticancer drug delivery under magnetic stimulation. Carbohydr. Polym. 2019 223 115045 10.1016/j.carbpol.2019.115045 31426959
    [Google Scholar]
  64. Vora L.K. Gowda B.J. Gade S. Pandya A.K. Thakur R.R.S. Injectable depot-forming hydrogels for long-acting drug delivery Hydrogels in Drug Delivery. Amsterdam, Netherlands Elsevier 2025 241 272
    [Google Scholar]
  65. Song H. Wang Y. Fei Q. Nguyen D.H. Zhang C. Liu T.,Eds Cryopolymerization‐enabled self‐wrinkled polyaniline‐based hydrogels for highly stretchable all‐in‐one supercapacitors Exploration Wiley Online Library: Hoboken, New Jersey Hoboken, New Jersey Wiley Online Library 2022
    [Google Scholar]
  66. Servant A. Methven L. Williams R.P. Kostarelos K. Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo. Adv. Healthc. Mater. 2013 2 6 806 811 10.1002/adhm.201200193 23184678
    [Google Scholar]
  67. Wang Y. Wang Z. Guo W. Bai L. Luo Q. Kwong Cheng C. Zhang W. Wu D. Hu C. Wang Y. An injectable extracellular matrix-mimicking conductive hydrogel for sequential treatment of ischemic stroke. Chem. Eng. J. 2024 502 158039 10.1016/j.cej.2024.158039
    [Google Scholar]
  68. Bhattarai N. Gunn J. Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 2010 62 1 83 99 10.1016/j.addr.2009.07.019 19799949
    [Google Scholar]
  69. Ahmed E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015 6 2 105 121 10.1016/j.jare.2013.07.006 25750745
    [Google Scholar]
  70. Kushchayev S.V. Giers M.B. Hom Eng D. Martirosyan N.L. Eschbacher J.M. Mortazavi M.M. Theodore N. Panitch A. Preul M.C. Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury. J. Neurosurg. Spine 2016 25 1 114 124 10.3171/2015.9.SPINE15628 26943251
    [Google Scholar]
  71. Mneimneh A.T. Mehanna M.M. Collagen-based scaffolds: An auspicious tool to support repair, recovery, and regeneration post spinal cord injury. Int. J. Pharm. 2021 601 120559 10.1016/j.ijpharm.2021.120559 33831486
    [Google Scholar]
  72. Yang Y. Fan Y. Zhang H. Zhang Q. Zhao Y. Xiao Z. Liu W. Chen B. Gao L. Sun Z. Xue X. Shu M. Dai J. Small molecules combined with collagen hydrogel direct neurogenesis and migration of neural stem cells after spinal cord injury. Biomaterials 2021 269 120479 10.1016/j.biomaterials.2020.120479 33223332
    [Google Scholar]
  73. Liu X. Zhang L. Xu Z. Xiong X. Yu Y. Wu H. Qiao H. Zhong J. Zhao Z. Dai J. Suo G. A functionalized collagen-I scaffold delivers microRNA 21-loaded exosomes for spinal cord injury repair. Acta Biomater. 2022 154 385 400 10.1016/j.actbio.2022.10.027 36270583
    [Google Scholar]
  74. Wang B. Liu S. Xie Y-Y. Wang L-D. Tai C-X. Chen D. Mu D. Cui Y-Y. A multi-channel collagen scaffold loaded with neural stem cells for the repair of spinal cord injury. Neural Regen. Res. 2021 16 11 2284 2292 10.4103/1673‑5374.310698 33818514
    [Google Scholar]
  75. Thompson R.E. Pardieck J. Smith L. Kenny P. Crawford L. Shoichet M. Sakiyama-Elbert S. Effect of hyaluronic acid hydrogels containing astrocyte-derived extracellular matrix and/or V2a interneurons on histologic outcomes following spinal cord injury. Biomaterials 2018 162 208 223 10.1016/j.biomaterials.2018.02.013 29459311
    [Google Scholar]
  76. Gao X. You Z. Li Y. Kang X. Yang W. Wang H. Zhang T. Zhao X. Sun Y. Shen H. Dai J. Multifunctional hydrogel modulates the immune microenvironment to improve allogeneic spinal cord tissue survival for complete spinal cord injury repair. Acta Biomater. 2023 155 235 246 10.1016/j.actbio.2022.11.015 36384221
    [Google Scholar]
  77. Vacharasin J. Shah L.A. Ye D. Khan A. The role of polymer hydrogels in the bio-medical field. Media, SA Frontiers 2025 1544807
    [Google Scholar]
  78. Amer L.D. Saleh L.S. Walker C. Thomas S. Janssen W.J. Alper S. Bryant S.J. Inflammation via myeloid differentiation primary response gene 88 signaling mediates the fibrotic response to implantable synthetic poly(ethylene glycol) hydrogels. Acta Biomater. 2019 100 105 117 10.1016/j.actbio.2019.09.043 31568879
    [Google Scholar]
  79. Jung K. Corrigan N. Wong E.H.H. Boyer C. Bioactive synthetic polymers. Adv. Mater. 2022 34 2 2105063 10.1002/adma.202105063 34611948
