Skip to content
2000
image of Polyurethane Foam-based Wound Dressings and their Potential Applications and Challenges in Wound Healing

Abstract

Wound healing is an intricate biological process that is supported by well-coordinated cellular activities along with the influence of various factors, such as infection at the site of the wound, comorbidities, and lifestyle habits. Non-healing wounds pose a significant global health concern, with a substantial impact on healthcare resources and patient well-being. Wound dressings play a crucial role in creating an optimal microenvironment for healing, and the selection of an appropriate dressing is imperative to ensure faster healing and improved patient outcomes. Polyurethane (PU) foam based wound dressings have gained considerable attention owing to their versatile properties and potential applications in wound care. PU foam dressings are known for their high absorbency in managing moderate to heavy exudate, ability to maintain a moist wound environment, comfort, flexibility, and non-adherent properties. PU is the preferred substrate material for dressings because of its customizable mechanical properties, excellent biocompatibility, and low toxicity. Several studies have explored the use of polyurethane foam-based wound dressings and have highlighted their potential benefits and limitations. Despite the promising results of previous studies, there is still a lack of comprehensive understanding of the applications and challenges of PU foam-based wound dressings in wound healing. This review aims to address the knowledge gap by providing an update on the current state of research on polyurethane foam based wound dressings and their potential applications and challenges in wound healing.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031357924250408063448
2025-04-16
2025-10-31
Loading full text...

Full text loading...

References

  1. Koehler J. Brandl F.P. Goepferich A.M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur. Polym. J. 2018 100 1 11 10.1016/j.eurpolymj.2017.12.046
    [Google Scholar]
  2. Shen S. Chen X. Shen Z. Chen H. Marine polysaccharides for wound dressing application: An overview. Pharmaceutics 2021 13 10 1666 10.3390/pharmaceutics13101666 34683959
    [Google Scholar]
  3. Wilkinson H.N. Hardman M.J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 2020 10 9 200223 10.1098/rsob.200223 32993416
    [Google Scholar]
  4. Percival N.J. Classification of wounds and their management. Surgery 2002 20 5 114 117 10.1383/surg.20.5.114.14626
    [Google Scholar]
  5. Beyene R.T. Derryberry S.L. Jr Barbul A. The effect of comorbidities on wound healing. Surg. Clin. North Am. 2020 100 4 695 705 10.1016/j.suc.2020.05.002 32681870
    [Google Scholar]
  6. Krishnappa M. Abraham S. Furtado S.C. Krishnamurthy S. Rifaya A. Asiri Y.I. Chidambaram K. Pavadai P. An integrated computational and experimental approach to formulate tamanu oil bigels as anti-scarring agent. Pharmaceuticals 2024 17 1 102 10.3390/ph17010102 38256935
    [Google Scholar]
  7. Ansari M. Darvishi A. A review of the current state of natural biomaterials in wound healing applications. Front. Bioeng. Biotechnol. 2024 12 1309541 10.3389/fbioe.2024.1309541 38600945
    [Google Scholar]
  8. Nisar S Recent advances in natural polymer-based hydrogels for wound healing applications. Elsevier eBooks 2023 115 149
