Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Silk Sericin, a natural biopolymer, has gained increasing attention for its diverse applications in pharmaceuticals and biomedicine. This is an organic biomaterial derived from the Silkworm cocoon (silkworm ), by the degumming process, which exhibits remarkable biocompatibility, biodegradability, making it a promising candidate for various therapeutic and regenerative approaches. Sericinhas an excellent property that makes it a potential candidate for wound healing, skin care, and drug delivery applications. This hydrophilic protein is recognized as an anti-inflammatory, antioxidant, and anti-cancer agent. The high molecular weight and granular protein composition of sericin give it a sticky consistency and gelatin-like quality. The presence of many hydroxyl groups absorbs significant water from the skin, providing a natural moisturizing effect. Silk sericin presents a sustainable alternative to synthetic polymers, boasting exceptional characteristics, including minimal immune response, excellent moisture retention, and versatility in forming various structures such as films, fibers, and hydrogels. The sustained release of sericin from wound dressings can also be efficacious in providing a prolonged healing effect during the treatment of pressure ulcers. This can contribute to a more favourable environment for faster and effective wound healing. This review aims to provide a comprehensive overview of silksericin, highlighting its unique characteristics, extraction methods, and recent advancements in its utilization for pharmaceutical and biomedical purposes, along with emphasizing the significant potential of this protein as a versatile biopolymer for advanced healthcare solutions.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031349747250411165604
2025-04-21
2025-12-15
Loading full text...

Full text loading...

References

  1. SilvaA.S. CostaE.C. ReisS. SpencerC. CalhelhaR.C. MiguelS.P. RibeiroM.P. BarrosL. VazJ.A. CoutinhoP. Silk sericin: A promising sustainable biomaterial for biomedical and pharmaceutical applications.Polymers20221422493110.3390/polym1422493136433058
    [Google Scholar]
  2. SahuN. PalS. SapruS. KunduJ. TalukdarS. SinghN.I. YaoJ. KunduS.C. Non-mulberry and mulberry silk protein sericins as potential media supplement for animal cell culture.BioMed Res. Int.20162016111310.1155/2016/746104127517047
    [Google Scholar]
  3. SeoS.J. DasG. ShinH.S. PatraJ.K. Silk sericin protein materials: Characteristics and applications in food-sector industries.Int. J. Mol. Sci.2023245495110.3390/ijms2405495136902381
    [Google Scholar]
  4. JenaK. PandeyJ.P. KumariR. SinhaA.K. GuptaV.P. SinghG.P. Tasar silk fiber waste sericin: New source for anti-elastase, anti-tyrosinase and anti-oxidant compounds.Int. J. Biol. Macromol.20181141102110810.1016/j.ijbiomac.2018.03.05829550421
    [Google Scholar]
  5. ChouhanD. MandalB.B. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside.Acta Biomater.2020103245110.1016/j.actbio.2019.11.05031805409
    [Google Scholar]
  6. LiuJ. ShiL. DengY. ZouM. CaiB. SongY. WangZ. WangL. Silk sericin-based materials for biomedical applications.Biomaterials202228712163810.1016/j.biomaterials.2022.12163835921729
    [Google Scholar]
  7. KunduS.C. DashB.C. DashR. KaplanD.L. Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications.Prog. Polym. Sci.20083310998101210.1016/j.progpolymsci.2008.08.002