    [Google Scholar]
  80. Peng H. Liu Y. Xiao F. Zhang L. Li W. Wang B. Weng Z. Liu Y. Chen G. Research progress of hydrogels as delivery systems and scaffolds in the treatment of secondary spinal cord injury. Front. Bioeng. Biotechnol. 2023 11 1111882 10.3389/fbioe.2023.1111882 36741755
    [Google Scholar]
  81. Ibrahim M. Ramadan E. Elsadek N.E. Emam S.E. Shimizu T. Ando H. Ishima Y. Elgarhy O.H. Sarhan H.A. Hussein A.K. Ishida T. Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J. Control. Release 2022 351 215 230 10.1016/j.jconrel.2022.09.031 36165835
    [Google Scholar]
  82. Peppas N.A. Keys K.B. Torres-Lugo M. Lowman A.M. Poly(ethylene glycol)-containing hydrogels in drug delivery. J. Control. Release 1999 62 1-2 81 87 10.1016/S0168‑3659(99)00027‑9 10518639
    [Google Scholar]
  83. Aghaie T. Jazayeri M.H. Manian M. Khani; Erfani, M.; Rezayi, M.; Ferns, G.A.; Avan, A. Gold nanoparticle and polyethylene glycol in neural regeneration in the treatment of neurodegenerative diseases. J. Cell. Biochem. 2019 120 3 2749 2755 10.1002/jcb.27415 30485477
    [Google Scholar]
  84. Babaloo H. Ebrahimi-Barough S. Derakhshan M.A. Yazdankhah M. Lotfibakhshaiesh N. Soleimani M. Joghataei M.T. Ai J. PCL/gelatin nanofibrous scaffolds with human endometrial stem cells/Schwann cells facilitate axon regeneration in spinal cord injury. J. Cell. Physiol. 2019 234 7 11060 11069 10.1002/jcp.27936 30584656
    [Google Scholar]
  85. Ghosh S. Yadav P. Das B. Materials Technology and Its Advancements Involving Nanotechnology, Hydrogels, and Its Impact Assessment on Various Aspects of Improving the Healthcare System Industrial Microbiology and Biotechnology: An Insight into Current Trends. Cham Springer 2024 405 435
    [Google Scholar]
  86. Paez J.I. Lim K.S. An introduction to injectable hydrogels. J. Mater. Chem. B Mater. Biol. Med. 2024 12 23 5571 5572 10.1039/D4TB90085E 38832500
    [Google Scholar]
  87. Omidian H. Akhzarmehr A. Dey Chowdhury S. Hydrogel composites for multifunctional biomedical applications. J. Compos. Sci. 2024 8 4 154 10.3390/jcs8040154
    [Google Scholar]
  88. Xiang J. Shen L. Hong Y. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. Eur. Polym. J. 2020 130 109609 10.1016/j.eurpolymj.2020.109609
    [Google Scholar]
  89. Li Z. Song P. Li G. Han Y. Ren X. Bai L. Su J. AI energized hydrogel design, optimization and application in biomedicine. Mater. Today Bio 2024 25 101014 10.1016/j.mtbio.2024.101014 38464497
    [Google Scholar]
  90. Choi G. Ali F. Kim K. Kim M.P. Advancements in binary solvent-assisted hydrogel composites for wearable sensing applications. Materials 2024 17 22 5535 10.3390/ma17225535 39597358
    [Google Scholar]
  91. Zawani M. Fauzi M.B. Injectable hydrogels for chronic skin wound management: A concise review. Biomedicines 2021 9 5 527 10.3390/biomedicines9050527 34068490
    [Google Scholar]
  92. Nam M. Lee J.W. Cha G.D. Biomedical application of enzymatically crosslinked injectable hydrogels. Gels 2024 10 10 640 10.3390/gels10100640 39451293
    [Google Scholar]
  93. Li J. Mooney D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016 1 12 16071 10.1038/natrevmats.2016.71 29657852
    [Google Scholar]
  94. Tibbitt M.W. Anseth K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009 103 4 655 663 10.1002/bit.22361 19472329
    [Google Scholar]
  95. Annabi N. Tamayol A. Uquillas J.A. Akbari M. Bertassoni L.E. Cha C. Camci-Unal G. Dokmeci M.R. Peppas N.A. Khademhosseini A. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater. 2014 26 1 85 124 10.1002/adma.201303233 24741694
    [Google Scholar]
  96. Ulijn R.V. Smith A.M. Designing peptide based nanomaterials. Chem. Soc. Rev. 2008 37 4 664 675 10.1039/b609047h 18362975
    [Google Scholar]
  97. Hoffman A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012 64 18 23 10.1016/j.addr.2012.09.010 11755703
    [Google Scholar]
  98. Oyen M.L. Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 2014 59 1 44 59 10.1179/1743280413Y.0000000022
    [Google Scholar]
