Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Background

Berberine is an isoquinoline alkaloid with potent anti-inflammatory effects. However, its therapeutic efficacy is often restricted by its poor solubility, absorption, and permeability, especially in topical applications. Transferosomes are elastic vesicular carriers with high skin permeability values and retention, making them suitable for encapsulating hydrophilic and lipophilic actives.

Objectives

The objective of this research was to develop a transferosome-based topical gel formulation of Berberine hydrochloride (BER) to improve its skin permeability and anti-inflammatory efficacy.

Methods

The thin film hydration method was used to formulate the BER transferosomes. The effects of independent variables, amount of BER in lipid phase (X), and lipid (Phospholipon 90G) to surfactant ratio (X) on BER entrapment and vesicle size were studied using face-centered central composite design. The characterization was performed using differential scanning calorimetry, transmission electron microscopy, and X-ray diffraction. The optimized batch (F5) was incorporated in Carbopol gel and further investigated for viscosity, and diffusion, skin retention by tape stripping, and anti-inflammatory efficiency.

Results

The formulation optimized with 50 mg of drug and a 5:1 lipid-to-surfactant ratio (F5) demonstrated higher drug entrapment efficiency (72.11%) and lower vesicle size (77.9 nm). TEM validated the spherical vesicle morphology, whereas DSC and XRD analysis confirmed the molecular entrapment of BER within the phospholipid vesicles. The transferosomal gel demonstrated improved BER diffusion (0.63 mg/cm2) confirmed by and diffusion experiments that revealed a 6-fold increase in flux and permeability coefficient (0.1053 mg. cm-2.h-1). The drug release from transferosome gel was non-Fickian in nature (n = 0.6575), indicating an integration of diffusion and erosion processes. Furthermore, BER transferosomal gel displayed substantial anti-inflammatory activity in rats ( < 0.001).

Conclusion

The findings demonstrated the potential of transferosomal gel as a promising approach for efficient drug delivery and therapeutic efficacy.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031316213241026192712
2024-11-01
2025-10-31
Loading full text...

Full text loading...