    [Google Scholar]
  9. Guo S. DiPietro L.A. Factors affecting wound healing. J. Dent. Res. 2010 89 3 219 229 10.1177/0022034509359125 20139336
    [Google Scholar]
  10. Maheshwari G. Gupta S. Sagar S. Tripathi S. Kisaka T. Chronic wounds: Magnitude, socioeconomic burden and consequences. Wounds Asia. 2021 4 1 8 14
    [Google Scholar]
  11. Sen C.K. Human wound and its burden: Updated 2020 compendium of estimates. Adv. Wound Care 2021 10 5 281 292 10.1089/wound.2021.0026 33733885
    [Google Scholar]
  12. Tj C.S. Abraham S. Furtado S. Ramesh D. Desai K. Srinivasan B. Nano-calcium incorporated piscean collagen scaffolds: Potential wound dressing material. Future J. Pharm. Sci. 2023 9 1 121 10.1186/s43094‑023‑00566‑1
    [Google Scholar]
  13. Hargis A. Yaghi M. Bermudez N.M. Gefen A. Foam dressings for wound healing. Curr. Dermatol. Rep. 2024 13 1 28 35 10.1007/s13671‑024‑00422‑2
    [Google Scholar]
  14. Britto E.J. Nezwek T.A. Popowicz P. Wound dressings. StatPearls. Treasure Island, FL 2024
    [Google Scholar]
  15. Broussard K.C. Powers J.G. Wound dressings: Selecting the most appropriate type. Am. J. Clin. Dermatol. 2013 14 6 449 459 10.1007/s40257‑013‑0046‑4 24062083
    [Google Scholar]
  16. Dhivya S. Padma V.V. Santhini E. Wound dressings – A review. Biomedicine 2015 5 4 22 10.7603/s40681‑015‑0022‑9 26615539
    [Google Scholar]
  17. Nielsen J. Fogh K. Clinical utility of foam dressings in wound management: A review. Chronic Wound Care Manag Res. 2015 2 31 38
    [Google Scholar]
  18. Gefen A. Alves P. Beeckman D. Cullen B. Lázaro-Martínez J.L. Lev-Tov H. Najafi B. Santamaria N. Sharpe A. Swanson T. Woo K. How should clinical wound care and management translate to effective engineering standard testing requirements from foam dressings? Mapping the existing gaps and needs. Adv. Wound Care 2024 13 1 34 52 10.1089/wound.2021.0173 35216532
    [Google Scholar]
  19. Morales-González M. Díaz L.E. Dominguez-Paz C. Valero M.F. Insights into the design of polyurethane dressings suitable for the stages of skin wound healing: A systematic review. Polymers 2022 14 15 2990 10.3390/polym14152990 35893955
    [Google Scholar]
  20. Liu X. Niu Y. Chen K.C. Chen S. Rapid hemostatic and mild polyurethane-urea foam wound dressing for promoting wound healing. Mater. Sci. Eng. C 2017 71 289 297 10.1016/j.msec.2016.10.019 27987710
    [Google Scholar]
  21. Davies P. McCarty S. Hamberg K. Silver-containing foam dressings with Safetac: A review of the scientific and clinical data. J. Wound Care 2017 26 Sup6a S1 S32 10.12968/jowc.2017.26.Sup6a.S1 28594320
    [Google Scholar]
  22. Blalock L. Use of negative pressure wound therapy with instillation and a novel reticulated open-cell foam dressing with through holes at a level 2 trauma center. Wounds 2019 31 2 55 58 30485170
    [Google Scholar]
  23. Kasi G. Gnanasekar S. Zhang K. Kang E.T. Xu L.Q. Polyurethane-based composites with promising antibacterial properties. J. Appl. Polym. Sci. 2022 139 20 52181 10.1002/app.52181
    [Google Scholar]
  24. Uscátegui Y.L. Díaz L.E. Valero M.F. in vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices. J. Mater. Res. 2019 34 4 519 531 10.1557/jmr.2018.448
    [Google Scholar]
