Skip to content
2000
image of Silk Sericin: A Promising Sustainable Natural Biopolymer for Pharmaceutical and Biomedical Applications

Abstract

Silk Sericin, a natural biopolymer, has gained increasing attention for its diverse applications in pharmaceuticals and biomedicine. This is an organic biomaterial derived from the Silkworm cocoon (silkworm ), by the degumming process, which exhibits remarkable biocompatibility, biodegradability, making it a promising candidate for various therapeutic and regenerative approaches. Sericinhas an excellent property that makes it a potential candidate for wound healing, skin care, and drug delivery applications. This hydrophilic protein is recognized as an anti-inflammatory, antioxidant, and anti-cancer agent. The high molecular weight and granular protein composition of sericin give it a sticky consistency and gelatin-like quality. The presence of many hydroxyl groups absorbs significant water from the skin, providing a natural moisturizing effect. Silk sericin presents a sustainable alternative to synthetic polymers, boasting exceptional characteristics, including minimal immune response, excellent moisture retention, and versatility in forming various structures such as films, fibers, and hydrogels. The sustained release of sericin from wound dressings can also be efficacious in providing a prolonged healing effect during the treatment of pressure ulcers. This can contribute to a more favourable environment for faster and effective wound healing. This review aims to provide a comprehensive overview of silksericin, highlighting its unique characteristics, extraction methods, and recent advancements in its utilization for pharmaceutical and biomedical purposes, along with emphasizing the significant potential of this protein as a versatile biopolymer for advanced healthcare solutions.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031349747250411165604
2025-04-21
2025-09-14
Loading full text...

Full text loading...

References

  1. Silva A.S. Costa E.C. Reis S. Spencer C. Calhelha R.C. Miguel S.P. Ribeiro M.P. Barros L. Vaz J.A. Coutinho P. Silk sericin: A promising sustainable biomaterial for biomedical and pharmaceutical applications. Polymers 2022 14 22 4931 10.3390/polym14224931 36433058
    [Google Scholar]
  2. Sahu N. Pal S. Sapru S. Kundu J. Talukdar S. Singh N.I. Yao J. Kundu S.C. Non-mulberry and mulberry silk protein sericins as potential media supplement for animal cell culture. BioMed Res. Int. 2016 2016 1 1 13 10.1155/2016/7461041 27517047
    [Google Scholar]
  3. Seo S.J. Das G. Shin H.S. Patra J.K. Silk sericin protein materials: Characteristics and applications in food-sector industries. Int. J. Mol. Sci. 2023 24 5 4951 10.3390/ijms24054951 36902381
    [Google Scholar]
  4. Jena K. Pandey J.P. Kumari R. Sinha A.K. Gupta V.P. Singh G.P. Tasar silk fiber waste sericin: New source for anti-elastase, anti-tyrosinase and anti-oxidant compounds. Int. J. Biol. Macromol. 2018 114 1102 1108 10.1016/j.ijbiomac.2018.03.058 29550421
    [Google Scholar]
  5. Chouhan D. Mandal B.B. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater. 2020 103 24 51 10.1016/j.actbio.2019.11.050 31805409
    [Google Scholar]
  6. Liu J. Shi L. Deng Y. Zou M. Cai B. Song Y. Wang Z. Wang L. Silk sericin-based materials for biomedical applications. Biomaterials 2022 287 121638 10.1016/j.biomaterials.2022.121638 35921729
    [Google Scholar]
  7. Kundu S.C. Dash B.C. Dash R. Kaplan D.L. Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Prog. Polym. Sci. 2008 33 10 998 1012 10.1016/j.progpolymsci.2008.08.002
