Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Background

Sepsis is a severe medical disorder that poses a significant risk to life, leading to elevated rates of sickness and mortality globally, reaching 11 million annually. It is distinguished by an imbalanced immune response to infection, which subsequently causes failure in several organs. Eugenol is obtained from clove oil and possesses various beneficial properties, such as antifungal, anti-inflammatory, antiviral, antioxidant, anticancer, and antibacterial effects.

Aims

The present study aimed to assess the effectiveness of eugenol-loaded chitosan nanoparticles (EC-NPs) in protecting against kidney damage caused by sepsis using the cecal ligation and puncture (CLP) model.

Methods

Thirty rats were divided into five groups: sham, sepsis, and septic rats treated with chitosan, eugenol, or EC-NPs.

Results

Administration of EC-NPs dramatically enhanced renal function, as evidenced by the reduced urea, creatinine, and uric acid concentrations. Moreover, EC-NPs caused an elevation in glutathione reductase (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in addition to decreasing the production of malondialdehyde (MDA) and nitric oxide (NO). EC-NPs administration reduced the DNA damage in septic rats and partially restored the aberrant structure of renal tissues in septic rats. Furthermore, the immunohistochemical examination showed a marked decrease in tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) expression.

Conclusion

In conclusion, EC-NPs attenuated renal injury in septic rats through their anti-oxidant and anti-inflammatory activities and protection of DNA.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031335223250122153155
2025-02-04
2025-12-15
Loading full text...

Full text loading...