    [Google Scholar]
  8. KunzR.I. BrancalhãoR.M.C. RibeiroL.F.C. NataliM.R.M. Silkworm sericin: Properties and biomedical applications.BioMed Res. Int.20162016111910.1155/2016/817570127965981
    [Google Scholar]
  9. QiY. WangH. WeiK. YangY. ZhengR.Y. KimI. ZhangK.Q. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures.Int. J. Mol. Sci.201718323710.3390/ijms1803023728273799
    [Google Scholar]
  10. FatahianR. FatahianA. FatahianE. FatahianH. A critical review on application of silk sericin and its mechanical properties in various industries.J. Res. Appl. Mech. Eng.202192
    [Google Scholar]
  11. FatahianR. HosseiniE. FatahianA. FatahianE. FatahianH. A review on potential applications of sericin, and its biological, mechanical, and thermal stability characteristics.Int. J. Eng. Technol. Sci.2022911910.15282/ijets.9.1.2022.1001
    [Google Scholar]
  12. SahaJ. MondalM.I. SheikhM.K. HabibM.A. Extraction, structural and functional properties of silk sericin biopolymer from Bombyx mori silk cocoon waste.J. Text. Sci. Eng.20199210.4172/2165‑8064.1000390
    [Google Scholar]
  13. WangR. ZhuY. ShiZ. JiangW. LiuX. NiQ.Q. Degumming of raw silk via steam treatment.J. Clean. Prod.201820349249710.1016/j.jclepro.2018.08.286
    [Google Scholar]
  14. Rodríguez-SeoaneP. del PozoC. PuyN. BartrolíJ. DomínguezH. Hydrothermal extraction of valuable components from leaves and petioles from Paulownia elongata x fortunei.Waste Biomass Valoriz.20211284525453510.1007/s12649‑020‑01298‑6
    [Google Scholar]
  15. SarangiA. BaralS. ThatoiH.N. Extraction and biological application of silk sericin: An overview.Asian J. Biol.2023172577210.9734/ajob/2023/v17i2321
    [Google Scholar]
  16. DouH. ZuoB. Effect of sodium carbonate concentrations on the formation and mechanism of regenerated silk fibroin nanofibers by electrospinning.J. Nanomater.20142014164602110.1155/2014/646021
    [Google Scholar]
  17. TeramotoH. KakazuA. YamauchiK. AsakuraT. Role of hydroxyl side chains in Bombyx mori silk sericin in stabilizing its solid structure.Macromolecules20074051562156910.1021/ma062604e
    [Google Scholar]
  18. BiganehH. KabiriM. ZeynalpourfattahiY. Costa BrancalhãoR.M. KarimiM. Shams ArdekaniM.R. RahimiR. Bombyx mori cocoon as a promising pharmacological agent: A review of ethnopharmacology, chemistry, and biological activities.Heliyon202289e1049610.1016/j.heliyon.2022.e1049636105465
    [Google Scholar]
  19. Apea-BahF.B. HeadD. ScalesR. BazyloR. BetaT. Hydrothermal extraction, a promising method for concentrating phenolic antioxidants from red osier dogwood (Cornus stolonifer) leaves and stems.Heliyon2020610e0515810.1016/j.heliyon.2020.e0515833083615
    [Google Scholar]
  20. WangW.H. LinW.S. ShihC.H. ChenC.Y. KuoS.H. LiW.L. LinY.S. Functionality of silk cocoon (Bombyx mori L.) sericin extracts obtained through high-temperature hydrothermal method.Materials20211418531410.3390/ma1418531434576538
    [Google Scholar]
  21. MondalM TrivedyK The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., A review.Caspian J Environ Sci2007526376
    [Google Scholar]
  22. CacopardoL. Biomaterials and biocompatibility.human Orthopaedic BiomechanicsAcademic Press.202234135910.1016/B978‑0‑12‑824481‑4.00038‑X
    [Google Scholar]
  23. LefèvreT. RousseauM.E. PézoletM. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy.Biophys. J.20079282885289510.1529/biophysj.106.10033917277183
    [Google Scholar]