  99. Roudsari L.C. West J.L. Studying the influence of angiogenesis in in vitro cancer model systems. Adv. Drug Deliv. Rev. 2016 97 250 259 10.1016/j.addr.2015.11.004 26571106
    [Google Scholar]
  100. Chai Q. Jiao Y. Yu X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 2017 3 1 6 10.3390/gels3010006 30920503
    [Google Scholar]
  101. Koetting M.C. Peters J.T. Steichen S.D. Peppas N.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. Rep. 2015 93 1 49 10.1016/j.mser.2015.04.001 27134415
    [Google Scholar]
  102. Qiu Y. Park K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2012 64 49 60 10.1016/j.addr.2012.09.024 11744175
    [Google Scholar]
  103. Buwalda S.J. Boere K.W.M. Dijkstra P.J. Feijen J. Vermonden T. Hennink W.E. Hydrogels in a historical perspective: From simple networks to smart materials. J. Control. Release 2014 190 254 273 10.1016/j.jconrel.2014.03.052 24746623
    [Google Scholar]
  104. Tibbitt M.W. Dahlman J.E. Langer R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 2016 138 3 704 717 10.1021/jacs.5b09974 26741786
    [Google Scholar]
  105. McLemore R. Preul M.C. Vernon B.L. Controlling delivery properties of a waterborne, in‐situ ‐forming biomaterial. J. Biomed. Mater. Res. B Appl. Biomater. 2006 79B 2 398 410 10.1002/jbm.b.30554 16649173
    [Google Scholar]
  106. Pollock J.F. Healy K.E. Mechanical and swelling characterization of poly(N-isopropyl acrylamide -co- methoxy poly(ethylene glycol) methacrylate) sol–gels. Acta Biomater. 2010 6 4 1307 1318 10.1016/j.actbio.2009.11.027 19941981
    [Google Scholar]
  107. Jeong B. Choi Y.K. Bae Y.H. Zentner G. Kim S.W. New biodegradable polymers for injectable drug delivery systems. J. Control. Release 1999 62 1-2 109 114 10.1016/S0168‑3659(99)00061‑9 10518642
    [Google Scholar]
  108. Huynh C.T. Nguyen M.K. Lee D.S. Injectable block copolymer hydrogels: Achievements and future challenges for biomedical applications. Macromolecules 2011 44 17 6629 6636 10.1021/ma201261m
    [Google Scholar]
  109. Sidiq S. Ahanger G. Nazir N. Iqbal Zargar M. Ahmad Dar A. Modulation of mechanical properties of low molecular weight supramolecular hydrogels of calcium cholate by drugs of varying hydrophobicity: Effect on drug release, antioxidant, and antibacterial properties. J. Mol. Liq. 2024 409 125341 10.1016/j.molliq.2024.125341
    [Google Scholar]
  110. Soni S.S. Rodell C.B. Cyclodextrin Nanoparticles and Injectable Polymer-Nanoparticle Hydrogels for Macrophage-Targeted Delivery of Small-Molecule Drugs Biomedical Nanotechnology. Cham Springer 2025 117 131
    [Google Scholar]
  111. Koo H. Lee S. Na J.H. Kim S.H. Hahn S.K. Choi K. Kwon I.C. Jeong S.Y. Kim K. Bioorthogonal copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew. Chem. Int. Ed. 2012 51 47 11836 11840 10.1002/anie.201206703 23081905
    [Google Scholar]
  112. Shim M.K. Yoon H.Y. Ryu J.H. Koo H. Lee S. Park J.H. Kim J.H. Lee S. Pomper M.G. Kwon I.C. Kim K. Cathepsin b‐specific metabolic precursor for in vivo tumor‐specific fluorescence imaging. Angew. Chem. Int. Ed. 2016 55 47 14698 14703 10.1002/anie.201608504 27762044
    [Google Scholar]
  113. Ertugral-Samgar E.G. Ozmen A.M. Gok O. Thermo-responsive hydrogels encapsulating targeted core–shell nanoparticles as injectable drug delivery systems. Pharmaceutics 2023 15 9 2358 10.3390/pharmaceutics15092358 37765326
    [Google Scholar]
  114. Pandya I. Kumar S. Aswal V.K. El Seoud O. Assiri M.A. Malek N. Metal organic framework-based polymeric hydrogel: A promising drug delivery vehicle for the treatment of breast cancer. Int. J. Pharm. 2024 658 124206 10.1016/j.ijpharm.2024.124206 38734276
    [Google Scholar]
  115. Zang C. Tian Y. Tang Y. Tang M. Yang D. Chen F. Ghaffarlou M. Tu Y. Ashrafizadeh M. Li Y. Hydrogel-based platforms for site-specific doxorubicin release in cancer therapy. J. Transl. Med. 2024 22 1 879 10.1186/s12967‑024‑05490‑3 39350207
    [Google Scholar]
  116. Min Jung J. Lip Jung Y. Han Kim S. Sung Lee D. Thambi T. Injectable hydrogel imbibed with camptothecin-loaded mesoporous silica nanoparticles as an implantable sustained delivery depot for cancer therapy. J. Colloid Interface Sci. 2023 636 328 340 10.1016/j.jcis.2023.01.028 36638572