References

  1. StruzekF.C. RoseN. DitscheidB. DraegerL. DrögeP. FreytagA. GoldhahnL. KannengießerL. KimmigA. KrämerM.C. RuhnkeT. ReinhartK. SchlattmannP. SchmidtK. StorchJ. UlbrichR. UllmannS. WedekindL. SwartE. Understanding health care pathways of patients with sepsis: Protocol of a mixed-methods analysis of health care utilization, experiences, and needs of patients with and after sepsis.BMC Health Serv. Res.20242414010.1186/s12913‑023‑10509‑438191398
    [Google Scholar]
  2. PidalG.J.M. FernándezM.Á. GuzmánM. LópezM.Á. EscarpaA. Analytical micro and nano technologies meet sepsis diagnosis.Trends Analyt. Chem.2024173July11761510.1016/j.trac.2024.117615
    [Google Scholar]
  3. CaballeroM.C.L. Del Rio-PertuzG. GomezH. Sepsis-associated acute kidney injury.Crit. Care Clin.202137227930110.1016/j.ccc.2020.11.01033752856
    [Google Scholar]
  4. ZarbockA. KoynerJ.L. GomezH. PickkersP. ForniL. NadimM.K. BellS. JoannidisM. KashaniK. PannuN. MeerschM. ReisT. RimmeléT. BagshawS.M. BellomoR. CantaluppiV. DeepA. RosaD.S. PerezF.X. SyedH.F. GillK.S.L. KellyY. MehtaR.L. MurrayP.T. OstermannM. ProwleJ. RicciZ. SeeE.J. SchneiderA. SorannoD.E. TolwaniA. VillaG. RoncoC. Sepsis-associated acute kidney injury—treatment standard.Nephrol. Dial. Transplant.2023391263510.1093/ndt/gfad14237401137
    [Google Scholar]
  5. MaK. LuoL. YangM. MengY. The suppression of sepsis-induced kidney injury via the knockout of T lymphocytes.Heliyon2024101e2331110.1016/j.heliyon.2023.e2331138283245
    [Google Scholar]
  6. GeC.L. ChenW. ZhangL.N. AiY.H. ZouY. PengQ.Y. Hippocampus-prefrontal cortex inputs modulate spatial learning and memory in a mouse model of sepsis induced by cecal ligation puncture.CNS Neurosci. Ther.202329139040110.1111/cns.1401336377471
    [Google Scholar]
  7. DrechslerS. OsuchowskiM. TraumatologyC. WalkerW.E. Sepsis.Methods Mol. Biol.20222321March10.1007/978‑1‑0716‑1488‑4
    [Google Scholar]
  8. MohamedA.S. SadekS.A. HassaneinS.S. SolimanA.M. Hepatoprotective effect of echinochrome pigment in septic rats.J. Surg. Res.201923431732410.1016/j.jss.2018.10.00430527491
    [Google Scholar]
  9. GauerR. ForbesD. BoyerN. Sepsis: Diagnosis and management.Am. Fam. Physician20201017409418[Online]. [. Available: Www.aafp.org/afp].32227831
    [Google Scholar]
  10. VelasqueM.J.S.G. BranchiniG. CatarinaA.V. BettoniL. FernandesR.S. SilvaD.A.F. DornelesG.P. Silvad.I.M. SantosM.A. SumienskiJ. PeresA. RoeheA.V. KohekM.B.F. PorawskiM. NunesF.B. Fish oil - omega-3 exerts protective effect in oxidative stress and liver dysfunctions resulting from experimental sepsis.J. Clin. Exp. Hepatol.2023131647410.1016/j.jceh.2022.07.00136647406
    [Google Scholar]
  11. NagarajuP.G. SA. RaoP.J. PriyadarshiniP. Assessment of acute and subacute toxicity, pharmacokinetics, and biodistribution of eugenol nanoparticles after oral exposure in Wistar rats.Nanotoxicology20241818710510.1080/17435390.2024.231448338349196
    [Google Scholar]
  12. HuangW.C. ShuL.H. KuoY.J. LaiK.S.L. HsiaC.W. YenT.L. HsiaC.H. JayakumarT. YangC.H. SheuJ.R. Eugenol suppresses platelet activation and mitigates pulmonary thromboembolism in humans and murine models.Int. J. Mol. Sci.2024254209810.3390/ijms2504209838396774
    [Google Scholar]
  13. ParkC.K. LiH.Y. YeonK.Y. JungS.J. ChoiS.Y. LeeS.J. LeeS. ParkK. KimJ.S. OhS.B. Eugenol inhibits sodium currents in dental afferent neurons.J. Dent. Res.2006851090090410.1177/15440591060850100516998128
    [Google Scholar]
  14. ZhouQ. LanW. XieJ. Phenolic acid-chitosan derivatives: An effective strategy to cope with food preservation problems.Int. J. Biol. Macromol.2024254Pt 312791710.1016/j.ijbiomac.2023.12791737939754
    [Google Scholar]
  15. ArabyE.A. JanatiW. UllahR. ErcisliS. ErrachidiF. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: Eco-friendly materials for advanced applications (a review).Front Chem.202411January132742610.3389/fchem.2023.132742638239928