  25. Jain A. Abraham S. Krishnamurthy S. Desai K. Basappa Veerabhadraiah B. Development of PU foam dressings loaded with extract of Plectranthus amboinicus for burn wound healing. Drug Dev. Ind. Pharm. 2024 50 3 248 261 10.1080/03639045.2024.2315494 38317433
    [Google Scholar]
  26. Morales-Gonzalez M. Arévalo-Alquichire S. Diaz L.E. Sans J.Á. Vilariño-Feltrer G. Gómez-Tejedor J.A. Valero M.F. Hydrolytic stability and biocompatibility on smooth muscle cells of polyethylene glycol–polycaprolactone-based polyurethanes. J. Mater. Res. 2020 35 23-24 3276 3285 10.1557/jmr.2020.303
    [Google Scholar]
  27. Wietlisbach C.M. Cooper’s fundamentals of hand therapy: Clinical reasoning and treatment guidelines for common diagnoses of the upper extremity. St. Louis Mosby 2019
    [Google Scholar]
  28. Sood A. Granick M.S. Tomaselli N.L. Wound dressings and comparative effectiveness data. Adv. Wound Care 2014 3 8 511 529 10.1089/wound.2012.0401 25126472
    [Google Scholar]
  29. Tongson L.S. Application of polyurethane foam dressing at split-thickness skin graft recipient site in patients with diabetic wounds: A case series. Diabet. Foot 2022 25 2 33
    [Google Scholar]
  30. Agarwal A. McAnulty J.F. Schurr M.J. Murphy C.J. Abbott N.L. Polymeric materials for chronic wound and burn dressings. Advanced Wound Repair Therapies. Farrar D. UK Woodhead Publishing Series in Biomaterials 2011 186 208 10.1533/9780857093301.2.186
    [Google Scholar]
  31. Woo K.Y. Coutts P.M. Price P. Harding K. Sibbald R.G. A randomized crossover investigation of pain at dressing change comparing 2 foam dressings. Adv. Skin Wound Care 2009 22 7 304 310 10.1097/01.ASW.0000305483.60616.26 20375967
    [Google Scholar]
  32. Caring for a wound with foam dressing. Available from: https://www.thewoundpros.com/post/caring-for-a-wound-with-foam-dressing.
  33. Namviriyachote N. Lipipun V. Akkhawattanangkul Y. Charoonrut P. Ritthidej G.C. Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound. Asian J. Pharm. Sci. 2019 14 1 63 77 10.1016/j.ajps.2018.09.001 32104439
    [Google Scholar]
  34. Field C.K. Kerstein M.D. Overview of wound healing in a moist environment. Am. J. Surg. 1994 167 1 S2 S6 10.1016/0002‑9610(94)90002‑7 8109679
    [Google Scholar]
  35. Stephenson J. Atkin L. Bateman S. Foam dressings: A review of the literature and evaluation of fluid-handling capacity of four leading foam dressings. Wounds UK. 2015 11 1 75 81
    [Google Scholar]
  36. Nuutila K. Eriksson E. Moist wound healing with commonly available dressings. Adv. Wound Care 2021 10 12 685 698 10.1089/wound.2020.1232 32870777
    [Google Scholar]
  37. Rani Raju N. Silina E. Stupin V. Manturova N. Chidambaram S.B. Achar R.R. Multifunctional and smart wound dressings—a review on recent research advancements in skin regenerative medicine. Pharmaceutics 2022 14 8 1574 10.3390/pharmaceutics14081574 36015200
    [Google Scholar]
  38. Gist S. Tio-Matos I. Falzgraf S. Cameron S. Beebe M. Wound care in the geriatric client. Clin. Interv. Aging 2009 4 269 287 19554098
    [Google Scholar]
  39. Chaganti P. Gordon I. Chao J.H. Zehtabchi S. A systematic review of foam dressings for partial thickness burns. Am. J. Emerg. Med. 2019 37 6 1184 1190 10.1016/j.ajem.2019.04.014 31000315
    [Google Scholar]
  40. Bryan J. Moist wound healing: A concept that changed our practice. J. Wound Care 2004 13 6 227 228 10.12968/jowc.2004.13.6.26625 15214140