    [Google Scholar]
  117. Kehr N.S. Injectable nanocomposite hydrogels with co-delivery of oxygen and anticancer drugs for higher cell viability of healthy cells than cancer cells under normoxic and hypoxic conditions. Biomed. Mater. 2025 20 1 015035 10.1088/1748‑605X/ada240 39706158
    [Google Scholar]
  118. Wang T. Suita Y. Miriyala S. Dean J. Tapinos N. Shen J. Advances in lipid-based nanoparticles for cancer chemoimmunotherapy. Pharmaceutics 2021 13 4 520 10.3390/pharmaceutics13040520 33918635
    [Google Scholar]
  119. Chen D.S. Mellman, I Oncology meets immunology: The cancer-immunity cycle. Immunity 2013 39 1 1 10 10.1016/j.immuni.2013.07.012
    [Google Scholar]
  120. Liu S. Li J. Gu L. Wu K. Xing H. Nanoparticles for chemoimmunotherapy against triple-negative breast cancer. Int. J. Nanomedicine 2022 17 5209 5227 10.2147/IJN.S388075 36388877
    [Google Scholar]
  121. Mohaghegh N. Ahari A. Zehtabi F. Buttles C. Davani S. Hoang H. Tseng K. Zamanian B. Khosravi S. Daniali A. Kouchehbaghi N.H. Thomas I. Serati Nouri H. Khorsandi D. Abbasgholizadeh R. Akbari M. Patil R. Kang H. Jucaud V. Khademhosseini A. Hassani Najafabadi A. Injectable hydrogels for personalized cancer immunotherapies. Acta Biomater. 2023 172 67 91 10.1016/j.actbio.2023.10.002 37806376
    [Google Scholar]
  122. Barough M.S. Seyfoori A. Askari E. Mahdavi M. Sarrami Forooshani R. Sadeghi B. Kazemi M.H. Falak R. Khademhosseini A. Mojtabavi N. Akbari M. Gemcitabine‐loaded injectable hydrogel for localized breast cancer immunotherapy. Adv. Funct. Mater. 2024 34 41 2403910 10.1002/adfm.202403910
    [Google Scholar]
  123. Hasan A. Khattab A. Islam M.A. Hweij K.A. Zeitouny J. Waters R. Sayegh M. Hossain M.M. Paul A. Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv. Sci. 2015 2 11 1500122 10.1002/advs.201500122 27668147
    [Google Scholar]
  124. Erfani A. Diaz A.E. Doyle P.S. Hydrogel-enabled, local administration and combinatorial delivery of immunotherapies for cancer treatment. Mater. Today 2023 65 227 243 10.1016/j.mattod.2023.03.006
    [Google Scholar]
  125. Zhou L. Pi W. Hao M. Li Y. An H. Li Q. Zhang P. Wen Y. An injectable and biodegradable nano-photothermal DNA hydrogel enhances penetration and efficacy of tumor therapy. Biomater. Sci. 2021 9 14 4904 4921 10.1039/D1BM00568E 34047319
    [Google Scholar]
  126. Lee J.H. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater. Res. 2018 22 1 27 10.1186/s40824‑018‑0138‑6 30275970
    [Google Scholar]
  127. Liu M. Zeng X. Ma C. Yi H. Ali Z. Mou X. Li S. Deng Y. He N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017 5 1 17014 10.1038/boneres.2017.14 28584674
    [Google Scholar]
  128. Deng G. Li F. Yu H. Liu F. Liu C. Sun W. Jiang H. Chen Y. Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Lett. 2012 1 2 275 279 10.1021/mz200195n 35578522
    [Google Scholar]
  129. Kamel S. El-Sayed N.S. Injectable smart hydrogels for biomedical applications. In: Injectable Smart Hydrogels for Biomedical Applications; Dodda, J. M.; Ashammakhi, N.; Sadiku, E. R., Eds.;Royal Society of Chemistry: London 2024 17 128 149 10.1039/BK9781837673070‑00128
    [Google Scholar]
  130. Han C. Zhang H. Wu Y. He X. Chen X. Dual-crosslinked hyaluronan hydrogels with rapid gelation and high injectability for stem cell protection. Sci. Rep. 2020 10 1 14997 10.1038/s41598‑020‑71462‑4 32929113
    [Google Scholar]
  131. Lu L. Yuan S. Wang J. Shen Y. Deng S. Xie L. Yang Q. The formation mechanism of hydrogels. Curr. Stem Cell Res. Ther. 2018 13 7 490 496 10.2174/1574888X12666170612102706 28606044
    [Google Scholar]
  132. Niemczyk B. Sajkiewicz P. Kolbuk D. Injectable hydrogels as novel materials for central nervous system regeneration. J. Neural Eng. 2018 15 5 051002 10.1088/1741‑2552/aacbab 29889043
    [Google Scholar]
  133. Tu Y. Chen N. Li C. Liu H. Zhu R. Chen S. Xiao Q. Liu J. Ramakrishna S. He L. Advances in injectable self-healing biomedical hydrogels. Acta Biomater. 2019 90 1 20 10.1016/j.actbio.2019.03.057 30951899