    [Google Scholar]
  8. Kunz R.I. Brancalhão R.M.C. Ribeiro L.F.C. Natali M.R.M. Silkworm sericin: Properties and biomedical applications. BioMed Res. Int. 2016 2016 1 1 19 10.1155/2016/8175701 27965981
    [Google Scholar]
  9. Qi Y. Wang H. Wei K. Yang Y. Zheng R.Y. Kim I. Zhang K.Q. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int. J. Mol. Sci. 2017 18 3 237 10.3390/ijms18030237 28273799
    [Google Scholar]
  10. Fatahian R. Fatahian A. Fatahian E. Fatahian H. A critical review on application of silk sericin and its mechanical properties in various industries. J. Res. Appl. Mech. Eng. 2021 9 2
    [Google Scholar]
  11. Fatahian R. Hosseini E. Fatahian A. Fatahian E. Fatahian H. A review on potential applications of sericin, and its biological, mechanical, and thermal stability characteristics. Int. J. Eng. Technol. Sci. 2022 9 1 1 9 10.15282/ijets.9.1.2022.1001
    [Google Scholar]
  12. Saha J. Mondal M.I. Sheikh M.K. Habib M.A. Extraction, structural and functional properties of silk sericin biopolymer from Bombyx mori silk cocoon waste. J. Text. Sci. Eng. 2019 9 2 10.4172/2165‑8064.1000390
    [Google Scholar]
  13. Wang R. Zhu Y. Shi Z. Jiang W. Liu X. Ni Q.Q. Degumming of raw silk via steam treatment. J. Clean. Prod. 2018 203 492 497 10.1016/j.jclepro.2018.08.286
    [Google Scholar]
  14. Rodríguez-Seoane P. del Pozo C. Puy N. Bartrolí J. Domínguez H. Hydrothermal extraction of valuable components from leaves and petioles from Paulownia elongata x fortunei. Waste Biomass Valoriz. 2021 12 8 4525 4535 10.1007/s12649‑020‑01298‑6
    [Google Scholar]
  15. Sarangi A. Baral S. Thatoi H.N. Extraction and biological application of silk sericin: An overview. Asian J. Biol. 2023 17 2 57 72 10.9734/ajob/2023/v17i2321
    [Google Scholar]
  16. Dou H. Zuo B. Effect of sodium carbonate concentrations on the formation and mechanism of regenerated silk fibroin nanofibers by electrospinning. J. Nanomater. 2014 2014 1 646021 10.1155/2014/646021
    [Google Scholar]
  17. Teramoto H. Kakazu A. Yamauchi K. Asakura T. Role of hydroxyl side chains in Bombyx mori silk sericin in stabilizing its solid structure. Macromolecules 2007 40 5 1562 1569 10.1021/ma062604e
    [Google Scholar]
  18. Biganeh H. Kabiri M. Zeynalpourfattahi Y. Costa Brancalhão R.M. Karimi M. Shams Ardekani M.R. Rahimi R. Bombyx mori cocoon as a promising pharmacological agent: A review of ethnopharmacology, chemistry, and biological activities. Heliyon 2022 8 9 e10496 10.1016/j.heliyon.2022.e10496 36105465
    [Google Scholar]
  19. Apea-Bah F.B. Head D. Scales R. Bazylo R. Beta T. Hydrothermal extraction, a promising method for concentrating phenolic antioxidants from red osier dogwood (Cornus stolonifer) leaves and stems. Heliyon 2020 6 10 e05158 10.1016/j.heliyon.2020.e05158 33083615
    [Google Scholar]
  20. Wang W.H. Lin W.S. Shih C.H. Chen C.Y. Kuo S.H. Li W.L. Lin Y.S. Functionality of silk cocoon (Bombyx mori L.) sericin extracts obtained through high-temperature hydrothermal method. Materials 2021 14 18 5314 10.3390/ma14185314 34576538
    [Google Scholar]
  21. Mondal M Trivedy K The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., A review. Caspian J Environ Sci 2007 5 2 63 76
    [Google Scholar]
  22. Cacopardo L. Biomaterials and biocompatibility. human Orthopaedic Biomechanics Academic Press. 2022 341 359 10.1016/B978‑0‑12‑824481‑4.00038‑X
    [Google Scholar]
  23. Lefèvre T. Rousseau M.E. Pézolet M. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys. J. 2007 92 8 2885 2895 10.1529/biophysj.106.100339 17277183
    [Google Scholar]