References

  1. BegA.A. BaltimoreD. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death.Science1996274528878278410.1126/science.274.5288.7828864118
    [Google Scholar]
  2. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.2320829467962
    [Google Scholar]
  3. PunchardN.A. WhelanC.J. AdcockI. The journal of inflammation.J. Inflamm. (Lond.)200411110.1186/1476‑9255‑1‑115813979
    [Google Scholar]
  4. YatooM.I. GopalakrishnanA. SaxenaA. ParrayO.R. TufaniN.A. ChakrabortyS. TiwariR. DhamaK. IqbalH.M.N. Anti-inflammatory drugs and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders - A review.Recent Pat. Inflamm. Allergy Drug Discov.2018121395810.2174/1872213X1266618011515363529336271
    [Google Scholar]
  5. RouschopK.M.A. LeemansJ.C. Ischemia–reperfusion treatment: Opportunities point to modulation of the inflammatory response.Kidney Int.200873121333133510.1038/ki.2008.15618516056
    [Google Scholar]
  6. WangX. FengS. DingN. HeY. LiC. LiM. DingX. DingH. LiJ. WuJ. LiY. Anti-inflammatory effects of berberine hydrochloride in an LPS-induced murine model of mastitis.Evid. Based Complement. Alternat. Med.201820181516431410.1155/2018/516431429849710
    [Google Scholar]
  7. FangX. WuH. WeiJ. MiaoR. ZhangY. TianJ. Research progress on the pharmacological effects of berberine targeting mitochondria.Front. Endocrinol. (Lausanne)20221398214510.3389/fendo.2022.98214536034426
    [Google Scholar]
  8. ZhuC. LiK. PengX.X. YaoT.J. WangZ.Y. HuP. CaiD. LiuH.Y. Berberine a traditional Chinese drug repurposing: Its actions in inflammation-associated ulcerative colitis and cancer therapy.Front. Immunol.202213108378810.3389/fimmu.2022.108378836561763
    [Google Scholar]
  9. LinJ. CaiQ. LiangB. WuL. ZhuangY. HeY. LinW. Berberine, a traditional chinese medicine, reduces inflammation in adipose tissue, polarizes M2 macrophages, and increases energy expenditure in mice fed a high-fat diet.Med. Sci. Monit.201925879710.12659/MSM.91184930606998
    [Google Scholar]
  10. GaoY. WangF. SongY. LiuH. The status of and trends in the pharmacology of berberine: A bibliometric review.Chin. Med.2020151710.1186/s13020‑020‑0288‑z31988653
    [Google Scholar]
  11. LiQ. ZhaoH. ChenW. HuangP. Berberine induces apoptosis and arrests the cell cycle in multiple cancer cell lines.Arch. Med. Sci.20231951530153710.5114/aoms/13296937732040
    [Google Scholar]
  12. WangY. LiuY. DuX. MaH. YaoJ. The anti-cancer mechanisms of berberine: A review.Cancer Manag. Res.20201269570210.2147/CMAR.S24232932099466
    [Google Scholar]
  13. AlmatroodiS.A. AlsahliM.A. RahmaniA.H. Berberine: An important emphasis on its anticancer effects through modulation of various cell signaling pathways.Molecules20222718588910.3390/molecules2718588936144625
    [Google Scholar]
  14. FitzpatrickL.R. WoldemariamT. Small-molecule drugs for the treatment of inflammatory bowel disease.Comprehensive Medicinal Chemistry III. ChackalamannilS. RotellaD. WardS.E. OxfordElsevier201749551010.1016/B978‑0‑12‑409547‑2.12404‑7
    [Google Scholar]
  15. LiZ. GengY.N. JiangJ.D. KongW.J. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus.Evid. Based Complement. Alternat. Med.20142014128926410.1155/2014/28926424669227
    [Google Scholar]
  16. ZouK. LiZ. ZhangY. ZhangH. LiB. ZhuW. ShiJ. JiaQ. LiY. Advances in the study of berberine and its derivatives: A focus on anti-inflammatory and anti-tumor effects in the digestive system.Acta Pharmacol. Sin.201738215716710.1038/aps.2016.12527917872
    [Google Scholar]
  17. AzadiR. MousaviS.E. KazemiN.M. Yousefi-ManeshH. RezayatS.M. JaafariM.R. Anti-inflammatory efficacy of Berberine Nanomicelle for improvement of cerebral ischemia: Formulation, characterization and evaluation in bilateral common carotid artery occlusion rat model.BMC Pharmacol. Toxicol.20212215410.1186/s40360‑021‑00525‑734600570