    [Google Scholar]
  134. Skopinska-Wisniewska J. De la Flor S. Kozlowska J. From supramolecular hydrogels to multifunctional carriers for biologically active substances. Int. J. Mol. Sci. 2021 22 14 7402 10.3390/ijms22147402 34299020
    [Google Scholar]
  135. He C. Ji H. Qian Y. Wang Q. Liu X. Zhao W. Zhao C. Heparin-based and heparin-inspired hydrogels: Size-effect, gelation and biomedical applications. J. Mater. Chem. B Mater. Biol. Med. 2019 7 8 1186 1208 10.1039/C8TB02671H 32255159
    [Google Scholar]
  136. Yu J. Xu K. Chen X. Zhao X. Yang Y. Chu D. Xu Y. Zhang Q. Zhang Y. Cheng Y. Highly stretchable, tough, resilient, and antifatigue hydrogels based on multiple hydrogen bonding interactions formed by phenylalanine derivatives. Biomacromolecules 2021 22 3 1297 1304 10.1021/acs.biomac.0c01788 33577294
    [Google Scholar]
  137. Abdulghani S. Morouço P.G. Biofabrication for osteochondral tissue regeneration: Bioink printability requirements. J. Mater. Sci. Mater. Med. 2019 30 2 20 10.1007/s10856‑019‑6218‑x 30689057
    [Google Scholar]
  138. Huang Q. Zou Y. Arno M.C. Chen S. Wang T. Gao J. Dove A.P. Du J. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem. Soc. Rev. 2017 46 20 6255 6275 10.1039/C6CS00052E 28816316
    [Google Scholar]
  139. Abasalizadeh F. Moghaddam S.V. Alizadeh E. akbari, E.; Kashani, E.; Fazljou, S.M.B.; Torbati, M.; Akbarzadeh, A. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J. Biol. Eng. 2020 14 1 8 10.1186/s13036‑020‑0227‑7 32190110
    [Google Scholar]
  140. Kim I.L. Mauck R.L. Burdick J.A. Hydrogel design for cartilage tissue engineering: A case study with hyaluronic acid. Biomaterials 2011 32 34 8771 8782 10.1016/j.biomaterials.2011.08.073 21903262
    [Google Scholar]
  141. Antoniuk I. Amiel C. Cyclodextrin-mediated hierarchical self-assembly and its potential in drug delivery applications. J. Pharm. Sci. 2016 105 9 2570 2588 10.1016/j.xphs.2016.05.010 27342436
    [Google Scholar]
  142. Wang Q. Li X. Wang P. Yao Y. Xu Y. Chen Y. Sun Y. Jiang Q. Fan Y. Zhang X. Bionic composite hydrogel with a hybrid covalent/noncovalent network promoting phenotypic maintenance of hyaline cartilage. J. Mater. Chem. B Mater. Biol. Med. 2020 8 20 4402 4411 10.1039/D0TB00253D 32242608
    [Google Scholar]
  143. Aldana A.A. Houben S. Moroni L. Baker M.B. Pitet L.M. Trends in double networks as bioprintable and injectable hydrogel scaffolds for tissue regeneration. ACS Biomater. Sci. Eng. 2021 7 9 4077 4101 10.1021/acsbiomaterials.0c01749 33606938
    [Google Scholar]
  144. Wang X. Qi J. Zhang W. Pu Y. Yang R. Wang P. Liu S. Tan X. Chi B. 3D-printed antioxidant antibacterial carboxymethyl cellulose/ε-polylysine hydrogel promoted skin wound repair. Int. J. Biol. Macromol. 2021 187 91 104 10.1016/j.ijbiomac.2021.07.115 34298048
    [Google Scholar]
  145. Whitely M. Cereceres S. Dhavalikar P. Salhadar K. Wilems T. Smith B. Mikos A. Cosgriff-Hernandez E. Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Biomaterials 2018 185 194 204 10.1016/j.biomaterials.2018.09.027 30245387
    [Google Scholar]
  146. Noh I. Kim N. Tran H.N. Lee J. Lee C. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater. Res. 2019 23 1 3 10.1186/s40824‑018‑0152‑8 30774971
    [Google Scholar]
  147. Dong L. Wang S.J. Zhao X.R. Zhu Y.F. Yu J.K. 3D-printed poly (ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci. Rep. 2017 7 1 13412 10.1038/s41598‑017‑13838‑7 29042614
    [Google Scholar]
  148. Ye X. Li L. Lin Z. Yang W. Duan M. Chen L. Xia Y. Chen Z. Lu Y. Zhang Y. Integrating 3D-printed PHBV/Calcium sulfate hemihydrate scaffold and chitosan hydrogel for enhanced osteogenic property. Carbohydr. Polym. 2018 202 106 114 10.1016/j.carbpol.2018.08.117 30286981
    [Google Scholar]
  149. Flégeau K. Pace R. Gautier H. Rethore G. Guicheux J. Le Visage C. Weiss P. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Adv. Colloid Interface Sci. 2017 247 589 609 10.1016/j.cis.2017.07.012 28754381
    [Google Scholar]