  24. Chlapanidas T. Faragò S. Lucconi G. Perteghella S. Galuzzi M. Mantelli M. Avanzini M.A. Tosca M.C. Marazzi M. Vigo D. Torre M.L. Faustini M. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities. Int. J. Biol. Macromol. 2013 58 47 56 10.1016/j.ijbiomac.2013.03.054 23541552
    [Google Scholar]
  25. Aramwit P. Kanokpanont S. De-Eknamkul W. Srichana T. Monitoring of inflammatory mediators induced by silk sericin. J. Biosci. Bioeng. 2009 107 5 556 561 10.1016/j.jbiosc.2008.12.012 19393558
    [Google Scholar]
  26. Holland C. Numata K. Rnjak-Kovacina J. Seib F.P. The biomedical use of silk: Past, present, future. Adv. Healthc. Mater. 2019 8 1 1800465 10.1002/adhm.201800465 30238637
    [Google Scholar]
  27. Aramwit P Towiwat P Srichana T Anti-inflammatory potential of silk sericin. Nat Prod Commun 2013 8 4 1934578X1300800424 10.1177/1934578X1300800424
    [Google Scholar]
  28. Wang W. Pan Y. Gong K. Zhou Q. Zhang T. Li Q. A comparative study of ultrasonic degumming of silk sericin using citric acid, sodium carbonate and papain. Color. Technol. 2019 135 3 195 201 10.1111/cote.12392
    [Google Scholar]
  29. Wang X. Zhang Y. Kong H. Cheng J. Zhang M. Sun Z. Wang S. Liu J. Qu H. Zhao Y. Novel mulberry silkworm cocoon-derived carbon dots and their anti-inflammatory properties. Artif. Cells Nanomed. Biotechnol. 2020 48 1 68 76 10.1080/21691401.2019.1699810 31852285
    [Google Scholar]
  30. Kumar J.P. Mandal B.B. Antioxidant potential of mulberry and non-mulberry silk sericin and its implications in biomedicine. Free Radic. Biol. Med. 2017 108 803 818 10.1016/j.freeradbiomed.2017.05.002 28476503
    [Google Scholar]
  31. Yousefi M. Dadashpour M. Hejazi M. Hasanzadeh M. Behnam B. de la Guardia M. Shadjou N. Mokhtarzadeh A. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater. Sci. Eng. C 2017 74 568 581 10.1016/j.msec.2016.12.125 28254332
    [Google Scholar]
  32. Zhao X. Antibacterial bioactive materials. Bioactive Materials in Medicine Woodhead Publishing 2011 97 123 10.1533/9780857092939.2.97
    [Google Scholar]
  33. Yan C. Liang J. Fang H. Meng X. Chen J. Zhong Z. Liu Q. Hu H. Zhang X. Fabrication and evaluation of silk sericin-derived hydrogel for the release of the model drug berberine. Gels 2021 7 1 23 10.3390/gels7010023 33672687
    [Google Scholar]
  34. Ahamad S.I. Kumar Vootla S. Extraction and evaluation of antimicrobial potential of Antheraea mylitta silk sericin. Int. J. Recent Sci. Res. 2018 9 23019 23022 10.24327/ijrsr.2018.0901.1382
    [Google Scholar]
  35. Jassim K.N. Al-Saree O.J. Study of the antimicrobial activity of silk sericin from silkworm bombyx mori. Iraqi J. Med. Sci. 2010 23 130 133
    [Google Scholar]
  36. Fan J.I.N-B.O. Wu L.I-P.I.N.G. Chen L.I-S.H.U.I. Mao X.U.E-Y.I.N.G. Ren F.A-Z.H.E.N.G. Antioxidant activities of silk sericin from silkworm Bombyx mori. J. Food Biochem. 2009 33 1 74 88 10.1111/j.1745‑4514.2008.00204.x
    [Google Scholar]
  37. Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Bioscience, biotechnology, and biochemistry. 1998 62 1 145-7
    [Google Scholar]
  38. G C C. M S K. A C S. Sericin, a versatile protein from silkworm - Biomedical applications. Shanlax Int. J. Arts Sci. Humanit. 2021 8 S1-Feb 6 11 10.34293/sijash.v8iS1‑Feb.3924
    [Google Scholar]
  39. Guo H. Kouzuma Y. Yonekura M. Structures and properties of antioxidative peptides derived from royal jelly protein. Food Chem. 2009 113 1 238 245 10.1016/j.foodchem.2008.06.081
    [Google Scholar]
  40. Liu J. Li Q. Zhang J. Huang L. Qi C. Xu L. Liu X. Wang G. Wang L. Wang Z. Safe and effective reversal of cancer multidrug resistance using sericin-coated mesoporous silica nanoparticles for lysosome-targeting delivery in mice. Small 2017 13 9 1602567 10.1002/smll.201602567
