Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Wound healing is an intricate biological process that is supported by well-coordinated cellular activities along with the influence of various factors, such as infection at the site of the wound, comorbidities, and lifestyle habits. Non-healing wounds pose a significant global health concern, with a substantial impact on healthcare resources and patient well-being. Wound dressings play a crucial role in creating an optimal microenvironment for healing, and the selection of an appropriate dressing is imperative to ensure faster healing and improved patient outcomes. Polyurethane (PU) foam based wound dressings have gained considerable attention owing to their versatile properties and potential applications in wound care. PU foam dressings are known for their high absorbency in managing moderate to heavy exudate, ability to maintain a moist wound environment, comfort, flexibility, and non-adherent properties. PU is the preferred substrate material for dressings because of its customizable mechanical properties, excellent biocompatibility, and low toxicity. Several studies have explored the use of polyurethane foam-based wound dressings and have highlighted their potential benefits and limitations. Despite the promising results of previous studies, there is still a lack of comprehensive understanding of the applications and challenges of PU foam-based wound dressings in wound healing. This review aims to address the knowledge gap by providing an update on the current state of research on polyurethane foam-based wound dressings and their potential applications and challenges in wound healing.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031357924250408063448
2025-04-16
2025-12-08
Loading full text...

Full text loading...

References

  1. KoehlerJ. BrandlF.P. GoepferichA.M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds.Eur. Polym. J.201810011110.1016/j.eurpolymj.2017.12.046
    [Google Scholar]
  2. ShenS. ChenX. ShenZ. ChenH. Marine polysaccharides for wound dressing application: An overview.Pharmaceutics20211310166610.3390/pharmaceutics1310166634683959
    [Google Scholar]
  3. WilkinsonH.N. HardmanM.J. Wound healing: Cellular mechanisms and pathological outcomes.Open Biol.202010920022310.1098/rsob.20022332993416
    [Google Scholar]
  4. PercivalN.J. Classification of wounds and their management.Surgery200220511411710.1383/surg.20.5.114.14626
    [Google Scholar]
  5. BeyeneR.T. DerryberryS.L.Jr BarbulA. The effect of comorbidities on wound healing.Surg. Clin. North Am.2020100469570510.1016/j.suc.2020.05.00232681870
    [Google Scholar]
  6. KrishnappaM. AbrahamS. FurtadoS.C. KrishnamurthyS. RifayaA. AsiriY.I. ChidambaramK. PavadaiP. An integrated computational and experimental approach to formulate tamanu oil bigels as anti-scarring agent.Pharmaceuticals202417110210.3390/ph1701010238256935
    [Google Scholar]
  7. AnsariM. DarvishiA. A review of the current state of natural biomaterials in wound healing applications.Front. Bioeng. Biotechnol.202412130954110.3389/fbioe.2024.130954138600945
    [Google Scholar]
  8. NisarS Recent advances in natural polymer-based hydrogels for wound healing applications.Elsevier eBooks2023115149
    [Google Scholar]
  9. GuoS. DiPietroL.A. Factors affecting wound healing.J. Dent. Res.201089321922910.1177/002203450935912520139336
    [Google Scholar]
  10. MaheshwariG. GuptaS. SagarS. TripathiS. KisakaT. Chronic wounds: Magnitude, socioeconomic burden and consequences.Wounds Asia.202141814
    [Google Scholar]
  11. SenC.K. Human wound and its burden: Updated 2020 compendium of estimates.Adv. Wound Care202110528129210.1089/wound.2021.002633733885
    [Google Scholar]
  12. TjC.S. AbrahamS. FurtadoS. RameshD. DesaiK. SrinivasanB. Nano-calcium incorporated piscean collagen scaffolds: Potential wound dressing material.Future J. Pharm. Sci.20239112110.1186/s43094‑023‑00566‑1
    [Google Scholar]
  13. HargisA. YaghiM. BermudezN.M. GefenA. Foam dressings for wound healing.Curr. Dermatol. Rep.2024131283510.1007/s13671‑024‑00422‑2