  150. Radhakrishnan J. Krishnan U.M. Sethuraman S. Hydrogel based injectable scaffolds for cardiac tissue regeneration. Biotechnol. Adv. 2014 32 2 449 461 10.1016/j.biotechadv.2013.12.010 24406815
    [Google Scholar]
  151. Nguyen T.P.T. Li F. Shrestha S. Tuan R.S. Thissen H. Forsythe J.S. Frith J.E. Cell-laden injectable microgels: Current status and future prospects for cartilage regeneration. Biomaterials 2021 279 121214 10.1016/j.biomaterials.2021.121214 34736147
    [Google Scholar]
  152. Gopinathan J. Noh I. Click chemistry-based injectable hydrogels and bioprinting inks for tissue engineering applications. Tissue Eng. Regen. Med. 2018 15 5 531 546 10.1007/s13770‑018‑0152‑8 30603577
    [Google Scholar]
  153. Li J. Liu N. Huang Z. Wang W. Hou D. Wang W. Intra-articular injection of loaded sPL sustained-release microspheres inhibits osteoarthritis and promotes cartilaginous repairs. J. Orthop. Surg. Res. 2021 16 1 646 10.1186/s13018‑021‑02777‑9 34717689
    [Google Scholar]
  154. Yao Y. Wang P. Li X. Xu Y. Lu G. Jiang Q. Sun Y. Fan Y. Zhang X. A di-self-crosslinking hyaluronan-based hydrogel combined with type I collagen to construct a biomimetic injectable cartilage-filling scaffold. Acta Biomater. 2020 111 197 207 10.1016/j.actbio.2020.05.007 32434079
    [Google Scholar]
  155. Li X. Xiong Y. Application of “click” chemistry in biomedical hydrogels. ACS Omega 2022 7 42 36918 36928 10.1021/acsomega.2c03931 36312409
    [Google Scholar]
  156. Quadrado R.F.N. Macagnan K.L. Moreira A.S. Fajardo A.R. Chitosan-based hydrogel crosslinked through an aza-Michael addition catalyzed by boric acid. Int. J. Biol. Macromol, 2021, 2021 193 Pt B 1032 1042 10.1016/j.ijbiomac.2021.11.075 34800516
    [Google Scholar]
  157. Guo Y. Gu J. Jiang Y. Zhou Y. Zhu Z. Ma T. Cheng Y. Ji Z. Jiao Y. Xue B. Cao Y. Regulating the homogeneity of thiol-maleimide Michael-type addition-based hydrogels using amino biomolecules. Gels 2021 7 4 206 10.3390/gels7040206 34842701
    [Google Scholar]
  158. Pupkaite J. Rosenquist J. Hilborn J. Samanta A. Injectable shape-holding collagen hydrogel for cell encapsulation and delivery cross-linked using thiol-michael addition click reaction. Biomacromolecules 2019 20 9 3475 3484 10.1021/acs.biomac.9b00769 31408340
    [Google Scholar]
  159. Moreira Teixeira L.S. Feijen J. van Blitterswijk C.A. Dijkstra P.J. Karperien M. Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials 2012 33 5 1281 1290 10.1016/j.biomaterials.2011.10.067 22118821
    [Google Scholar]
  160. Liu H.Y. Lin C.C. A diffusion-reaction model for predicting enzyme-mediated dynamic hydrogel stiffening. Gels 2019 5 1 17 10.3390/gels5010017 30871250
    [Google Scholar]
  161. Wang X. Wang Q. Enzyme-laden bioactive hydrogel for biocatalytic monitoring and regulation. Acc. Chem. Res. 2021 54 5 1274 1287 10.1021/acs.accounts.0c00832 33570397
    [Google Scholar]
  162. Ren K. He C. Xiao C. Li G. Chen X. Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. Biomaterials 2015 51 238 249 10.1016/j.biomaterials.2015.02.026 25771014
    [Google Scholar]
  163. Jin Y. Koh R.H. Kim S.H. Kim K.M. Park G.K. Hwang N.S. Injectable anti-inflammatory hyaluronic acid hydrogel for osteoarthritic cartilage repair. Mater. Sci. Eng. C 2020 115 111096 10.1016/j.msec.2020.111096 32600700
    [Google Scholar]
  164. Zhang F.X. Liu P. Ding W. Meng Q.B. Su D.H. Zhang Q.C. Lian R.X. Yu B.Q. Zhao M.D. Dong J. Li Y.L. Jiang L.B. Injectable mussel‐inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration. Biomaterials 2021 278 121169 10.1016/j.biomaterials.2021.121169 34626937
    [Google Scholar]
  165. Meng W. Gao L. Venkatesan J.K. Wang G. Madry H. Cucchiarini M. Translational applications of photopolymerizable hydrogels for cartilage repair. J. Exp. Orthop. 2019 6 1 47 10.1186/s40634‑019‑0215‑3 31807962
    [Google Scholar]
  166. Nicol E. Photopolymerized porous hydrogels. Biomacromolecules 2021 22 4 1325 1345 10.1021/acs.biomac.0c01671 33793224
    [Google Scholar]
  167. Pierau L. Versace D.L. Light and hydrogels: A new generation of antimicrobial materials. Materials 2021 14 4 787 10.3390/ma14040787 33562335
    [Google Scholar]