    [Google Scholar]
  41. Aramwit P. Damrongsakkul S. Kanokpanont S. Srichana T. Properties and antityrosinase activity of sericin from various extraction methods. Biotechnol. Appl. Biochem. 2010 55 2 91 98 10.1042/BA20090186 20055756
    [Google Scholar]
  42. Niu L. Yang S. Zhao X. Liu X. Si L. Wei M. Liu L. Cheng L. Qiao Y. Chen Z. Sericin inhibits MDA‑MB‑468 cell proliferation via the PI3K/Akt pathway in triple‑negative breast cancer. Mol. Med. Rep. 2020 23 2 140 10.3892/mmr.2020.11779 33313947
    [Google Scholar]
  43. Elahi M. Ali S. Tahir H.M. Mushtaq R. Bhatti M.F. Sericin and fibroin nanoparticles—natural product for cancer therapy: A comprehensive review. Int. J. Polym. Mater. 2021 70 4 256 269 10.1080/00914037.2019.1706515
    [Google Scholar]
  44. Zhang Y.Q. Tao M.L. Shen W.D. Zhou Y.Z. Ding Y. Ma Y. Zhou W.L. Immobilization of l-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials 2004 25 17 3751 3759 10.1016/j.biomaterials.2003.10.019 15020151
    [Google Scholar]
  45. Zhaorigetu S. Yanaka N. Sasaki M. Watanabe H. Kato N. Inhibitory effects of silk protein, sericin on UVB-induced acute damage and tumor promotion by reducing oxidative stress in the skin of hairless mouse. J. Photochem. Photobiol. B 2003 71 1-3 11 17 10.1016/S1011‑1344(03)00092‑7 14705634
    [Google Scholar]
  46. Kumar J.P. Mandal B.B. Silk sericin induced pro-oxidative stress leads to apoptosis in human cancer cells. Food Chem. Toxicol. 2019 123 275 287 10.1016/j.fct.2018.10.063 30391273
    [Google Scholar]
  47. Suzuki S. Rayner C.L. Chirila T.V. Silk fibroin/sericin native blends as potential biomaterial templates. Adv. Tissue Eng. Regen. Med. Open Access. 2019 5 1 11 19 10.15406/atroa.2019.05.00093
    [Google Scholar]
  48. Hu D. Li T. Liang W. Wang Y. Feng M. Sun J. Silk sericin as building blocks of bioactive materials for advanced therapeutics. J. Control. Release 2023 353 303 316 10.1016/j.jconrel.2022.11.019 36402235
    [Google Scholar]
  49. Ahsan F. Ansari T. Usmani S. Bagga P. An insight on silk protein sericin: from processing to biomedical application. Drug Res. 2018 68 6 317 327 10.1055/s‑0043‑121464 29132177
    [Google Scholar]
  50. Tao G. Cai R. Wang Y. Zuo H. He H. Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing. Mater. Sci. Eng. C 2021 119 111597 10.1016/j.msec.2020.111597 33321641
    [Google Scholar]
  51. Qi C. Xu L. Deng Y. Wang G. Wang Z. Wang L. Retraction: Sericin hydrogels promote skin wound healing with effective regeneration of hair follicles and sebaceous glands after complete loss of epidermis and dermis. Biomater. Sci. 2023 11 3 1077 1078 10.1039/D3BM90005C 36629153
    [Google Scholar]
  52. Tuancharoensri N. Sonjan S. Promkrainit S. Daengmankhong J. Phimnuan P. Mahasaranon S. Jongjitwimol J. Charoensit P. Ross G.M. Viennet C. Viyoch J. Ross S. Porous poly(2-hydroxyethyl methacrylate) hydrogel scaffolds for tissue engineering: Influence of crosslinking systems and silk sericin concentration on scaffold properties. Polymers 2023 15 20 4052 10.3390/polym15204052 37896296
    [Google Scholar]
  53. Qi C. Deng Y. Xu L. Yang C. Zhu Y. Wang G. Wang Z. Wang L. A sericin/ graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone. Theranostics 2020 10 2 741 756 10.7150/thno.39502 31903148
    [Google Scholar]
  54. Teramoto H. Kameda T. Tamada Y. Preparation of gel film from Bombyx mori silk sericin and its characterization as a wound dressing. Biosci. Biotechnol. Biochem. 2008 72 12 3189 3196 10.1271/bbb.80375 19060395