  24. ChlapanidasT. FaragòS. LucconiG. PerteghellaS. GaluzziM. MantelliM. AvanziniM.A. ToscaM.C. MarazziM. VigoD. TorreM.L. FaustiniM. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities.Int. J. Biol. Macromol.201358475610.1016/j.ijbiomac.2013.03.05423541552
    [Google Scholar]
  25. AramwitP. KanokpanontS. De-EknamkulW. SrichanaT. Monitoring of inflammatory mediators induced by silk sericin.J. Biosci. Bioeng.2009107555656110.1016/j.jbiosc.2008.12.01219393558
    [Google Scholar]
  26. HollandC. NumataK. Rnjak-KovacinaJ. SeibF.P. The biomedical use of silk: Past, present, future.Adv. Healthc. Mater.201981180046510.1002/adhm.20180046530238637
    [Google Scholar]
  27. AramwitP TowiwatP SrichanaT Anti-inflammatory potential of silk sericin.Nat Prod Commun2013841934578X130080042410.1177/1934578X1300800424
    [Google Scholar]
  28. WangW. PanY. GongK. ZhouQ. ZhangT. LiQ. A comparative study of ultrasonic degumming of silk sericin using citric acid, sodium carbonate and papain.Color. Technol.2019135319520110.1111/cote.12392
    [Google Scholar]
  29. WangX. ZhangY. KongH. ChengJ. ZhangM. SunZ. WangS. LiuJ. QuH. ZhaoY. Novel mulberry silkworm cocoon-derived carbon dots and their anti-inflammatory properties.Artif. Cells Nanomed. Biotechnol.2020481687610.1080/21691401.2019.169981031852285
    [Google Scholar]
  30. KumarJ.P. MandalB.B. Antioxidant potential of mulberry and non-mulberry silk sericin and its implications in biomedicine.Free Radic. Biol. Med.201710880381810.1016/j.freeradbiomed.2017.05.00228476503
    [Google Scholar]
  31. YousefiM. DadashpourM. HejaziM. HasanzadehM. BehnamB. de la GuardiaM. ShadjouN. MokhtarzadehA. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria.Mater. Sci. Eng. C20177456858110.1016/j.msec.2016.12.12528254332
    [Google Scholar]
  32. ZhaoX. Antibacterial bioactive materials.Bioactive Materials in MedicineWoodhead Publishing20119712310.1533/9780857092939.2.97
    [Google Scholar]
  33. YanC. LiangJ. FangH. MengX. ChenJ. ZhongZ. LiuQ. HuH. ZhangX. Fabrication and evaluation of silk sericin-derived hydrogel for the release of the model drug berberine.Gels2021712310.3390/gels701002333672687
    [Google Scholar]
  34. AhamadS.I. Kumar VootlaS. Extraction and evaluation of antimicrobial potential of Antheraea mylitta silk sericin.Int. J. Recent Sci. Res.20189230192302210.24327/ijrsr.2018.0901.1382
    [Google Scholar]
  35. JassimK.N. Al-SareeO.J. Study of the antimicrobial activity of silk sericin from silkworm bombyx mori.Iraqi J. Med. Sci.201023130133
    [Google Scholar]
  36. FanJ.I.N-B.O. WuL.I-P.I.N.G. ChenL.I-S.H.U.I. MaoX.U.E-Y.I.N.G. RenF.A-Z.H.E.N.G. Antioxidant activities of silk sericin from silkworm Bombyx mori.J. Food Biochem.2009331748810.1111/j.1745‑4514.2008.00204.x
    [Google Scholar]
  37. KatoN, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Bioscience, biotechnology, and biochemistry.1998621145-7
    [Google Scholar]
  38. G CC. M SK. A CS. Sericin, a versatile protein from silkworm - Biomedical applications.Shanlax Int. J. Arts Sci. Humanit.20218S1-Feb61110.34293/sijash.v8iS1‑Feb.3924
    [Google Scholar]
  39. GuoH. KouzumaY. YonekuraM. Structures and properties of antioxidative peptides derived from royal jelly protein.Food Chem.2009113123824510.1016/j.foodchem.2008.06.081
    [Google Scholar]