    [Google Scholar]
  16. MoghaddamF.D. ZareE.N. HassanpourM. BertaniF.R. SerajianA. ZiaeiS.F. SantosP.A.C. NeisianyR.E. MakvandiP. IravaniS. XuY. Chitosan-based nanosystems for cancer diagnosis and therapy: Stimuli-responsive, immune response, and clinical studies.Carbohydr. Polym.2024330February12183910.1016/j.carbpol.2024.12183938368115
    [Google Scholar]
  17. ShahM.P. BharadvajaN. KumarL. Biogenic Nanomaterials for Environmental Sustainability: Principles.Practices, and OpportunitiesSpringeer2024
    [Google Scholar]
  18. MalikS. MuhammadK. WaheedY. Nanotechnology: A revolution in modern industry.Molecules202328266110.3390/molecules2802066136677717
    [Google Scholar]
  19. KurniaH.P. PuruhitaD.T. HaykalN.M. Eugenol nanoparticle encapsulated chitosan enhances cell cycle arrest in hela human cervical cancer cells.Syst. Rev. Pharm.2021121692699
    [Google Scholar]
  20. AnandT. AnbukkarasiM. ThomasP.A. GeraldineP. A comparison between plain eugenol and eugenol-loaded chitosan nanoparticles for prevention of in vitro selenite-induced cataractogenesis.J. Drug Deliv. Sci. Technol.202165June10269610.1016/j.jddst.2021.102696
    [Google Scholar]
  21. ChineduE. AromeD. AmehF. A new method for determining acute toxicity in animal models.Toxicol. Int.201320322422610.4103/0971‑6580.12167424403732
    [Google Scholar]
  22. LiuM.W. SuM.X. ZhangW. WangY.H. QinL.F. LiuX. TianM.L. QianC.Y. Effect of melilotus suaveolens extract on pulmonary microvascular permeability by downregulating vascular endothelial growth factor expression in rats with sepsis.Mol. Med. Rep.20151153308331610.3892/mmr.2015.314625571852
    [Google Scholar]
  23. ZhiX. HanB. SuiX. HuR. LiuW. Effects of low-molecular-weight-chitosan on the adenine-induced chronic renal failure rats in vitro and in vivo.J. Ocean Univ. China20151419710410.1007/s11802‑015‑2320‑y
    [Google Scholar]
  24. MohamedA.S. HosneyM. BassionyH. HassaneinS.S. SolimanA.M. FahmyS.R. GaafarK. Sodium pentobarbital dosages for exsanguination affect biochemical, molecular and histological measurements in rats.Sci. Rep.202010137810.1038/s41598‑019‑57252‑731942001
    [Google Scholar]
  25. LongoB. SommerfeldE.P. Santosd.A.C. Silvad.R.C.M.V.A.F. SomensiL.B. MarianoL.N.B. BoeingT. Faloni de AndradeS. Souzad.P. Silvad.L.M. Dual role of eugenol on chronic gastric ulcer in rats: Low-dose healing efficacy and the worsening gastric lesion in high doses.Chem. Biol. Interact.2021333November10933510.1016/j.cbi.2020.10933533245926
    [Google Scholar]
  26. KouraR.A.A. MohamedH.R.H. AhmedK.A. BaiomyA.A.A. BahaaeldineM.A. MohamedA.S. The therapeutic role of chitosan-saponin-bentonite nanocomposite on acute kidney injury induced by chromium in male wistar rats.Biointerface Res. Appl. Chem.202313612310.33263/BRIAC136.595
    [Google Scholar]
  27. TietzN. W. Textbook of Clinical ChemistryW.B.Saunders CompanyPhiladelphia.198622
    [Google Scholar]
  28. TietzN. W. Clinical guide to laboratory tests.2nd EditionW.B. Saunders Co.Philadelphia1990566
    [Google Scholar]
  29. BeutlerE. DuronO. KellyB.M. Improved method for the determination of blood glutathione.J. Lab. Clin. Med.19636188288813967893
    [Google Scholar]
  30. NishikimiM. RaoA.N. YagiK. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen.Biochem. Biophys. Res. Commun.197246284985410.1016/S0006‑291X(72)80218‑34400444
    [Google Scholar]
  31. HabigW.H. PabstM.J. JakobyW.B. Glutathione S-Transferases.J. Biol. Chem.1974249227130713910.1016/S0021‑9258(19)42083‑84436300
    [Google Scholar]
  32. PagliaD.E. ValentineW.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase.J. Lab. Clin. Med.19677011581696066618
    [Google Scholar]
  33. AebiH. Catalase in vitro.Methods Enzymol.198410512112610.1016/S0076‑6879(84)05016‑36727660
    [Google Scholar]
  34. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.197995235135810.1016/0003‑2697(79)90738‑336810
    [Google Scholar]