    [Google Scholar]
  41. Zehrer C.L. Holm D. Solfest S.E. Walters S.A. A comparison of the in vitro moisture vapour transmission rate and in vivo fluid-handling capacity of six adhesive foam dressings to a newly reformulated adhesive foam dressing. Int. Wound J. 2014 11 6 681 690 10.1111/iwj.12030 23362795
    [Google Scholar]
  42. Lei J. Sun L. Li P. Zhu C. Lin Z. The wound dressings and their applications in wound healing and management. Health Sci. J. 2019 13 4 662
    [Google Scholar]
  43. Overview of different wound dressings. Available from: https://www.strouse.com/blog/overview-of-wound-dressings
  44. Tan S.T. Winarto N. Dosan R. Aisyah P.B. The benefits of occlusive dressings in wound healing. Open Dermatol. J. 2019 13 1 27 33 10.2174/1874372201913010027
    [Google Scholar]
  45. Trucillo P. Di Maio E. Classification and production of polymeric foams among the systems for wound treatment. Polymers 2021 13 10 1608 10.3390/polym13101608 34065750
    [Google Scholar]
  46. Lee S.M. Park I.K. Kim Y.S. Kim H.J. Moon H. Mueller S. Jeong Y.I.L. Physical, morphological, and wound healing properties of a polyurethane foam-film dressing. Biomater. Res. 2016 20 1 15 10.1186/s40824‑016‑0063‑5 27274861
    [Google Scholar]
  47. Park K.B. Kim H.T. Her N.Y. Lee J.M. Variation of mechanical characteristics of polyurethane foam: Effect of test method. Materials 2019 12 17 2672 10.3390/ma12172672 31443352
    [Google Scholar]
  48. Tiscar-González V. Menor-Rodríguez M.J. Rabadán-Sainz C. Fraile-Bravo M. Styche T. Valenzuela-Ocaña F.J. Muñoz-García L. Life Group Clinical and economic impact of wound care using a polyurethane foam multilayer dressing. Adv. Skin Wound Care 2021 34 1 23 30 10.1097/01.ASW.0000722744.20511.71 33323799
    [Google Scholar]
  49. Haynes S.J. Bielby A. Searle R. The clinical performance of a silicone foam in an NHS community trust. J. Community Nurs. 2013 27 5
    [Google Scholar]
  50. Jones V. Grey J.E. Harding K.G. Wound dressings. BMJ 2006 332 7544 777 780 10.1136/bmj.332.7544.777 16575081
    [Google Scholar]
  51. Gefen A. Alves P. Beeckman D. Lázaro-Martínez J.L. Lev-Tov H. Najafi B. Swanson T. Woo K. Mechanical and contact characteristics of foam materials within wound dressings: Theoretical and practical considerations in treatment. Int. Wound J. 2023 20 6 1960 1978 10.1111/iwj.14056 36564958
    [Google Scholar]
  52. Fletcher J. Dressings: Cutting and application guide. 2007 Available from: http://www.worldwidewounds.com/2007/may/Fletcher/Fletcher-Dressings-Cutting-uide.html
  53. Waring M. Butcher M. An investigation into the conformability of wound dressings. Wounds UK. 2011 7 3 14 24
    [Google Scholar]
  54. Mughal A.A. Hughes T.M. Stone N.M. Allergic contact dermatitis to Lyofoam polyurethane dressing used as padding by a patient with above-knee amputation. Dermatitis 2014 25 1 44 45 10.1097/DER.0b013e3182a5d852 24407068
    [Google Scholar]
  55. Available from: https://www.woundsource.com/patientcondition/woundodor
  56. Borda L.J. Macquhae F.E. Kirsner R.S. Wound dressings: A comprehensive review. Curr. Dermatol. Rep. 2016 5 4 287 297 10.1007/s13671‑016‑0162‑5
    [Google Scholar]
  57. Liang W. Ni N. Huang Y. Lin C. An advanced review: Polyurethane-related dressings for skin wound repair. Polymers 2023 15 21 4301 10.3390/polym15214301 37959982
    [Google Scholar]