  40. LiuJ. LiQ. ZhangJ. HuangL. QiC. XuL. LiuX. WangG. WangL. WangZ. Safe and effective reversal of cancer multidrug resistance using sericin-coated mesoporous silica nanoparticles for lysosome-targeting delivery in mice.Small2017139160256710.1002/smll.201602567
    [Google Scholar]
  41. AramwitP. DamrongsakkulS. KanokpanontS. SrichanaT. Properties and antityrosinase activity of sericin from various extraction methods.Biotechnol. Appl. Biochem.2010552919810.1042/BA2009018620055756
    [Google Scholar]
  42. NiuL. YangS. ZhaoX. LiuX. SiL. WeiM. LiuL. ChengL. QiaoY. ChenZ. Sericin inhibits MDA‑MB‑468 cell proliferation via the PI3K/Akt pathway in triple‑negative breast cancer.Mol. Med. Rep.202023214010.3892/mmr.2020.1177933313947
    [Google Scholar]
  43. ElahiM. AliS. TahirH.M. MushtaqR. BhattiM.F. Sericin and fibroin nanoparticles—natural product for cancer therapy: A comprehensive review.Int. J. Polym. Mater.202170425626910.1080/00914037.2019.1706515
    [Google Scholar]
  44. ZhangY.Q. TaoM.L. ShenW.D. ZhouY.Z. DingY. MaY. ZhouW.L. Immobilization of l-asparaginase on the microparticles of the natural silk sericin protein and its characters.Biomaterials200425173751375910.1016/j.biomaterials.2003.10.01915020151
    [Google Scholar]
  45. ZhaorigetuS. YanakaN. SasakiM. WatanabeH. KatoN. Inhibitory effects of silk protein, sericin on UVB-induced acute damage and tumor promotion by reducing oxidative stress in the skin of hairless mouse.J. Photochem. Photobiol. B2003711-3111710.1016/S1011‑1344(03)00092‑714705634
    [Google Scholar]
  46. KumarJ.P. MandalB.B. Silk sericin induced pro-oxidative stress leads to apoptosis in human cancer cells.Food Chem. Toxicol.201912327528710.1016/j.fct.2018.10.06330391273
    [Google Scholar]
  47. SuzukiS. RaynerC.L. ChirilaT.V. Silk fibroin/sericin native blends as potential biomaterial templates.Adv. Tissue Eng. Regen. Med. Open Access.201951111910.15406/atroa.2019.05.00093
    [Google Scholar]
  48. HuD. LiT. LiangW. WangY. FengM. SunJ. Silk sericin as building blocks of bioactive materials for advanced therapeutics.J. Control. Release202335330331610.1016/j.jconrel.2022.11.01936402235
    [Google Scholar]
  49. AhsanF. AnsariT. UsmaniS. BaggaP. An insight on silk protein sericin: from processing to biomedical application.Drug Res.201868631732710.1055/s‑0043‑12146429132177
    [Google Scholar]
  50. TaoG. CaiR. WangY. ZuoH. HeH. Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing.Mater. Sci. Eng. C202111911159710.1016/j.msec.2020.11159733321641
    [Google Scholar]
  51. QiC. XuL. DengY. WangG. WangZ. WangL. Retraction: Sericin hydrogels promote skin wound healing with effective regeneration of hair follicles and sebaceous glands after complete loss of epidermis and dermis.Biomater. Sci.20231131077107810.1039/D3BM90005C36629153
    [Google Scholar]
  52. TuancharoensriN. SonjanS. PromkrainitS. DaengmankhongJ. PhimnuanP. MahasaranonS. JongjitwimolJ. CharoensitP. RossG.M. ViennetC. ViyochJ. RossS. Porous poly(2-hydroxyethyl methacrylate) hydrogel scaffolds for tissue engineering: Influence of crosslinking systems and silk sericin concentration on scaffold properties.Polymers20231520405210.3390/polym1520405237896296
    [Google Scholar]
  53. QiC. DengY. XuL. YangC. ZhuY. WangG. WangZ. WangL. A sericin/graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone.Theranostics202010274175610.7150/thno.3950231903148
    [Google Scholar]
  54. TeramotoH. KamedaT. TamadaY. Preparation of gel film from Bombyx mori silk sericin and its characterization as a wound dressing.Biosci. Biotechnol. Biochem.200872123189319610.1271/bbb.8037519060395