    [Google Scholar]
  14. BrittoE.J. NezwekT.A. PopowiczP. Wound dressings.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  15. BroussardK.C. PowersJ.G. Wound dressings: Selecting the most appropriate type.Am. J. Clin. Dermatol.201314644945910.1007/s40257‑013‑0046‑424062083
    [Google Scholar]
  16. DhivyaS. PadmaV.V. SanthiniE. Wound dressings – A review.Biomedicine2015542210.7603/s40681‑015‑0022‑926615539
    [Google Scholar]
  17. NielsenJ. FoghK. Clinical utility of foam dressings in wound management: A review.Chronic Wound Care Manag Res.201523138
    [Google Scholar]
  18. GefenA. AlvesP. BeeckmanD. CullenB. Lázaro-MartínezJ.L. Lev-TovH. NajafiB. SantamariaN. SharpeA. SwansonT. WooK. How should clinical wound care and management translate to effective engineering standard testing requirements from foam dressings? Mapping the existing gaps and needs.Adv. Wound Care2024131345210.1089/wound.2021.017335216532
    [Google Scholar]
  19. Morales-GonzálezM. DíazL.E. Dominguez-PazC. ValeroM.F. Insights into the design of polyurethane dressings suitable for the stages of skin wound healing: A systematic review.Polymers20221415299010.3390/polym1415299035893955
    [Google Scholar]
  20. LiuX. NiuY. ChenK.C. ChenS. Rapid hemostatic and mild polyurethane-urea foam wound dressing for promoting wound healing.Mater. Sci. Eng. C20177128929710.1016/j.msec.2016.10.01927987710
    [Google Scholar]
  21. DaviesP. McCartyS. HambergK. Silver-containing foam dressings with Safetac: A review of the scientific and clinical data.J. Wound Care201726Sup6aS1S3210.12968/jowc.2017.26.Sup6a.S128594320
    [Google Scholar]
  22. BlalockL. Use of negative pressure wound therapy with instillation and a novel reticulated open-cell foam dressing with through holes at a level 2 trauma center.Wounds2019312555830485170
    [Google Scholar]
  23. KasiG. GnanasekarS. ZhangK. KangE.T. XuL.Q. Polyurethane-based composites with promising antibacterial properties.J. Appl. Polym. Sci.2022139205218110.1002/app.52181
    [Google Scholar]
  24. UscáteguiY.L. DíazL.E. ValeroM.F. in vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices.J. Mater. Res.201934451953110.1557/jmr.2018.448
    [Google Scholar]
  25. JainA. AbrahamS. KrishnamurthyS. DesaiK. Basappa VeerabhadraiahB. Development of PU foam dressings loaded with extract of Plectranthus amboinicus for burn wound healing.Drug Dev. Ind. Pharm.202450324826110.1080/03639045.2024.231549438317433
    [Google Scholar]
  26. Morales-GonzalezM. Arévalo-AlquichireS. DiazL.E. SansJ.Á. Vilariño-FeltrerG. Gómez-TejedorJ.A. ValeroM.F. Hydrolytic stability and biocompatibility on smooth muscle cells of polyethylene glycol–polycaprolactone-based polyurethanes.J. Mater. Res.20203523-243276328510.1557/jmr.2020.303
    [Google Scholar]
  27. WietlisbachC.M. Cooper’s fundamentals of hand therapy: Clinical reasoning and treatment guidelines for common diagnoses of the upper extremity.St. LouisMosby2019
    [Google Scholar]
  28. SoodA. GranickM.S. TomaselliN.L. Wound dressings and comparative effectiveness data.Adv. Wound Care20143851152910.1089/wound.2012.040125126472
    [Google Scholar]
  29. TongsonL.S. Application of polyurethane foam dressing at split-thickness skin graft recipient site in patients with diabetic wounds: A case series.Diabet. Foot202225233
    [Google Scholar]
  30. AgarwalA. McAnultyJ.F. SchurrM.J. MurphyC.J. AbbottN.L. Polymeric materials for chronic wound and burn dressings.Advanced Wound Repair Therapies. FarrarD. UKWoodhead Publishing Series in Biomaterials201118620810.1533/9780857093301.2.186
    [Google Scholar]
  31. WooK.Y. CouttsP.M. PriceP. HardingK. SibbaldR.G. A randomized crossover investigation of pain at dressing change comparing 2 foam dressings.Adv. Skin Wound Care200922730431010.1097/01.ASW.0000305483.60616.2620375967
    [Google Scholar]
  32. Caring for a wound with foam dressing.Available from: https://www.thewoundpros.com/post/caring-for-a-wound-with-foam-dressing.