  58. Fierascu R.C. Lungulescu E.M. Fierascu I. Stan M.S. Voinea I.C. Dumitrescu S.I. Metal and metal oxide nanoparticle incorporation in polyurethane foams: A solution for future antimicrobial materials? Polymers 2023 15 23 4570 10.3390/polym15234570 38231979
    [Google Scholar]
  59. Raghunath A. Perumal E. Metal oxide nanoparticles as antimicrobial agents: A promise for the future. Int. J. Antimicrob. Agents 2017 49 2 137 152 10.1016/j.ijantimicag.2016.11.011 28089172
    [Google Scholar]
  60. Morena A.G. Stefanov I. Ivanova K. Pérez-Rafael S. Sánchez-Soto M. Tzanov T. Antibacterial polyurethane foams with incorporated lignin-capped silver nanoparticles for chronic wound treatment. Ind. Eng. Chem. Res. 2020 59 10 4504 4514 10.1021/acs.iecr.9b06362
    [Google Scholar]
  61. Li C. Ye H. Ge S. Yao Y. Ashok B. Hariram N. Liu H. Tian H. He Y. Guo G. Rajulu A.V. Fabrication and properties of antimicrobial flexible nanocomposite polyurethane foams with in situ generated copper nanoparticles. J. Mater. Res. Technol. 2022 19 3603 3615 10.1016/j.jmrt.2022.06.115
    [Google Scholar]
  62. Tomaselli S Bertini F Cifarelli A Vignali A Ragona L Losio S. Antibacterial properties of polyurethane foams additivated with terpenes from a bio-based polyol. Molecules 2023 28 4 1966 10.3390/molecules28041966
    [Google Scholar]
  63. Lungulescu E.M. Fierascu R.C. Stan M.S. Fierascu I. Radoi E.A. Banciu C.A. Gabor R.A. Fistos T. Marutescu L. Popa M. Voinea I.C. Voicu S.N. Nicula N.O. Gamma radiation-mediated synthesis of antimicrobial polyurethane foam/silver nanoparticles. Polymers 2024 16 10 1369 10.3390/polym16101369 38794562
    [Google Scholar]
  64. Payne J.L. Ambrosio A.M. Evaluation of an antimicrobial silver foam dressing for use with V.A.C.® therapy: Morphological, mechanical, and antimicrobial properties. J. Biomed. Mater. Res. B Appl. Biomater. 2009 89B 1 217 222 10.1002/jbm.b.31209 19274724
    [Google Scholar]
  65. Sachsenmaier S. Peschel A. Ipach I. Kluba T. Antibacterial potency of V.A.C. GranuFoam Silver® Dressing. Injury 2013 44 10 1363 1367 10.1016/j.injury.2013.07.014 23928285
    [Google Scholar]
  66. Park J.K. Lee J.H. Kwak J.J. Shin H.B. Jung H.W. Bae S.W. Yeo E.D. Lee Y.K. Yang S.S. Evaluation of an antimicrobial silver foam dressing. Wounds 2013 25 6 153 159 25866981
    [Google Scholar]
  67. Joshi K.M. Shelar A. Kasabe U. Nikam L.K. Pawar R.A. Sangshetti J. Kale B.B. Singh A.V. Patil R. Chaskar M.G. Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles. Biomater. Adv. 2022 134 112592 10.1016/j.msec.2021.112592 35527134
    [Google Scholar]
  68. Toczek J. Sadłocha M. Major K. Stojko R. Benefit of silver and gold nanoparticles in wound healing process after endometrial cancer protocol. Biomedicines 2022 10 3 679 10.3390/biomedicines10030679 35327481
    [Google Scholar]
  69. Huynh P.T. Nguyen G.D. Tran K.T.L. Ho T.M. Lam V.Q. Bown M. Ngo T.V.K. Study on green preparation of multi-branched gold nanoparticles loaded flexible polyurethane foam for antibacterial dressing. Nanocomposites 2022 8 1 167 174 10.1080/20550324.2022.2091340
    [Google Scholar]
  70. Kulkarni A. Diehl-Jones W. Ghanbar S. Liu S. Layer-by-layer assembly of epidermal growth factors on polyurethane films for wound closure. J. Biomater. Appl. 2014 29 2 278 290 10.1177/0885328214523058 24525716
    [Google Scholar]