    [Google Scholar]
  55. NishidaA YamadaM KanazawaT TakashimaY OuchiK OkadaH Sustained-release of protein from biodegradable sericin film, gel and sponge.Int J Pharm20114071-2445210.1016/j.ijpharm.2011.01.006
    [Google Scholar]
  56. WangJ. LiX. SongY. SuQ. XiaohalatiX. YangW. XuL. CaiB. WangG. WangZ. WangL. Injectable silk sericin scaffolds with programmable shape-memory property and neuro-differentiation-promoting activity for individualized brain repair of severe ischemic stroke.Bioact. Mater.2021671988199910.1016/j.bioactmat.2020.12.01733474513
    [Google Scholar]
  57. ZhangL. YangW. TaoK. SongY. XieH. WangJ. LiX. ShuaiX. GaoJ. ChangP. WangG. WangZ. WangL. Sustained local release of NGF from a chitosan–sericin composite scaffold for treating chronic nerve compression.ACS Appl. Mater. Interfaces2017943432344410.1021/acsami.6b1469128032743
    [Google Scholar]
  58. DinescuS. GălăţeanuB. AlbuM. LunguA. RaduE. HermeneanA. CostacheM. Biocompatibility assessment of novel collagen-sericin scaffolds improved with hyaluronic Acid and chondroitin sulfate for cartilage regeneration.BioMed Res. Int.20132013111110.1155/2013/59805624308001
    [Google Scholar]
  59. JiayaoZ. GuanshanZ. JinchiZ. YuyinC. YongqiangZ. Anthera ea pernyi silk sericin mediating biomimetic nucleation and growth of hydroxylapatite crystals promoting bone matrix formation.Microsc. Res. Tech.201780330531110.1002/jemt.2279327859871
    [Google Scholar]
  60. LamboniL. XuC. ClasohmJ. YangJ. SaumerM. SchäferK.H. YangG. Silk sericin-enhanced microstructured bacterial cellulose as tissue engineering scaffold towards prospective gut repair.Mater. Sci. Eng. C201910250251010.1016/j.msec.2019.04.04331147021
    [Google Scholar]
  61. MunirF. TahirH.M. AliS. AliA. TehreemA. ZaidiS.D.E.S. AdnanM. IjazF. Characterization and evaluation of silk sericin-based hydrogel: A promising biomaterial for efficient healing of acute wounds.ACS Omega2023835320903209810.1021/acsomega.3c0417837692226
    [Google Scholar]
  62. YangM. WangY. TaoG. CaiR. WangP. LiuL. AiL. ZuoH. ZhaoP. UmarA. MaoC. HeH. Fabrication of sericin/agrose gel loaded lysozyme and its potential in wound dressing application.Nanomaterials20188423510.3390/nano804023529652825
    [Google Scholar]
  63. KunduB. KunduS.C. Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction.Biomaterials201233307456746710.1016/j.biomaterials.2012.06.09122819495
    [Google Scholar]
  64. ZhangY. LiuJ. HuangL. WangZ. WangL. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery.Sci. Rep.2015511237410.1038/srep1237426205586
    [Google Scholar]
  65. KimS. JeonG.Y. KimS.E. ChoeS.H. KimS.J. SeoJ.S. KangT.W. SongJ.E. KhangG. Injectable hydrogel based on gellan gum/silk sericin for application as a retinal pigment epithelium cell carrier.ACS Omega2022745413314134010.1021/acsomega.2c0511336406493
    [Google Scholar]
  66. XieH. YangW. ChenJ. ZhangJ. LuX. ZhaoX. HuangK. LiH. ChangP. WangZ. WangL. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve.Adv. Healthc. Mater.20154152195220510.1002/adhm.20150035526332703
    [Google Scholar]
  67. GaoY.E. HouS. ChengJ. LiX. WuY. TangY. LiY. XueP. KangY. XuZ. GuoM. Silk sericin-based nanoparticle as the photosensitizer chlorin e6 carrier for enhanced cancer photodynamic therapy.ACS Sustain. Chem.& Eng.2021983213322210.1021/acssuschemeng.0c08326
    [Google Scholar]