  35. MontgomeryH.A.C. DymockJ.F. The rapid determination of nitrate in fresh and saline waters.Analyst (Lond.)196287103437437810.1039/an9628700374
    [Google Scholar]
  36. loannouY.A. ChenF.W. Quantitation of DNA fragmentation in apoptosis.Nucleic Acids Res.199624599299310.1093/nar/24.5.9928600475
    [Google Scholar]
  37. ShawousA.A. SolimanA. FahmyS. MohamedA. Therapeutic efficacy of anodonta cygnea and crayfish procambarus clarkii hemolymph extracts on sepsis-induced acute liver injury in neonate rats.Int. J. Pharmacol.202319218519610.3923/ijp.2023.185.196
    [Google Scholar]
  38. RefaieM.M.M. HussienyE.M. The role of interleukin-1b and its antagonist (diacerein) in estradiol benzoate-induced endometrial hyperplasia and atypia in female rats.Fundam. Clin. Pharmacol.201731443844610.1111/fcp.1228528299811
    [Google Scholar]
  39. WangL. WangX. Diagnostic value of multi-parameter ultrasound evaluation in sepsis complicated by acute kidney injuryRen. Fail.2024461231386110.1080/0886022X.2024.2313861
    [Google Scholar]
  40. Xiam.Y. qianY. GuanJ. TAK-242 improves sepsis-associated acute kidney injury in rats by inhibiting the TLR4/NF-κB signaling pathway.Ren. Fail.2024461231317610.1080/0886022X.2024.2313176
    [Google Scholar]
  41. ChenG.D. ZhangJ.L. ChenY.T. ZhangJ.X. WangT. ZengQ.Y. Insulin alleviates mitochondrial oxidative stress involving upregulation of superoxide dismutase 2 and uncoupling protein 2 in septic acute kidney injury.Exp. Ther. Med.20181543967397510.3892/etm.2018.589029563990
    [Google Scholar]
  42. IbrahimY.F. FadlR.R. IbrahimS.A.E. GayyedM.F. BayoumiA.M.A. RefaieM.M.M. Protective effect of febuxostat in sepsis-induced liver and kidney injuries after cecal ligation and puncture with the impact of xanthine oxidase, interleukin 1 β, and c-Jun N-terminal kinases.Hum. Exp. Toxicol.202039790691910.1177/096032712090595732054342
    [Google Scholar]
  43. KadirA. SherS. SiddiquiR.A. MirzaT. Nephroprotective role of eugenol against cisplatin-induced acute kidney injury in mice.Pak. J. Pharm. Sci.20203331281128710.36721/PJPS.2020.33.3.SUP.1281‑1287.1
    [Google Scholar]
  44. WuJ. XuY. GengZ. ZhouJ. XiongQ. XuZ. LiH. HanY. Chitosan oligosaccharide alleviates renal fibrosis through reducing oxidative stress damage and regulating TGF-β1/Smads pathway.Sci. Rep.20221211916010.1038/s41598‑022‑20719‑136357407
    [Google Scholar]
  45. WangZ.F. WangM.Y. YuD.H. ZhaoY. XuH.M. ZhongS. SunW.Y. HeY.F. NiuJ.Q. GaoP.J. LiH.J. Therapeutic effect of chitosan on CCl4‑induced hepatic fibrosis in rats.Mol. Med. Rep.20181833211321810.3892/mmr.2018.934330085342
    [Google Scholar]
  46. OwC.P.C. MarinoT.A. BetrieA.H. EvansR.G. MayC.N. LankadevaY.R. Targeting oxidative stress in septic acute kidney injury: From theory to practice.J. Clin. Med.20211017379810.3390/jcm1017379834501245
    [Google Scholar]
  47. JoffreJ. HellmanJ. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation.Antioxid. Redox Signal.202135151291130710.1089/ars.2021.002733637016
    [Google Scholar]
  48. YangY. XuJ. TuJ. SunY. ZhangC. QiuZ. XiaoH. Polygonum cuspidatum Sieb. et Zucc. Extracts improve sepsis-associated acute kidney injury by inhibiting NF-κB-mediated inflammation and pyroptosis.J. Ethnopharmacol.2024319Pt 111710110.1016/j.jep.2023.11710137657770
    [Google Scholar]
  49. IghodaroO.M. AkinloyeO.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid.Alex. J. Med.201854428729310.1016/j.ajme.2017.09.001
    [Google Scholar]
  50. GinterE. SimkoV. PanakovaV. Antioxidants in health and disease.Bratisl. Med. J.20141151060360610.4149/BLL_2014_11625573724
    [Google Scholar]
  51. MantzarlisK. TsolakiV. ZakynthinosE. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies.Oxid. Med. Cell. Longev.201720171598520910.1155/2017/598520928904739
    [Google Scholar]
  52. CelepA.N. GedikliS. Protective effect of silymarin on liver in experimental in the sepsis model of rats.Acta Histochem. Cytochem.202356191910.1267/ahc.22‑0005936890848