    [Google Scholar]
  55. Nishida A Yamada M Kanazawa T Takashima Y Ouchi K Okada H Sustained-release of protein from biodegradable sericin film, gel and sponge. Int J Pharm 2011 407 1-2 44 52 10.1016/j.ijpharm.2011.01.006
    [Google Scholar]
  56. Wang J. Li X. Song Y. Su Q. Xiaohalati X. Yang W. Xu L. Cai B. Wang G. Wang Z. Wang L. Injectable silk sericin scaffolds with programmable shape-memory property and neuro-differentiation-promoting activity for individualized brain repair of severe ischemic stroke. Bioact. Mater. 2021 6 7 1988 1999 10.1016/j.bioactmat.2020.12.017 33474513
    [Google Scholar]
  57. Zhang L. Yang W. Tao K. Song Y. Xie H. Wang J. Li X. Shuai X. Gao J. Chang P. Wang G. Wang Z. Wang L. Sustained local release of NGF from a chitosan–sericin composite scaffold for treating chronic nerve compression. ACS Appl. Mater. Interfaces 2017 9 4 3432 3444 10.1021/acsami.6b14691 28032743
    [Google Scholar]
  58. Dinescu S. Gălăţeanu B. Albu M. Lungu A. Radu E. Hermenean A. Costache M. Biocompatibility assessment of novel collagen-sericin scaffolds improved with hyaluronic Acid and chondroitin sulfate for cartilage regeneration. BioMed Res. Int. 2013 2013 1 1 11 10.1155/2013/598056 24308001
    [Google Scholar]
  59. Jiayao Z. Guanshan Z. Jinchi Z. Yuyin C. Yongqiang Z. Anthera ea pernyi silk sericin mediating biomimetic nucleation and growth of hydroxylapatite crystals promoting bone matrix formation. Microsc. Res. Tech. 2017 80 3 305 311 10.1002/jemt.22793 27859871
    [Google Scholar]
  60. Lamboni L. Xu C. Clasohm J. Yang J. Saumer M. Schäfer K.H. Yang G. Silk sericin-enhanced microstructured bacterial cellulose as tissue engineering scaffold towards prospective gut repair. Mater. Sci. Eng. C 2019 102 502 510 10.1016/j.msec.2019.04.043 31147021
    [Google Scholar]
  61. Munir F. Tahir H.M. Ali S. Ali A. Tehreem A. Zaidi S.D.E.S. Adnan M. Ijaz F. Characterization and evaluation of silk sericin-based hydrogel: A promising biomaterial for efficient healing of acute wounds. ACS Omega 2023 8 35 32090 32098 10.1021/acsomega.3c04178 37692226
    [Google Scholar]
  62. Yang M. Wang Y. Tao G. Cai R. Wang P. Liu L. Ai L. Zuo H. Zhao P. Umar A. Mao C. He H. Fabrication of sericin/agrose gel loaded lysozyme and its potential in wound dressing application. Nanomaterials 2018 8 4 235 10.3390/nano8040235 29652825
    [Google Scholar]
  63. Kundu B. Kundu S.C. Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials 2012 33 30 7456 7467 10.1016/j.biomaterials.2012.06.091 22819495
    [Google Scholar]
  64. Zhang Y. Liu J. Huang L. Wang Z. Wang L. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery. Sci. Rep. 2015 5 1 12374 10.1038/srep12374 26205586
    [Google Scholar]
  65. Kim S. Jeon G.Y. Kim S.E. Choe S.H. Kim S.J. Seo J.S. Kang T.W. Song J.E. Khang G. Injectable hydrogel based on gellan gum/silk sericin for application as a retinal pigment epithelium cell carrier. ACS Omega 2022 7 45 41331 41340 10.1021/acsomega.2c05113 36406493
    [Google Scholar]
  66. Xie H. Yang W. Chen J. Zhang J. Lu X. Zhao X. Huang K. Li H. Chang P. Wang Z. Wang L. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve. Adv. Healthc. Mater. 2015 4 15 2195 2205 10.1002/adhm.201500355 26332703
    [Google Scholar]
  67. Gao Y.E. Hou S. Cheng J. Li X. Wu Y. Tang Y. Li Y. Xue P. Kang Y. Xu Z. Guo M. Silk sericin-based nanoparticle as the photosensitizer chlorin e6 carrier for enhanced cancer photodynamic therapy. ACS Sustain. Chem.& Eng. 2021 9 8 3213 3222 10.1021/acssuschemeng.0c08326
    [Google Scholar]