  68. LiuJ. DengY. FuD. YuanY. LiQ. ShiL. WangG. WangZ. WangL. Sericin microparticles enveloped with metal-organic networks as a pulmonary targeting delivery system for intra-tracheally treating metastatic lung cancer.Bioact. Mater.20216127328410.1016/j.bioactmat.2020.08.00632913934
    [Google Scholar]
  69. LiuJ. QiC. TaoK. ZhangJ. ZhangJ. XuL. JiangX. ZhangY. HuangL. LiQ. XieH. GaoJ. ShuaiX. WangG. WangZ. WangL. Sericin/dextran injectable hydrogel as an optically trackable drug delivery system for malignant melanoma treatment.ACS Appl. Mater. Interfaces20168106411642210.1021/acsami.6b0095926900631
    [Google Scholar]
  70. RanjanA SinghD. The versatility of natural excipient zein utilized in nanocarriers for improving biopharmaceutical attributes.Curr Nanomed2024Mar11411310.2174/2468187313666230911122538
    [Google Scholar]
  71. SukthamK. KoobkokkruadT. WutikhunT. SurassmoS. Efficiency of resveratrol-loaded sericin nanoparticles: Promising bionanocarriers for drug delivery.Int. J. Pharm.20185371-2485610.1016/j.ijpharm.2017.12.01529229512
    [Google Scholar]
  72. GuoW. DengL. YuJ. ChenZ. WooY. LiuH. LiT. LinT. ChenH. ZhaoM. ZhangL. LiG. HuY. Sericin nanomicelles with enhanced cellular uptake and pH-triggered release of doxorubicin reverse cancer drug resistance.Drug Deliv.20182511103111610.1080/10717544.2018.146968629742945
    [Google Scholar]
  73. YalcinE. KaraG. CelikE. PinarliF.A. SaylamG. SucularliC. OzturkS. YilmazE. BayirO. KorkmazM.H. DenkbasE.B. Preparation and characterization of novel albumin-sericin nanoparticles as siRNA delivery vehicle for laryngeal cancer treatment.Prep. Biochem. Biotechnol.201949765967010.1080/10826068.2019.159939531066619
    [Google Scholar]
  74. AkbalÖ. Sericin-montmorillonite composite nanoparticles as drug delivery system in human liver cancer: Development, drug release, cellular uptake and cytotoxicity.Süleyman Demirel Univ. Fen Bilim. Enst. Derg.202024116917710.19113/sdufenbed.660323
    [Google Scholar]
  75. ZhangL. YangW. XieH. WangH. WangJ. SuQ. LiX. SongY. WangG. WangL. WangZ. Sericin nerve guidance conduit delivering therapeutically repurposed clobetasol for functional and structural regeneration of transected peripheral nerves.ACS Biomater. Sci. Eng.2019531426143910.1021/acsbiomaterials.8b0129733405618
    [Google Scholar]
  76. RaoJ. ChengY. LiuY. YeZ. ZhanB. QuanD. XuY. A multi-walled silk fibroin/silk sericin nerve conduit coated with poly(lactic-co-glycolic acid) sheath for peripheral nerve regeneration.Mater. Sci. Eng. C20177331933210.1016/j.msec.2016.12.08528183615
    [Google Scholar]
  77. WeiZ.Z. WengY.J. ZhangY.Q. Investigation of the repairing effect and mechanism of oral degraded sericin on liver injury in type II diabetic rats.Biomolecules202212344410.3390/biom1203044435327635
    [Google Scholar]
  78. WangH.D. ZhongZ.H. WengY.J. WeiZ.Z. ZhangY.Q. Degraded sericin significantly regulates blood glucose levels and improves impaired liver function in T2D rats by reducing oxidative stress.Biomolecules2021118125510.3390/biom1108125534439921
    [Google Scholar]
  79. ChirilaT.V. SuzukiS. BrayL.J. BarnettN.L. HarkinD.G. Evaluation of silk sericin as a biomaterial: in vitro growth of human corneal limbal epithelial cells on Bombyx mori sericin membranes.Prog. Biomater.2013211410.1186/2194‑0517‑2‑1429470674
    [Google Scholar]
  80. PadamwarM.N. PawarA.P. DaithankarA.V. MahadikK.R. Silk sericin as a moisturizer: An in vivo study.J. Cosmet. Dermatol.20054425025710.1111/j.1473‑2165.2005.00200.x17168872