    [Google Scholar]
  18. RathodK. AhmedH. GomteS.S. ChouguleS. Exploring the potential of anti-inflammatory activity of berberine chloride-loaded mesoporous silica nanoparticles in carrageenan-induced rat paw edema model.J. Solid State Chem.202331712363910.1016/j.jssc.2022.123639
    [Google Scholar]
  19. GuptaB.M.D. DikshitB.B. Berberine in the treatment of oriental sore.Ind. Med. Gaz.1929642677029009542
    [Google Scholar]
  20. WangC. ChengY. ZhangY. JinH. ZuoZ. WangA. HuangJ. JiangJ. KongW. Berberine and its main metabolite berberrubine inhibit platelet activation through suppressing the class I PI3Kβ/Rasa3/Rap1 pathway.Front. Pharmacol.20211273460310.3389/fphar.2021.73460334690771
    [Google Scholar]
  21. WangC. WuY.B. WangA.P. JiangJ.D. KongW.J. Evaluation of anticoagulant and antithrombotic activities of berberine: A focus on the ameliorative effect on blood hypercoagulation.Int. J. Pharmacol.20181481087109810.3923/ijp.2018.1087.1098
    [Google Scholar]
  22. WangX. HeX. ZhangC.F. GuoC.R. WangC.Z. YuanC.S. Anti-arthritic effect of berberine on adjuvant-induced rheumatoid arthritis in rats.Biomed. Pharmacother.20178988789310.1016/j.biopha.2017.02.09928282791
    [Google Scholar]
  23. HuangD. WuF. ZhangA. SunH. WangX. Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential.Pharmacol. Res.202116910566710.1016/j.phrs.2021.10566733989762
    [Google Scholar]
  24. ShenP. JiaoY. MiaoL. ChenJ. Momtazi-BorojeniA.A. Immunomodulatory effects of berberine on the inflamed joint reveal new therapeutic targets for rheumatoid arthritis management.J. Cell. Mol. Med.20202421122341224510.1111/jcmm.1580332969153
    [Google Scholar]
  25. VitaA.A. AljobailyH. LyonsD.O. PullenN.A. Berberine delays onset of collagen-induced arthritis through T cell suppression.Int. J. Mol. Sci.2021227352210.3390/ijms2207352233805383
    [Google Scholar]
  26. MehrzadiS. FatemiI. EsmaeilizadehM. GhaznaviH. KalantarH. GoudarziM. Hepatoprotective effect of berberine against methotrexate induced liver toxicity in rats.Biomed. Pharmacother.20189723323910.1016/j.biopha.2017.10.11329091871
    [Google Scholar]
  27. LiJ. PanY. KanM. XiaoX. WangY. GuanF. ZhangX. ChenL. Hepatoprotective effects of berberine on liver fibrosis via activation of AMP-activated protein kinase.Life Sci.2014981243010.1016/j.lfs.2013.12.21124412384
    [Google Scholar]
  28. GermoushM.O. MahmoudA.M. Berberine mitigates cyclophosphamide-induced hepatotoxicity by modulating antioxidant status and inflammatory cytokines.J. Cancer Res. Clin. Oncol.201414071103110910.1007/s00432‑014‑1665‑824744190
    [Google Scholar]
  29. Di PierroF. PutignanoP. MontesiL. MoscatielloS. Marchesini ReggianiG. VillanovaN. Preliminary study about the possible glycemic clinical advantage in using a fixed combination of Berberis aristata and Silybum marianum standardized extracts versus only Berberis aristata in patients with type 2 diabetes.Clin. Pharmacol.2013516717410.2147/CPAA.S5430824277991
    [Google Scholar]
  30. YinJ. XingH. YeJ. Efficacy of berberine in patients with type 2 diabetes mellitus.Metabolism200857571271710.1016/j.metabol.2008.01.01318442638
    [Google Scholar]
  31. YinJ. YeJ. JiaW. Effects and mechanisms of berberine in diabetes treatment.Acta Pharm. Sin. B20122432733410.1016/j.apsb.2012.06.003
    [Google Scholar]
  32. CiceroA. F. G. TartagniE. Antidiabetic properties of berberine: From cellular pharmacology to clinical effectsHosp Pract 2012402566310.3810/hp.2012.04.970
    [Google Scholar]