  168. Yue K. Trujillo-de Santiago G. Alvarez M.M. Tamayol A. Annabi N. Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015 73 254 271 10.1016/j.biomaterials.2015.08.045 26414409
    [Google Scholar]
  169. Wang G. An Y. Zhang X. Ding P. Bi H. Zhao Z. Chondrocyte spheroids laden in GelMA/HAMA hybrid hydrogel for tissue-engineered cartilage with enhanced proliferation, better phenotype maintenance, and natural morphological structure. Gels 2021 7 4 247 10.3390/gels7040247 34940307
    [Google Scholar]
  170. Mohapatra S. Mirza M.A. Hilles A.R. Zakir F. Gomes A.C. Ansari M.J. Iqbal Z. Mahmood S. Biomedical application, patent repository, clinical trial and regulatory updates on hydrogel: An extensive review. Gels 2021 7 4 207 10.3390/gels7040207 34842705
    [Google Scholar]
  171. Trubelja A. Kasper F.K. Farach-Carson M.C. Harrington D.A. Bringing hydrogel-based craniofacial therapies to the clinic. Acta Biomater. 2022 138 1 20 10.1016/j.actbio.2021.10.056 34743044
    [Google Scholar]
  172. Wang K. Han Z. Injectable hydrogels for ophthalmic applications. J. Control. Release 2017 268 212 224 10.1016/j.jconrel.2017.10.031 29061512
    [Google Scholar]
  173. Russo E. Villa C. Poloxamer hydrogels for biomedical applications. Pharmaceutics 2019 11 12 671 10.3390/pharmaceutics11120671 31835628
    [Google Scholar]
  174. Cattelan G. Guerrero Gerbolés A. Foresti R. Pramstaller P.P. Rossini A. Miragoli M. Caffarra Malvezzi C. Alginate formulations: Current developments in the race for hydrogel-based cardiac regeneration. Front. Bioeng. Biotechnol. 2020 8 414 10.3389/fbioe.2020.00414 32457887
    [Google Scholar]
  175. Øvrebø Ø. Perale G. Wojciechowski J.P. Echalier C. Jeffers J.R.T. Stevens M.M. Haugen H.J. Rossi F. Design and clinical application of injectable hydrogels for musculoskeletal therapy. Bioeng. Transl. Med. 2022 7 2 10295 10.1002/btm2.10295 35600661
    [Google Scholar]
  176. Liu J. Du C. Huang W. Lei Y. Injectable smart stimuli-responsive hydrogels: Pioneering advancements in biomedical applications. Biomater. Sci. 2024 1 7 10.1039/D3BM01352A 37969066
    [Google Scholar]
  177. Yin X. Ke Y. Liang Y. Zhang S. Chen Z. Yu L. Jiang M. Liu Q. Gu X. An immune‐enhancing injectable hydrogel loaded with esketamine and ddp promotes painless immunochemotherapy to inhibit breast cancer growth. Adv. Healthc. Mater. 2024 13 29 2401373 10.1002/adhm.202401373 39118566
    [Google Scholar]
  178. Si X. Ji G. Ma S. Huang Z. Liu T. Shi Z. Zhang Y. Li J. Song W. Chen X. Minimally invasive injectable gel for local immunotherapy of liver and gastric cancer. Adv. Sci. 2024 11 38 2405935 10.1002/advs.202405935 39116306
    [Google Scholar]
  179. Politakos N. Block copolymers in 3D/4D printing: Advances and applications as biomaterials. Polymers 2023 15 2 322 10.3390/polym15020322 36679203
    [Google Scholar]
  180. Gardin C. Ferroni L. Latremouille C. Chachques J.C. Mitrečić D. Zavan B. Recent applications of three dimensional printing in cardiovascular medicine. Cells 2020 9 3 742 10.3390/cells9030742 32192232
    [Google Scholar]
  181. Bencherif S.A. Sands R.W. Bhatta D. Arany P. Verbeke C.S. Edwards D.A. Mooney D.J. Injectable preformed scaffolds with shape-memory properties. Proc. Natl. Acad. Sci. USA 2012 109 48 19590 19595 10.1073/pnas.1211516109 23150549
    [Google Scholar]
  182. Hinderer S. Brauchle E. Schenke-Layland K. Generation and assessment of functional biomaterial scaffolds for applications in cardiovascular tissue engineering and regenerative medicine. Adv. Healthc. Mater. 2015 4 16 2326 2341 10.1002/adhm.201400762 25778713
    [Google Scholar]
  183. Lee M. Kim M.C. Lee J.Y. Nanomaterial-based electrically conductive hydrogels for cardiac tissue repair. Int. J. Nanomedicine 2022 17 6181 6200 10.2147/IJN.S386763 36531116
    [Google Scholar]
  184. Patel R. Patel D. Injectable hydrogels in cardiovascular tissue engineering. Polymers 2024 16 13 1878 10.3390/polym16131878 39000733
    [Google Scholar]
  185. Gao H. Liu S. Qin S. Yang J. Yue T. Ye B. Tang Y. Feng J. Hou J. Danzeng D. Injectable hydrogel-based combination therapy for myocardial infarction: A systematic review and Meta-analysis of preclinical trials. BMC Cardiovasc. Disord. 2024 24 1 119 10.1186/s12872‑024‑03742‑0 38383333