    [Google Scholar]
  81. LiangX. LiH. DouJ. WangQ. HeW. WangC. LiD. LinJ.M. ZhangY. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics.Adv. Mater.20203231200016510.1002/adma.20200016532583914
    [Google Scholar]
  82. SongY. HuC. WangZ. WangL. Silk-based wearable devices for health monitoring and medical treatment.iScience202427510960410.1016/j.isci.2024.10960438628962
    [Google Scholar]
  83. LamboniL. LiY. LiuJ. YangG. Silk sericin-functionalized bacterial cellulose as a potential wound-healing biomaterial.Biomacromolecules20161793076308410.1021/acs.biomac.6b0099527467880
    [Google Scholar]
  84. ZhangH.P. WangX.Y. MinS.J. MandalM. YangM.Y. ZhuL.J. Hydroxyapatite/sericin composite film prepared through mineralization of flexible ethanol-treated sericin film with simulated body fluids.Ceram. Int.201440198599110.1016/j.ceramint.2013.06.095
    [Google Scholar]
  85. TyebS. KumarN. KumarA. VermaV. Flexible agar-sericin hydrogel film dressing for chronic wounds.Carbohydr. Polym.201820057258210.1016/j.carbpol.2018.08.03030177201
    [Google Scholar]
  86. WangR. LiJ. ChenW. XuT. YunS. XuZ. XuZ. SatoT. ChiB. XuH. A biomimetic mussel-inspired ε-poly-l-lysine hydrogel with robust tissue-anchor and anti-infection capacity.Adv. Funct. Mater.2017278160489410.1002/adfm.201604894
    [Google Scholar]
  87. WangY. CaiR. TaoG. WangP. ZuoH. ZhaoP. UmarA. HeH. A novel AgNPs/sericin/agar film with enhanced mechanical property and antibacterial capability.Molecules2018237182110.3390/molecules2307182130041405
    [Google Scholar]
  88. ChouhanD. DeyN. BhardwajN. MandalB.B. Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances.Biomaterials201921611926710.1016/j.biomaterials.2019.11926731247480
    [Google Scholar]
  89. SonY.J. TseJ.W. ZhouY. MaoW. YimE.K.F. YooH.S. Biomaterials and controlled release strategy for epithelial wound healing.Biomater. Sci.20197114444447110.1039/C9BM00456D31436261
    [Google Scholar]
  90. FelgueirasH.P. AmorimM.T.P. Functionalization of electrospun polymeric wound dressings with antimicrobial peptides.Colloids Surf. B Biointerfaces201715613314810.1016/j.colsurfb.2017.05.00128527357
    [Google Scholar]
  91. AkturkO. TezcanerA. BilgiliH. DeveciM.S. GecitM.R. KeskinD. Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial.J. Biosci. Bioeng.2011112327928810.1016/j.jbiosc.2011.05.01421697006
    [Google Scholar]
  92. NayakS. DeyT. NaskarD. KunduS.C. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.Biomaterials201334122855286410.1016/j.biomaterials.2013.01.01923357374
    [Google Scholar]
  93. YangC. XueR. ZhangQ. YangS. LiuP. ChenL. WangK. ZhangX. WeiY. Nanoclay cross-linked semi-IPN silk sericin/poly(NIPAm/LMSH) nanocomposite hydrogel: An outstanding antibacterial wound dressing.Mater. Sci. Eng. C20178130331310.1016/j.msec.2017.08.00828887976
    [Google Scholar]
  94. SiritienthongT. RatanavarapornJ. AramwitP. Development of ethyl alcohol-precipitated silk sericin/polyvinyl alcohol scaffolds for accelerated healing of full-thickness wounds.Int. J. Pharm.20124391-217518610.1016/j.ijpharm.2012.09.04323022662
    [Google Scholar]
  95. AramwitP. RatanavarapornJ. SiritientongT. Improvement of physical and wound adhesion properties of silk sericin and polyvinyl alcohol dressing using glycerin.Adv. Skin Wound Care201528835836710.1097/01.ASW.0000467304.77196.b926181860
    [Google Scholar]