  33. UtamiA.R. MaksumI.P. DeawatiY. Berberine and its study as an antidiabetic compound.Biology202312797310.3390/biology1207097337508403
    [Google Scholar]
  34. KongW.J. WeiJ. ZuoZ.Y. WangY.M. SongD.Q. YouX.F. ZhaoL.X. PanH.N. JiangJ.D. Combination of simvastatin with berberine improves the lipid-lowering efficacy.Metabolism20085781029103710.1016/j.metabol.2008.01.03718640378
    [Google Scholar]
  35. KongW. WeiJ. AbidiP. LinM. InabaS. LiC. WangY. WangZ. SiS. PanH. WangS. WuJ. WangY. LiZ. LiuJ. JiangJ.D. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins.Nat. Med.200410121344135110.1038/nm113515531889
    [Google Scholar]
  36. KosalecI. JembrekM.J. VlainićJ. The spectrum of berberine antibacterial and antifungal activities.Promising Antimicrobials from Natural Products. RaiM. KosalecI. ChamSpringer International Publishing202211913210.1007/978‑3‑030‑83504‑0_7
    [Google Scholar]
  37. WuS. YangK. HongY. GongY. NiJ. YangN. DingW. A new perspective on the antimicrobial mechanism of berberine Hydrochloride against Staphylococcus aureus revealed by untargeted metabolomic studies.Front. Microbiol.20221391741410.3389/fmicb.2022.91741435910599
    [Google Scholar]
  38. DashS. KumarM. PareekN. Enhanced antibacterial potential of berberine via synergism with chitosan nanoparticles.Mater. Today Proc.20203164064510.1016/j.matpr.2020.05.506
    [Google Scholar]
  39. CalvoA. MorenoE. LarreaE. SanmartínC. IracheJ.M. EspuelasS. Berberine-loaded liposomes for the treatment of Leishmania infantum-Infected BALB/c mice.Pharmaceutics202012985810.3390/pharmaceutics1209085832916948
    [Google Scholar]
  40. SahaP. BhattacharjeeS. SarkarA. MannaA. MajumderS. ChatterjeeM. Berberine chloride mediates its anti-leishmanial activity via differential regulation of the mitogen activated protein kinase pathway in macrophages.PLoS One201164e1846710.1371/journal.pone.001846721483684
    [Google Scholar]
  41. ChenF.L. YangZ.H. LiuY. LiL.X. LiangW.C. WangX.C. ZhouW.B. YangY.H. HuR.M. Berberine inhibits the expression of TNFα, MCP-1, and IL-6 in AcLDL-stimulated macrophages through PPARγ pathway.Endocrine200833333133710.1007/s12020‑008‑9089‑319034703
    [Google Scholar]
  42. MaJ. ChanC.C. HuangW.C. KuoM.L. Berberine inhibits pro-inflammatory Cytokine-induced IL-6 and CCL11 production via modulation of STAT6 pathway in human bronchial epithelial cells.Int. J. Med. Sci.202017101464147310.7150/ijms.4540032624703
    [Google Scholar]
  43. WangQ. QiJ. HuR. ChenY. KijlstraA. YangP. Effect of berberine on proinflammatory cytokine production by ARPE-19 cells following stimulation with tumor necrosis factor-α.Invest. Ophthalmol. Vis. Sci.20125342395240210.1167/iovs.11‑898222427564
    [Google Scholar]
  44. LiN. GuL. QuL. GongJ. LiQ. ZhuW. LiJ. Berberine attenuates pro-inflammatory cytokine-induced tight junction disruption in an in vitro model of intestinal epithelial cells.Eur. J. Pharm. Sci.20104011810.1016/j.ejps.2010.02.00120149867
    [Google Scholar]
  45. ZhangM.F. ShenY.Q. [Antidiarrheal and anti-inflammatory effects of berberine].Chung Kuo Yao Li Hsueh Pao1989102174176[Antidiarrheal and anti-inflammatory effects of berberine].2816420
    [Google Scholar]
  46. ReddiK. LiH. LiW. TetaliS. Berberine, A phytoalkaloid, inhibits inflammatory response induced by LPS through NF-Kappaβ pathway: Possible involvement of the IKKα.Molecules20212616473310.3390/molecules2616473334443321
    [Google Scholar]
  47. JeongH.W. HsuK.C. LeeJ.W. HamM. HuhJ.Y. ShinH.J. KimW.S. KimJ.B. Berberine suppresses proinflammatory responses through AMPK activation in macrophages.Am. J. Physiol. Endocrinol. Metab.20092964E955E96410.1152/ajpendo.90599.200819208854