    [Google Scholar]
  186. Hashemi A. Ezati M. Nasr M.P. Zumberg I. Provaznik V. Extracellular vesicles and hydrogels: An innovative approach to tissue regeneration. ACS Omega 2024 9 6 6184 6218 10.1021/acsomega.3c08280 38371801
    [Google Scholar]
  187. Naghib S.M. Matini A. Amiri S. Ahmadi B. Mozafari M.R. Exploring the potential of polysaccharides-based injectable self-healing hydrogels for wound healing applications: A review. Int. J. Biol. Macromol. 2024 282 Pt 5 137209 10.1016/j.ijbiomac.2024.137209 39505164
    [Google Scholar]
  188. Zheng Y. Yang D. Gao B. Huang S. Tang Y. Wa Q. Dong Y. Yu S. Huang J. Huang S. A DNA-inspired injectable adhesive hydrogel with dual nitric oxide donors to promote angiogenesis for enhanced wound healing. Acta Biomater. 2024 176 128 143 10.1016/j.actbio.2024.01.026 38278340
    [Google Scholar]
  189. Wu Y. Ge Y. Wang Z. Zhu Y. Tian T. Wei J. Jin Y. Zhao Y. jia, Q.; Wu, J.; Ge, L. Synovium microenvironment-responsive injectable hydrogel inducing modulation of macrophages and elimination of synovial fibroblasts for enhanced treatment of rheumatoid arthritis. J. Nanobiotechnology 2024 22 1 188 10.1186/s12951‑024‑02465‑w 38632657
    [Google Scholar]
  190. Poudel H. RanguMagar, A.B.; Singh, P.; Oluremi, A.; Ali, N.; Watanabe, F.; Batta-Mpouma, J.; Kim, J.W.; Ghosh, A.; Ghosh, A. Guar-based injectable hydrogel for drug delivery and in vitro bone cell growth. Bioengineering 2023 10 9 1088 10.3390/bioengineering10091088 37760190
    [Google Scholar]
  191. García-Fernández L. Olmeda-Lozano M. Benito-Garzón L. Pérez-Caballer A. San Román J. Vázquez-Lasa B. Injectable hydrogel-based drug delivery system for cartilage regeneration. Mater. Sci. Eng. C 2020 110 110702 10.1016/j.msec.2020.110702 32204016
    [Google Scholar]
  192. Coulter S.M. Pentlavalli S. An Y. Vora L.K. Cross E.R. Moore J.V. Sun H. Schweins R. McCarthy H.O. Laverty G. In situ forming, enzyme-responsive peptoid-peptide hydrogels: An advanced long-acting injectable drug delivery system. J. Am. Chem. Soc. 2024 146 31 21401 21416 10.1021/jacs.4c03751 38922296
    [Google Scholar]
  193. van de Looij S.M. de Jong O.G. Vermonden T. Lorenowicz M.J. Injectable hydrogels for sustained delivery of extracellular vesicles in cartilage regeneration. J. Control. Release 2023 355 685 708 10.1016/j.jconrel.2023.01.060 36739906
    [Google Scholar]
  194. Wan J. Jiang J. Yu X. Zhou J. Wang Y. Fu S. Wang J. Liu Y. Dong Y. Midgley A.C. Wang S. Injectable biomimetic hydrogel based on modified chitosan and silk fibroin with decellularized cartilage extracellular matrix for cartilage repair and regeneration. Int. J. Biol. Macromol. 2025 298 140058 10.1016/j.ijbiomac.2025.140058 39832583
    [Google Scholar]
  195. Cai H. Yan J. Zhao W. Ma S. Wu J. Zhao Z. Deng H. Injectable interface-bonded fiber-reinforced thiolated chitosan hydrogels for enhanced cellular activities and cartilage regeneration. Carbohydr. Polym. 2025 347 122643 10.1016/j.carbpol.2024.122643 39486918
    [Google Scholar]
  196. Sánchez-Cid P. Jiménez-Rosado M. Romero A. Pérez-Puyana V. Novel trends in hydrogel development for biomedical applications: A review. Polymers 2022 14 15 3023 10.3390/polym14153023 35893984
    [Google Scholar]
  197. Feng J. Xing M. Qian W. Qiu J. Liu X. An injectable hydrogel combining medicine and matrix with anti-inflammatory and pro-angiogenic properties for potential treatment of myocardial infarction. Regen. Biomater. 2023 10 rbad036 10.1093/rb/rbad036 37153848
    [Google Scholar]
  198. Baishya G. Parasar B. Limboo M. Kumar R. Dutta A. Hussain A. Phukan M.M. Saikia D. Advancements in nanocomposite hydrogels: A comprehensive review of biomedical applications. Discov. Mater. 2024 4 1 40 10.1007/s43939‑024‑00111‑8
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031371020251005051531
Loading
/content/journals/ddl/10.2174/0122103031371020251005051531
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test