  71. Pyun D.G. Choi H.J. Yoon H.S. Thambi T. Lee D.S. Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: Synthesis, characterization, in vitro and in vivo studies. Colloids Surf. B Biointerfaces 2015 135 699 706 10.1016/j.colsurfb.2015.08.029 26340359
    [Google Scholar]
  72. Choi H.J. Thambi T. Yang Y.H. Bang S.I. Kim B.S. Pyun D.G. Lee D.S. AgNP and rhEGF-incorporating synergistic polyurethane foam as a dressing material for scar-free healing of diabetic wounds. RSC Advances 2017 7 23 13714 13725 10.1039/C6RA27322J
    [Google Scholar]
  73. Zhang Q. Chen J. Zhang T. Liu D. Long X. Li J. Jiang L. Wang Y. Tan H. A bilayer polyurethane patch with sustained growth factor release and antibacteria for re-epithelization of large-scale oral mucosal defects. ACS Appl. Mater. Interfaces 2024 16 34 44561 44574 10.1021/acsami.4c09841 39152904
    [Google Scholar]
  74. Zanetta M. Quirici N. Demarosi F. Tanzi M.C. Rimondini L. Farè S. Ability of polyurethane foams to support cell proliferation and the differentiation of MSCs into osteoblasts. Acta Biomater. 2009 5 4 1126 1136 10.1016/j.actbio.2008.12.003 19147418
    [Google Scholar]
  75. Namviriyachote N. Muangman P. Chinaroonchai K. Chuntrasakul C. Ritthidej G.C. Polyurethane-biomacromolecule combined foam dressing containing asiaticoside: Fabrication, characterization and clinical efficacy for traumatic dermal wound treatment. Int. J. Biol. Macromol. 2020 143 510 520 10.1016/j.ijbiomac.2019.10.166 31778697
    [Google Scholar]
  76. Ha H.J. Yang J.Y. Kim C.W. Jeong S.H. Hwang E. Comparison of satisfaction levels between conventional and silicone-adhesive polyurethane foam materials in patients with skin wounds. J. Wound Manage. Res. 2021 17 3 163 168 10.22467/jwmr.2021.01529
    [Google Scholar]
  77. Wood L.L. A hydrophilic polyurethane foam system. J. Cell. Plast. 1976 12 5 285 288 10.1177/0021955X7601200504
    [Google Scholar]
  78. Jung J.A. Yoo K.H. Han S.K. Dhong E.S. Kim W.K. Evaluation of the efficacy of highly hydrophilic polyurethane foam dressing in treating a diabetic foot ulcer. Adv. Skin Wound Care 2016 29 12 546 555 10.1097/01.ASW.0000508178.67430.34 27846028
    [Google Scholar]
  79. Borreguero AM Zamora J Garrido I Carmona M Rodríguez JF Improving the hydrophilicity of flexible polyurethane foams with sodium acrylate polymer. Materials 2021 14 9 2197 10.3390/ma14092197
    [Google Scholar]
  80. Kwon O.J. Oh S.T. Lee S.D. Lee N-R. Shin C-H. Park J-S. Hydrophilic and flexible polyurethane foams using sodium alginate as polyol: Effects of PEG molecular weight and cross-linking agent content on water absorbency. Fibers Polym. 2007 8 4 347 355 10.1007/BF02875822
    [Google Scholar]
  81. Namgoong S. Jung J.E. Yoon Y.D. Han S.K. Lee Y.N. Son J.W. Highly hydrophilic polyurethane foam dressing versus early hydrophilic polyurethane foam dressing on skin graft donor site healing in patients with diabetes: An exploratory clinical trial. Adv. Skin Wound Care 2020 33 6 319 323 10.1097/01.ASW.0000661792.04223.02 32427788
    [Google Scholar]
  82. Sonar S. Kumar N. Ali N. Moharana A. Ts D. A comprehensive review on wound dressing usage in clinical settings. Int. J. Surg. Med. 2022 8 0 1 10.5455/ijsm.136‑1648103567
    [Google Scholar]