    [Google Scholar]
  53. FathyM. latifA.R. AbdelgwadY.M. OthmanO.A. RazikA.A.R.H. DandekarT. OthmanE.M. Nephroprotective potential of eugenol in a rat experimental model of chronic kidney injury; targeting NOX, TGF-β, and Akt signaling.Life Sci.2022308September12095710.1016/j.lfs.2022.12095736113730
    [Google Scholar]
  54. SlameňováD. HorváthováE. WsólováL. ŠramkováM. NavarováJ. Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20096771-2465210.1016/j.mrgentox.2009.05.01619501671
    [Google Scholar]
  55. TaoW. SunW. LiuL. WangG. XiaoZ. PeiX. WangM. Chitosan oligosaccharide attenuates nonalcoholic fatty liver disease induced by high fat diet through reducing lipid accumulation, inflammation and oxidative stress in C57BL/6 mice.Mar. Drugs2019171164510.3390/md1711064531744059
    [Google Scholar]
  56. ErayG. EbruS. Investigation of Antimicrobial Effect of Fluoxetine in Experimental Rat Sepsis Model Investigation of Antimicrobial Effect of Fluoxetine in Experimental Rat Sepsis Model.Authorea Preprints.2022121
    [Google Scholar]
  57. PezoneA. OlivieriF. NapoliM.V. ProcopioA. AvvedimentoE.V. GabrielliA. Inflammation and DNA damage: Cause, effect or both.Nat. Rev. Rheumatol.202319420021110.1038/s41584‑022‑00905‑136750681
    [Google Scholar]
  58. ZhangL.L. ZhangL.F. XuJ.G. HuQ.P. Comparison study on antioxidant, DNA damage protective and antibacterial activities of eugenol and isoeugenol against several foodborne pathogens.Food Nutr. Res.2017611135335610.1080/16546628.2017.135335628804441
    [Google Scholar]
  59. SalehH. ShorbagyE.H.M. Chitosan protects liver against ischemia-reperfusion injury via regulating Bcl-2/Bax, TNF-α and TGF-β expression.Int. J. Biol. Macromol.20201641565157410.1016/j.ijbiomac.2020.07.21232735924
    [Google Scholar]
  60. QutbS.A. SolimanA.M. FahmyS.R. MohamedA.S. Efficacy of eugenol loaded chitosan nanoparticles on sepsis induced liver injury in rats.Rec. Adv. Inflamm. Allergy Drug Discov.202411710.2174/0127722708334976241004041438
    [Google Scholar]
  61. SunJ. WeiS. ZhangY. LiJ. Protective effects of astragalus polysaccharide on sepsis-induced acute kidney injury.Anal. Cell. Pathol.2021202111310.1155/2021/717825333575163
    [Google Scholar]
  62. ClementiE. BrownG.C. FeelischM. MoncadaS. Persistent inhibition of cell respiration by nitric oxide: Crucial role of S -nitrosylation of mitochondrial complex I and protective action of glutathione.Proc. Natl. Acad. Sci. USA199895137631763610.1073/pnas.95.13.76319636201
    [Google Scholar]
  63. SenousyS.R. AhmedA.S.F. AbdelhafeezD.A. KhalifaM.M.A. AbourehabM.A.S. DalyE.M. Alpha-chymotrypsin protects against acute lung, kidney, and liver injuries and increases survival in clp-induced sepsis in rats through inhibition of tlr4/nf-κb pathway.Drug Des. Devel. Ther.2022163023303910.2147/DDDT.S37046036105322
    [Google Scholar]
  64. PoderosoJ.J. HelfenbergerK. PoderosoC. The effect of nitric oxide on mitochondrial respirationNitric. Oxide.201988617210.1016/j.niox.2019.04.005
    [Google Scholar]
  65. BarbozaJ.N. FilhoS.M.B.d.C. SilvaR.O. MedeirosJ.V.R. Sousad.D.P. An overview on the anti-inflammatory potential and antioxidant profile of eugenol.Oxid. Med. Cell. Longev.201820181395726210.1155/2018/395726230425782
    [Google Scholar]
  66. BilginaylarK. AykacA. SayinerS. ÖzkayalarH. ŞehirliA.Ö. Evaluation of the antiapoptotic and anti-inflammatory properties of chitosan in methotrexate-induced oral mucositis in rats.Mol. Biol. Rep.20224943237324510.1007/s11033‑022‑07158‑x35064410
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031335223250122153155
Loading
/content/journals/ddl/10.2174/0122103031335223250122153155
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cecal ligation and puncture; DNA damage; Eugenol; oxidative stress; renal injury; sepsis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test