  33. NamviriyachoteN. LipipunV. AkkhawattanangkulY. CharoonrutP. RitthidejG.C. Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound.Asian J. Pharm. Sci.2019141637710.1016/j.ajps.2018.09.00132104439
    [Google Scholar]
  34. FieldC.K. KersteinM.D. Overview of wound healing in a moist environment.Am. J. Surg.19941671S2S610.1016/0002‑9610(94)90002‑78109679
    [Google Scholar]
  35. StephensonJ. AtkinL. BatemanS. Foam dressings: A review of the literature and evaluation of fluid-handling capacity of four leading foam dressings.Wounds UK.20151117581
    [Google Scholar]
  36. NuutilaK. ErikssonE. Moist wound healing with commonly available dressings.Adv. Wound Care2021101268569810.1089/wound.2020.123232870777
    [Google Scholar]
  37. Rani RajuN. SilinaE. StupinV. ManturovaN. ChidambaramS.B. AcharR.R. Multifunctional and smart wound dressings—a review on recent research advancements in skin regenerative medicine.Pharmaceutics2022148157410.3390/pharmaceutics1408157436015200
    [Google Scholar]
  38. GistS. Tio-MatosI. FalzgrafS. CameronS. BeebeM. Wound care in the geriatric client.Clin. Interv. Aging2009426928719554098
    [Google Scholar]
  39. ChagantiP. GordonI. ChaoJ.H. ZehtabchiS. A systematic review of foam dressings for partial thickness burns.Am. J. Emerg. Med.20193761184119010.1016/j.ajem.2019.04.01431000315
    [Google Scholar]
  40. BryanJ. Moist wound healing: A concept that changed our practice.J. Wound Care200413622722810.12968/jowc.2004.13.6.2662515214140
    [Google Scholar]
  41. ZehrerC.L. HolmD. SolfestS.E. WaltersS.A. A comparison of the in vitro moisture vapour transmission rate and in vivo fluid-handling capacity of six adhesive foam dressings to a newly reformulated adhesive foam dressing.Int. Wound J.201411668169010.1111/iwj.1203023362795
    [Google Scholar]
  42. LeiJ. SunL. LiP. ZhuC. LinZ. The wound dressings and their applications in wound healing and management.Health Sci. J.2019134662
    [Google Scholar]
  43. Overview of different wound dressings.Available from: https://www.strouse.com/blog/overview-of-wound-dressings
  44. TanS.T. WinartoN. DosanR. AisyahP.B. The benefits of occlusive dressings in wound healing.Open Dermatol. J.2019131273310.2174/1874372201913010027
    [Google Scholar]
  45. TrucilloP. Di MaioE. Classification and production of polymeric foams among the systems for wound treatment.Polymers20211310160810.3390/polym1310160834065750
    [Google Scholar]
  46. LeeS.M. ParkI.K. KimY.S. KimH.J. MoonH. MuellerS. JeongY.I.L. Physical, morphological, and wound healing properties of a polyurethane foam-film dressing.Biomater. Res.20162011510.1186/s40824‑016‑0063‑527274861
    [Google Scholar]
  47. ParkK.B. KimH.T. HerN.Y. LeeJ.M. Variation of mechanical characteristics of polyurethane foam: Effect of test method.Materials20191217267210.3390/ma1217267231443352
    [Google Scholar]
  48. Tiscar-GonzálezV. Menor-RodríguezM.J. Rabadán-SainzC. Fraile-BravoM. StycheT. Valenzuela-OcañaF.J. Muñoz-GarcíaL. Life Group Clinical and economic impact of wound care using a polyurethane foam multilayer dressing.Adv. Skin Wound Care2021341233010.1097/01.ASW.0000722744.20511.7133323799
    [Google Scholar]
  49. HaynesS.J. BielbyA. SearleR. The clinical performance of a silicone foam in an NHS community trust.J. Community Nurs.2013275
    [Google Scholar]
  50. JonesV. GreyJ.E. HardingK.G. Wound dressings.BMJ2006332754477778010.1136/bmj.332.7544.77716575081
    [Google Scholar]