  96. ParkerB.J. RhodesD.I. O’BrienC.M. RoddaA.E. CameronN.R. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective.Acta Biomater.2021135648610.1016/j.actbio.2021.08.05234492374
    [Google Scholar]
  97. LiX. YangW. XieH. WangJ. ZhangL. WangZ. WangL. CNT/sericin conductive nerve guidance conduit promotes functional recovery of transected peripheral nerve injury in a rat model.ACS Appl. Mater. Interfaces20201233368603687210.1021/acsami.0c0845732649170
    [Google Scholar]
  98. HanC. LiuF. ZhangY. ChenW. LuoW. DingF. LuL. WuC. LiY. Human umbilical cord mesenchymal stem cell derived exosomes delivered using silk fibroin and sericin composite hydrogel promote wound healing.Front. Cardiovasc. Med.2021871302110.3389/fcvm.2021.71302134490375
    [Google Scholar]
  99. DengY. YangC. ZhuY. LiuW. LiH. WangL. ChenW. WangZ. WangL. Lamprey-teeth-inspired oriented antibacterial sericin microneedles for infected wound healing improvement.Nano Lett.20222272702271110.1021/acs.nanolett.1c0457335324204
    [Google Scholar]
  100. JiangL.B. DingS.L. DingW. SuD.H. ZhangF.X. ZhangT.W. YinX.F. XiaoL. LiY.L. YuanF.L. DongJ. Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regeneration.Chem. Eng. J.202141812932310.1016/j.cej.2021.129323
    [Google Scholar]
  101. GuanC.Y. WangF. ZhangL. SunX.C. ZhangD. WangH. XiaH.F. XiaQ.Y. MaX. Genetically engineered FGF1-sericin hydrogel material treats intrauterine adhesion and restores fertility in rat.Regen. Biomater.20229rbac01610.1093/rb/rbac01635480860
    [Google Scholar]
  102. LiuH. QinS. LiuJ. ZhouC. ZhuY. YuanY. FuD. LvQ. SongY. ZouM. WangZ. WangL. Bio-inspired self-hydrophobized sericin adhesive with tough underwater adhesion enables wound healing and fluid leakage sealing.Adv. Funct. Mater.20223232220110810.1002/adfm.202201108
    [Google Scholar]
  103. BariE. PerteghellaS. FaragòS. TorreM.L. Association of silk sericin and platelet lysate: Premises for the formulation of wound healing active medications.Int. J. Biol. Macromol.2018119374710.1016/j.ijbiomac.2018.07.14230048722
    [Google Scholar]
  104. ArangoM.C. MontoyaY. PeresinM.S. BustamanteJ. Álvarez-LópezC. Silk sericin as a biomaterial for tissue engineering: A review.Int. J. Polym. Mater.202170161115112910.1080/00914037.2020.1785454
    [Google Scholar]
  105. HoJ. WalshC. YueD. DardikA. CheemaU. Current advancements and strategies in tissue engineering for wound healing: A comprehensive review.Adv. Wound Care20176619120910.1089/wound.2016.072328616360
    [Google Scholar]
  106. Al-kuraishyH.M. Al-FakhranyO.M. ElekhnawyE. Al-GareebA.I. AlorabiM. De WaardM. AlbogamiS.M. BatihaG.E.S. Traditional herbs against COVID-19: Back to old weapons to combat the new pandemic.Eur. J. Med. Res.202227118610.1186/s40001‑022‑00818‑536154838
    [Google Scholar]
  107. Al-kuraishyH.M. Al-GareebA.I. KaushikA. KujawskaM. BatihaG.E.S. Ginkgo biloba in the management of the COVID-19 severity.Arch. Pharm.202235510220018810.1002/ardp.20220018835672257
    [Google Scholar]
  108. BabalghithA.O. Al-kuraishyH.M. Al-GareebA.I. De WaardM. Al-HamashS.M. Jean-MarcS. NegmW.A. BatihaG.E.S. The role of berberine in Covid-19: Potential adjunct therapy.Inflammopharmacology20223062003201610.1007/s10787‑022‑01080‑136183284
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031349747250411165604
Loading
/content/journals/ddl/10.2174/0122103031349747250411165604
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test