  68. Liu J. Deng Y. Fu D. Yuan Y. Li Q. Shi L. Wang G. Wang Z. Wang L. Sericin microparticles enveloped with metal-organic networks as a pulmonary targeting delivery system for intra-tracheally treating metastatic lung cancer. Bioact. Mater. 2021 6 1 273 284 10.1016/j.bioactmat.2020.08.006 32913934
    [Google Scholar]
  69. Liu J. Qi C. Tao K. Zhang J. Zhang J. Xu L. Jiang X. Zhang Y. Huang L. Li Q. Xie H. Gao J. Shuai X. Wang G. Wang Z. Wang L. Sericin/dextran injectable hydrogel as an optically trackable drug delivery system for malignant melanoma treatment. ACS Appl. Mater. Interfaces 2016 8 10 6411 6422 10.1021/acsami.6b00959 26900631
    [Google Scholar]
  70. Ranjan A Singh D. The versatility of natural excipient zein utilized in nanocarriers for improving biopharmaceutical attributes. Curr Nanomed 2024 Mar 1 14 1 1 3 10.2174/2468187313666230911122538
    [Google Scholar]
  71. Suktham K. Koobkokkruad T. Wutikhun T. Surassmo S. Efficiency of resveratrol-loaded sericin nanoparticles: Promising bionanocarriers for drug delivery. Int. J. Pharm. 2018 537 1-2 48 56 10.1016/j.ijpharm.2017.12.015 29229512
    [Google Scholar]
  72. Guo W. Deng L. Yu J. Chen Z. Woo Y. Liu H. Li T. Lin T. Chen H. Zhao M. Zhang L. Li G. Hu Y. Sericin nanomicelles with enhanced cellular uptake and pH-triggered release of doxorubicin reverse cancer drug resistance. Drug Deliv. 2018 25 1 1103 1116 10.1080/10717544.2018.1469686 29742945
    [Google Scholar]
  73. Yalcin E. Kara G. Celik E. Pinarli F.A. Saylam G. Sucularli C. Ozturk S. Yilmaz E. Bayir O. Korkmaz M.H. Denkbas E.B. Preparation and characterization of novel albumin-sericin nanoparticles as siRNA delivery vehicle for laryngeal cancer treatment. Prep. Biochem. Biotechnol. 2019 49 7 659 670 10.1080/10826068.2019.1599395 31066619
    [Google Scholar]
  74. Akbal Ö. Sericin-montmorillonite composite nanoparticles as drug delivery system in human liver cancer: Development, drug release, cellular uptake and cytotoxicity. Süleyman Demirel Univ. Fen Bilim. Enst. Derg. 2020 24 1 169 177 10.19113/sdufenbed.660323
    [Google Scholar]
  75. Zhang L. Yang W. Xie H. Wang H. Wang J. Su Q. Li X. Song Y. Wang G. Wang L. Wang Z. Sericin nerve guidance conduit delivering therapeutically repurposed clobetasol for functional and structural regeneration of transected peripheral nerves. ACS Biomater. Sci. Eng. 2019 5 3 1426 1439 10.1021/acsbiomaterials.8b01297 33405618
    [Google Scholar]
  76. Rao J. Cheng Y. Liu Y. Ye Z. Zhan B. Quan D. Xu Y. A multi-walled silk fibroin/silk sericin nerve conduit coated with poly(lactic-co-glycolic acid) sheath for peripheral nerve regeneration. Mater. Sci. Eng. C 2017 73 319 332 10.1016/j.msec.2016.12.085 28183615
    [Google Scholar]
  77. Wei Z.Z. Weng Y.J. Zhang Y.Q. Investigation of the repairing effect and mechanism of oral degraded sericin on liver injury in type II diabetic rats. Biomolecules 2022 12 3 444 10.3390/biom12030444 35327635
    [Google Scholar]
  78. Wang H.D. Zhong Z.H. Weng Y.J. Wei Z.Z. Zhang Y.Q. Degraded sericin significantly regulates blood glucose levels and improves impaired liver function in T2D rats by reducing oxidative stress. Biomolecules 2021 11 8 1255 10.3390/biom11081255 34439921
    [Google Scholar]
  79. Chirila T.V. Suzuki S. Bray L.J. Barnett N.L. Harkin D.G. Evaluation of silk sericin as a biomaterial: in vitro growth of human corneal limbal epithelial cells on Bombyx mori sericin membranes. Prog. Biomater. 2013 2 1 14 10.1186/2194‑0517‑2‑14 29470674
    [Google Scholar]
  80. Padamwar M.N. Pawar A.P. Daithankar A.V. Mahadik K.R. Silk sericin as a moisturizer: An in vivo study. J. Cosmet. Dermatol. 2005 4 4 250 257 10.1111/j.1473‑2165.2005.00200.x 17168872