  51. GefenA. AlvesP. BeeckmanD. Lázaro-MartínezJ.L. Lev-TovH. NajafiB. SwansonT. WooK. Mechanical and contact characteristics of foam materials within wound dressings: Theoretical and practical considerations in treatment.Int. Wound J.20232061960197810.1111/iwj.1405636564958
    [Google Scholar]
  52. FletcherJ. Dressings: Cutting and application guide.2007Available from: http://www.worldwidewounds.com/2007/may/Fletcher/Fletcher-Dressings-Cutting-uide.html
  53. WaringM. ButcherM. An investigation into the conformability of wound dressings.Wounds UK.2011731424
    [Google Scholar]
  54. MughalA.A. HughesT.M. StoneN.M. Allergic contact dermatitis to Lyofoam polyurethane dressing used as padding by a patient with above-knee amputation.Dermatitis2014251444510.1097/DER.0b013e3182a5d85224407068
    [Google Scholar]
  55. Available from: https://www.woundsource.com/patientcondition/woundodor
  56. BordaL.J. MacquhaeF.E. KirsnerR.S. Wound dressings: A comprehensive review.Curr. Dermatol. Rep.20165428729710.1007/s13671‑016‑0162‑5
    [Google Scholar]
  57. LiangW. NiN. HuangY. LinC. An advanced review: Polyurethane-related dressings for skin wound repair.Polymers20231521430110.3390/polym1521430137959982
    [Google Scholar]
  58. FierascuR.C. LungulescuE.M. FierascuI. StanM.S. VoineaI.C. DumitrescuS.I. Metal and metal oxide nanoparticle incorporation in polyurethane foams: A solution for future antimicrobial materials?Polymers20231523457010.3390/polym1523457038231979
    [Google Scholar]
  59. RaghunathA. PerumalE. Metal oxide nanoparticles as antimicrobial agents: A promise for the future.Int. J. Antimicrob. Agents201749213715210.1016/j.ijantimicag.2016.11.01128089172
    [Google Scholar]
  60. MorenaA.G. StefanovI. IvanovaK. Pérez-RafaelS. Sánchez-SotoM. TzanovT. Antibacterial polyurethane foams with incorporated lignin-capped silver nanoparticles for chronic wound treatment.Ind. Eng. Chem. Res.202059104504451410.1021/acs.iecr.9b06362
    [Google Scholar]
  61. LiC. YeH. GeS. YaoY. AshokB. HariramN. LiuH. TianH. HeY. GuoG. RajuluA.V. Fabrication and properties of antimicrobial flexible nanocomposite polyurethane foams with in situ generated copper nanoparticles.J. Mater. Res. Technol.2022193603361510.1016/j.jmrt.2022.06.115
    [Google Scholar]
  62. TomaselliS BertiniF CifarelliA VignaliA RagonaL LosioS. Antibacterial properties of polyurethane foams additivated with terpenes from a bio-based polyol.Molecules2023284196610.3390/molecules28041966
    [Google Scholar]
  63. LungulescuE.M. FierascuR.C. StanM.S. FierascuI. RadoiE.A. BanciuC.A. GaborR.A. FistosT. MarutescuL. PopaM. VoineaI.C. VoicuS.N. NiculaN.O. Gamma radiation-mediated synthesis of antimicrobial polyurethane foam/silver nanoparticles.Polymers20241610136910.3390/polym1610136938794562
    [Google Scholar]
  64. PayneJ.L. AmbrosioA.M. Evaluation of an antimicrobial silver foam dressing for use with V.A.C.® therapy: Morphological, mechanical, and antimicrobial properties.J. Biomed. Mater. Res. B Appl. Biomater.200989B121722210.1002/jbm.b.3120919274724
    [Google Scholar]
  65. SachsenmaierS. PeschelA. IpachI. KlubaT. Antibacterial potency of V.A.C. GranuFoam Silver® Dressing.Injury201344101363136710.1016/j.injury.2013.07.01423928285
    [Google Scholar]
  66. ParkJ.K. LeeJ.H. KwakJ.J. ShinH.B. JungH.W. BaeS.W. YeoE.D. LeeY.K. YangS.S. Evaluation of an antimicrobial silver foam dressing.Wounds201325615315925866981
    [Google Scholar]
  67. JoshiK.M. ShelarA. KasabeU. NikamL.K. PawarR.A. SangshettiJ. KaleB.B. SinghA.V. PatilR. ChaskarM.G. Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles.Biomater. Adv.202213411259210.1016/j.msec.2021.11259235527134
    [Google Scholar]