  83. Hodge J.G. Zamierowski D.S. Robinson J.L. Mellott A.J. Evaluating polymeric biomaterials to improve next generation wound dressing design. Biomater. Res. 2022 26 1 50 10.1186/s40824‑022‑00291‑5 36183134
    [Google Scholar]
  84. Lao L Shou D Wu YS Fan JT Skin-like fabric for personal moisture management. Sci. Adv. 2020 6 14 0013 10.1126/sciadv.aaz0013
    [Google Scholar]
  85. Liang D. Lu Z. Yang H. Gao J. Chen R. Novel asymmetric wettable AgNPs/Chitosan wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 2016 8 6 3958 3968 10.1021/acsami.5b11160 26800283
    [Google Scholar]
  86. Shi Y. Li Y. Wu J. Wang W. Dong A. Zhang J. A novel transdermal drug delivery system based on self-adhesive Janus nanofibrous film with high breathability and monodirectional water-penetration. J. Biomater. Sci. Polym. Ed. 2014 25 7 713 728 10.1080/09205063.2014.897596 24641249
    [Google Scholar]
  87. White Richard Evidence for atraumatic soft silicone dressing use. Wounds-UK 2005 1
    [Google Scholar]
  88. Huang C. Leavitt T. Bayer L.R. Orgill D.P. Effect of negative pressure wound therapy on wound healing. Curr. Probl. Surg. 2014 51 7 301 331 10.1067/j.cpsurg.2014.04.001 24935079
    [Google Scholar]
  89. Use of foam in negative pressure wound therapy (NPWT). 2023 Available from: https://foamtecmedical.com/use-of-foam-in-negative-pressure-wound-therapy-npwt
  90. Li S Juliane H Patel MK Product overview and market projection of emerging bio-based plastics. 2009 Available from: https://www.uu.nl/sites/default/files/copernicus_probip2009_final_june_2009_revised_in_november_09.pdf
  91. Kyriacos D. Biobased polyols for industrial polymers. 1st ed Hoboken, NJ John Wiley & Sons 2020 10.1002/9781119620358
    [Google Scholar]
  92. Gupta R.K. Ionescu M. Wan X. Radojcic D. Petroviƈ Z.S. Synthesis of a novel limonene based mannich polyol for rigid polyurethane foams. J. Polym. Environ. 2015 23 2 261 268 10.1007/s10924‑015‑0717‑8
    [Google Scholar]
  93. Gandhi T.S. Patel M.R. Dholakiya B.Z. Synthesis of cashew Mannich polyol via a three step continuous route and development of PU rigid foams with mechanical, thermal and fire studies. J. Polym. Eng. 2015 35 6 533 544 10.1515/polyeng‑2014‑0176
    [Google Scholar]
  94. Isikgor F.H. Becer C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015 6 25 4497 4559 10.1039/C5PY00263J
    [Google Scholar]
  95. Morales-Cerrada R. Tavernier R. Caillol S. Fully bio-based thermosetting polyurethanes from bio-based polyols and isocyanates. Polymers 2021 13 8 1255 10.3390/polym13081255 33924399
    [Google Scholar]
  96. TolonateTM X Flo 100. Available from: https://www.vencorex.com/product/
  97. Desmodur® CQ N 7300. Available from: https://solutions.covestro.com/en/products/desmodur/desmodur-cq-n-7300
  98. StabioTM. Available from: https://jp.mitsuichemicals.com/en/service/product/stabio/index.html
  99. We go beyond. Available from: https://corporate.evonik.com/en/products-and-solutions/industry-teams/bau/Products/vestanat
  100. Delavarde A. Savin G. Derkenne P. Boursier M. Morales-Cerrada R. Nottelet B. Pinaud J. Caillol S. Sustainable polyurethanes: Toward new cutting-edge opportunities. Prog. Polym. Sci. 2024 151 101805 10.1016/j.progpolymsci.2024.101805
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031357924250408063448
Loading
/content/journals/ddl/10.2174/0122103031357924250408063448
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test