    [Google Scholar]
  81. Liang X. Li H. Dou J. Wang Q. He W. Wang C. Li D. Lin J.M. Zhang Y. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 2020 32 31 2000165 10.1002/adma.202000165 32583914
    [Google Scholar]
  82. Song Y. Hu C. Wang Z. Wang L. Silk-based wearable devices for health monitoring and medical treatment. iScience 2024 27 5 109604 10.1016/j.isci.2024.109604 38628962
    [Google Scholar]
  83. Lamboni L. Li Y. Liu J. Yang G. Silk sericin-functionalized bacterial cellulose as a potential wound-healing biomaterial. Biomacromolecules 2016 17 9 3076 3084 10.1021/acs.biomac.6b00995 27467880
    [Google Scholar]
  84. Zhang H.P. Wang X.Y. Min S.J. Mandal M. Yang M.Y. Zhu L.J. Hydroxyapatite/sericin composite film prepared through mineralization of flexible ethanol-treated sericin film with simulated body fluids. Ceram. Int. 2014 40 1 985 991 10.1016/j.ceramint.2013.06.095
    [Google Scholar]
  85. Tyeb S. Kumar N. Kumar A. Verma V. Flexible agar-sericin hydrogel film dressing for chronic wounds. Carbohydr. Polym. 2018 200 572 582 10.1016/j.carbpol.2018.08.030 30177201
    [Google Scholar]
  86. Wang R. Li J. Chen W. Xu T. Yun S. Xu Z. Xu Z. Sato T. Chi B. Xu H. A biomimetic mussel-inspired ε-poly-l-lysine hydrogel with robust tissue-anchor and anti-infection capacity. Adv. Funct. Mater. 2017 27 8 1604894 10.1002/adfm.201604894
    [Google Scholar]
  87. Wang Y. Cai R. Tao G. Wang P. Zuo H. Zhao P. Umar A. He H. A novel AgNPs/sericin/agar film with enhanced mechanical property and antibacterial capability. Molecules 2018 23 7 1821 10.3390/molecules23071821 30041405
    [Google Scholar]
  88. Chouhan D. Dey N. Bhardwaj N. Mandal B.B. Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances. Biomaterials 2019 216 119267 10.1016/j.biomaterials.2019.119267 31247480
    [Google Scholar]
  89. Son Y.J. Tse J.W. Zhou Y. Mao W. Yim E.K.F. Yoo H.S. Biomaterials and controlled release strategy for epithelial wound healing. Biomater. Sci. 2019 7 11 4444 4471 10.1039/C9BM00456D 31436261
    [Google Scholar]
  90. Felgueiras H.P. Amorim M.T.P. Functionalization of electrospun polymeric wound dressings with antimicrobial peptides. Colloids Surf. B Biointerfaces 2017 156 133 148 10.1016/j.colsurfb.2017.05.001 28527357
    [Google Scholar]
  91. Akturk O. Tezcaner A. Bilgili H. Deveci M.S. Gecit M.R. Keskin D. Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J. Biosci. Bioeng. 2011 112 3 279 288 10.1016/j.jbiosc.2011.05.014 21697006
    [Google Scholar]
  92. Nayak S. Dey T. Naskar D. Kundu S.C. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin. Biomaterials 2013 34 12 2855 2864 10.1016/j.biomaterials.2013.01.019 23357374
    [Google Scholar]
  93. Yang C. Xue R. Zhang Q. Yang S. Liu P. Chen L. Wang K. Zhang X. Wei Y. Nanoclay cross-linked semi-IPN silk sericin/poly(NIPAm/LMSH) nanocomposite hydrogel: An outstanding antibacterial wound dressing. Mater. Sci. Eng. C 2017 81 303 313 10.1016/j.msec.2017.08.008 28887976
    [Google Scholar]
  94. Siritienthong T. Ratanavaraporn J. Aramwit P. Development of ethyl alcohol-precipitated silk sericin/polyvinyl alcohol scaffolds for accelerated healing of full-thickness wounds. Int. J. Pharm. 2012 439 1-2 175 186 10.1016/j.ijpharm.2012.09.043 23022662
    [Google Scholar]
  95. Aramwit P. Ratanavaraporn J. Siritientong T. Improvement of physical and wound adhesion properties of silk sericin and polyvinyl alcohol dressing using glycerin. Adv. Skin Wound Care 2015 28 8 358 367 10.1097/01.ASW.0000467304.77196.b9 26181860
    [Google Scholar]