  68. ToczekJ. SadłochaM. MajorK. StojkoR. Benefit of silver and gold nanoparticles in wound healing process after endometrial cancer protocol.Biomedicines202210367910.3390/biomedicines1003067935327481
    [Google Scholar]
  69. HuynhP.T. NguyenG.D. TranK.T.L. HoT.M. LamV.Q. BownM. NgoT.V.K. Study on green preparation of multi-branched gold nanoparticles loaded flexible polyurethane foam for antibacterial dressing.Nanocomposites20228116717410.1080/20550324.2022.2091340
    [Google Scholar]
  70. KulkarniA. Diehl-JonesW. GhanbarS. LiuS. Layer-by-layer assembly of epidermal growth factors on polyurethane films for wound closure.J. Biomater. Appl.201429227829010.1177/088532821452305824525716
    [Google Scholar]
  71. PyunD.G. ChoiH.J. YoonH.S. ThambiT. LeeD.S. Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: Synthesis, characterization, in vitro and in vivo studies.Colloids Surf. B Biointerfaces201513569970610.1016/j.colsurfb.2015.08.02926340359
    [Google Scholar]
  72. ChoiH.J. ThambiT. YangY.H. BangS.I. KimB.S. PyunD.G. LeeD.S. AgNP and rhEGF-incorporating synergistic polyurethane foam as a dressing material for scar-free healing of diabetic wounds.RSC Advances2017723137141372510.1039/C6RA27322J
    [Google Scholar]
  73. ZhangQ. ChenJ. ZhangT. LiuD. LongX. LiJ. JiangL. WangY. TanH. A bilayer polyurethane patch with sustained growth factor release and antibacteria for re-epithelization of large-scale oral mucosal defects.ACS Appl. Mater. Interfaces20241634445614457410.1021/acsami.4c0984139152904
    [Google Scholar]
  74. ZanettaM. QuiriciN. DemarosiF. TanziM.C. RimondiniL. FarèS. Ability of polyurethane foams to support cell proliferation and the differentiation of MSCs into osteoblasts.Acta Biomater.2009541126113610.1016/j.actbio.2008.12.00319147418
    [Google Scholar]
  75. NamviriyachoteN. MuangmanP. ChinaroonchaiK. ChuntrasakulC. RitthidejG.C. Polyurethane-biomacromolecule combined foam dressing containing asiaticoside: Fabrication, characterization and clinical efficacy for traumatic dermal wound treatment.Int. J. Biol. Macromol.202014351052010.1016/j.ijbiomac.2019.10.16631778697
    [Google Scholar]
  76. HaH.J. YangJ.Y. KimC.W. JeongS.H. HwangE. Comparison of satisfaction levels between conventional and silicone-adhesive polyurethane foam materials in patients with skin wounds.J. Wound Manage. Res.202117316316810.22467/jwmr.2021.01529
    [Google Scholar]
  77. WoodL.L. A hydrophilic polyurethane foam system.J. Cell. Plast.197612528528810.1177/0021955X7601200504
    [Google Scholar]
  78. JungJ.A. YooK.H. HanS.K. DhongE.S. KimW.K. Evaluation of the efficacy of highly hydrophilic polyurethane foam dressing in treating a diabetic foot ulcer.Adv. Skin Wound Care2016291254655510.1097/01.ASW.0000508178.67430.3427846028
    [Google Scholar]
  79. BorregueroAM ZamoraJ GarridoI CarmonaM RodríguezJF Improving the hydrophilicity of flexible polyurethane foams with sodium acrylate polymer.Materials2021149219710.3390/ma14092197
    [Google Scholar]
  80. KwonO.J. OhS.T. LeeS.D. LeeN-R. ShinC-H. ParkJ-S. Hydrophilic and flexible polyurethane foams using sodium alginate as polyol: Effects of PEG molecular weight and cross-linking agent content on water absorbency.Fibers Polym.20078434735510.1007/BF02875822
    [Google Scholar]
  81. NamgoongS. JungJ.E. YoonY.D. HanS.K. LeeY.N. SonJ.W. Highly hydrophilic polyurethane foam dressing versus early hydrophilic polyurethane foam dressing on skin graft donor site healing in patients with diabetes: An exploratory clinical trial.Adv. Skin Wound Care202033631932310.1097/01.ASW.0000661792.04223.0232427788