  96. Parker B.J. Rhodes D.I. O’Brien C.M. Rodda A.E. Cameron N.R. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater. 2021 135 64 86 10.1016/j.actbio.2021.08.052 34492374
    [Google Scholar]
  97. Li X. Yang W. Xie H. Wang J. Zhang L. Wang Z. Wang L. CNT/sericin conductive nerve guidance conduit promotes functional recovery of transected peripheral nerve injury in a rat model. ACS Appl. Mater. Interfaces 2020 12 33 36860 36872 10.1021/acsami.0c08457 32649170
    [Google Scholar]
  98. Han C. Liu F. Zhang Y. Chen W. Luo W. Ding F. Lu L. Wu C. Li Y. Human umbilical cord mesenchymal stem cell derived exosomes delivered using silk fibroin and sericin composite hydrogel promote wound healing. Front. Cardiovasc. Med. 2021 8 713021 10.3389/fcvm.2021.713021 34490375
    [Google Scholar]
  99. Deng Y. Yang C. Zhu Y. Liu W. Li H. Wang L. Chen W. Wang Z. Wang L. Lamprey-teeth-inspired oriented antibacterial sericin microneedles for infected wound healing improvement. Nano Lett. 2022 22 7 2702 2711 10.1021/acs.nanolett.1c04573 35324204
    [Google Scholar]
  100. Jiang L.B. Ding S.L. Ding W. Su D.H. Zhang F.X. Zhang T.W. Yin X.F. Xiao L. Li Y.L. Yuan F.L. Dong J. Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regeneration. Chem. Eng. J. 2021 418 129323 10.1016/j.cej.2021.129323
    [Google Scholar]
  101. Guan C.Y. Wang F. Zhang L. Sun X.C. Zhang D. Wang H. Xia H.F. Xia Q.Y. Ma X. Genetically engineered FGF1-sericin hydrogel material treats intrauterine adhesion and restores fertility in rat. Regen. Biomater. 2022 9 rbac016 10.1093/rb/rbac016 35480860
    [Google Scholar]
  102. Liu H. Qin S. Liu J. Zhou C. Zhu Y. Yuan Y. Fu D. Lv Q. Song Y. Zou M. Wang Z. Wang L. Bio-inspired self-hydrophobized sericin adhesive with tough underwater adhesion enables wound healing and fluid leakage sealing. Adv. Funct. Mater. 2022 32 32 2201108 10.1002/adfm.202201108
    [Google Scholar]
  103. Bari E. Perteghella S. Faragò S. Torre M.L. Association of silk sericin and platelet lysate: Premises for the formulation of wound healing active medications. Int. J. Biol. Macromol. 2018 119 37 47 10.1016/j.ijbiomac.2018.07.142 30048722
    [Google Scholar]
  104. Arango M.C. Montoya Y. Peresin M.S. Bustamante J. Álvarez-López C. Silk sericin as a biomaterial for tissue engineering: A review. Int. J. Polym. Mater. 2021 70 16 1115 1129 10.1080/00914037.2020.1785454
    [Google Scholar]
  105. Ho J. Walsh C. Yue D. Dardik A. Cheema U. Current advancements and strategies in tissue engineering for wound healing: A comprehensive review. Adv. Wound Care 2017 6 6 191 209 10.1089/wound.2016.0723 28616360
    [Google Scholar]
  106. Al-kuraishy H.M. Al-Fakhrany O.M. Elekhnawy E. Al-Gareeb A.I. Alorabi M. De Waard M. Albogami S.M. Batiha G.E.S. Traditional herbs against COVID-19: Back to old weapons to combat the new pandemic. Eur. J. Med. Res. 2022 27 1 186 10.1186/s40001‑022‑00818‑5 36154838
    [Google Scholar]
  107. Al-kuraishy H.M. Al-Gareeb A.I. Kaushik A. Kujawska M. Batiha G.E.S. Ginkgo biloba in the management of the COVID-19 severity. Arch. Pharm. 2022 355 10 2200188 10.1002/ardp.202200188 35672257
    [Google Scholar]
  108. Babalghith A.O. Al-kuraishy H.M. Al-Gareeb A.I. De Waard M. Al-Hamash S.M. Jean-Marc S. Negm W.A. Batiha G.E.S. The role of berberine in Covid-19: Potential adjunct therapy. Inflammopharmacology 2022 30 6 2003 2016 10.1007/s10787‑022‑01080‑1 36183284
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031349747250411165604
Loading
/content/journals/ddl/10.2174/0122103031349747250411165604
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test