    [Google Scholar]
  82. SonarS. KumarN. AliN. MoharanaA. TsD. A comprehensive review on wound dressing usage in clinical settings.Int. J. Surg. Med.202280110.5455/ijsm.136‑1648103567
    [Google Scholar]
  83. HodgeJ.G. ZamierowskiD.S. RobinsonJ.L. MellottA.J. Evaluating polymeric biomaterials to improve next generation wound dressing design.Biomater. Res.20222615010.1186/s40824‑022‑00291‑536183134
    [Google Scholar]
  84. LaoL ShouD WuYS FanJT Skin-like fabric for personal moisture management.Sci. Adv.2020614001310.1126/sciadv.aaz0013
    [Google Scholar]
  85. LiangD. LuZ. YangH. GaoJ. ChenR. Novel asymmetric wettable AgNPs/Chitosan wound dressing: in vitro and in vivo evaluation.ACS Appl. Mater. Interfaces2016863958396810.1021/acsami.5b1116026800283
    [Google Scholar]
  86. ShiY. LiY. WuJ. WangW. DongA. ZhangJ. A novel transdermal drug delivery system based on self-adhesive Janus nanofibrous film with high breathability and monodirectional water-penetration.J. Biomater. Sci. Polym. Ed.201425771372810.1080/09205063.2014.89759624641249
    [Google Scholar]
  87. White Richard Evidence for atraumatic soft silicone dressing use.Wounds-UK20051
    [Google Scholar]
  88. HuangC. LeavittT. BayerL.R. OrgillD.P. Effect of negative pressure wound therapy on wound healing.Curr. Probl. Surg.201451730133110.1067/j.cpsurg.2014.04.00124935079
    [Google Scholar]
  89. Use of foam in negative pressure wound therapy (NPWT).2023Available from: https://foamtecmedical.com/use-of-foam-in-negative-pressure-wound-therapy-npwt
  90. LiS JulianeH PatelMK Product overview and market projection of emerging bio-based plastics.2009Available from: https://www.uu.nl/sites/default/files/copernicus_probip2009_final_june_2009_revised_in_november_09.pdf
  91. KyriacosD. Biobased polyols for industrial polymers.1st edHoboken, NJJohn Wiley & Sons202010.1002/9781119620358
    [Google Scholar]
  92. GuptaR.K. IonescuM. WanX. RadojcicD. PetroviƈZ.S. Synthesis of a novel limonene based mannich polyol for rigid polyurethane foams.J. Polym. Environ.201523226126810.1007/s10924‑015‑0717‑8
    [Google Scholar]
  93. GandhiT.S. PatelM.R. DholakiyaB.Z. Synthesis of cashew Mannich polyol via a three step continuous route and development of PU rigid foams with mechanical, thermal and fire studies.J. Polym. Eng.201535653354410.1515/polyeng‑2014‑0176
    [Google Scholar]
  94. IsikgorF.H. BecerC.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers.Polym. Chem.20156254497455910.1039/C5PY00263J
    [Google Scholar]
  95. Morales-CerradaR. TavernierR. CaillolS. Fully bio-based thermosetting polyurethanes from bio-based polyols and isocyanates.Polymers2021138125510.3390/polym1308125533924399
    [Google Scholar]
  96. TolonateTM X Flo 100.Available from: https://www.vencorex.com/product/
  97. Desmodur® CQ N 7300.Available from: https://solutions.covestro.com/en/products/desmodur/desmodur-cq-n-7300
  98. StabioTM.Available from: https://jp.mitsuichemicals.com/en/service/product/stabio/index.html
  99. We go beyond.Available from: https://corporate.evonik.com/en/products-and-solutions/industry-teams/bau/Products/vestanat
  100. DelavardeA. SavinG. DerkenneP. BoursierM. Morales-CerradaR. NotteletB. PinaudJ. CaillolS. Sustainable polyurethanes: Toward new cutting-edge opportunities.Prog. Polym. Sci.202415110180510.1016/j.progpolymsci.2024.101805
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031357924250408063448
Loading
/content/journals/ddl/10.2174/0122103031357924250408063448
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test