    [Google Scholar]
  48. YanF. WangL. ShiY. CaoH. LiuL. WashingtonM.K. ChaturvediR. IsraelD.A. CaoH. WangB. PeekR.M.Jr WilsonK.T. PolkD.B. Berberine promotes recovery of colitis and inhibits inflammatory responses in colonic macrophages and epithelial cells in DSS-treated mice.Am. J. Physiol. Gastrointest. Liver Physiol.20123025G504G51410.1152/ajpgi.00312.201122173918
    [Google Scholar]
  49. YangF. GaoR. LuoX. LiuR. XiongD. Berberine influences multiple diseases by modifying gut microbiota.Front. Nutr.202310118771810.3389/fnut.2023.118771837599699
    [Google Scholar]
  50. ZhangL. WuX. YangR. ChenF. LiaoY. ZhuZ. WuZ. SunX. WangL. Effects of berberine on the gastrointestinal microbiota.Front. Cell. Infect. Microbiol.20211058851710.3389/fcimb.2020.58851733680978
    [Google Scholar]
  51. ChengH. LiuJ. TanY. FengW. PengC. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine.J. Pharm. Anal.202212454155510.1016/j.jpha.2021.10.00336105164
    [Google Scholar]
  52. TianY. CaiJ. GuiW. NicholsR.G. KooI. ZhangJ. AnithaM. PattersonA.D. Berberine directly affects the gut microbiota to promote intestinal farnesoid x receptor activation.Drug Metab. Dispos.2019472869310.1124/dmd.118.08369130409838
    [Google Scholar]
  53. YangL. YuS. YangY. WuH. ZhangX. LeiY. LeiZ. Berberine improves liver injury induced glucose and lipid metabolic disorders via alleviating ER stress of hepatocytes and modulating gut microbiota in mice.Bioorg. Med. Chem.20225511659810.1016/j.bmc.2021.11659834979291
    [Google Scholar]
  54. WangL. SagadaG. XuB. ZhangJ. ShaoQ. Influence of dietary berberine on liver immune response and intestinal health of black sea bream (Acanthopagrus schlegelii) fed with normal and high-lipid diets.Aquacult. Nutr.2022202211510.1155/2022/6285266
    [Google Scholar]
  55. ZhouJ.Y. ZhouS.W. ZhangK.B. TangJ.L. GuangL.X. YingY. XuY. ZhangL. LiD.D. Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats.Biol. Pharm. Bull.20083161169117610.1248/bpb.31.116918520050
    [Google Scholar]
  56. QureshiM. QadirA. AqilM. SultanaY. WarsiM.H. IsmailM.V. TalegaonkarS. Berberine loaded dermal quality by design adapted chemically engineered lipid nano-constructs-gel formulation for the treatment of skin acne.J. Drug Deliv. Sci. Technol.20216610280510.1016/j.jddst.2021.102805
    [Google Scholar]
  57. AlexanderA. Ajazuddin PatelR.J. SarafS. SarafS. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives.J. Control. Release201624111012410.1016/j.jconrel.2016.09.01727663228
    [Google Scholar]
  58. RajanR. JoseS. Biju MukundV.P. VasudevanD. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation.J. Adv. Pharm. Technol. Res.20112313814310.4103/2231‑4040.8552422171309
    [Google Scholar]
  59. GuptaA. AggarwalG. SinglaS. AroraR. Transfersomes: A novel vesicular carrier for enhanced transdermal delivery of sertraline: Development, characterization, and performance evaluation.Sci. Pharm.20128041061108010.3797/scipharm.1208‑0223264950
    [Google Scholar]
  60. YuY.Q. YangX. WuX.F. FanY.B. Enhancing permeation of drug molecules across the skin via delivery in Nanocarriers: Novel strategies for effective transdermal applications.Front. Bioeng. Biotechnol.2021964655410.3389/fbioe.2021.64655433855015
    [Google Scholar]
  61. MirhadiE. RezaeeM. Malaekeh-NikoueiB. Nano strategies for berberine delivery, a natural alkaloid of Berberis.Biomed. Pharmacother.201810446547310.1016/j.biopha.2018.05.06729793179
    [Google Scholar]
  62. BehlT. SinghS. SharmaN. ZahoorI. AlbarratiA. AlbrattyM. MerayaA.M. NajmiA. BungauS. Expatiating the pharmacological and nanotechnological aspects of the alkaloidal drug berberine: Current and future trends.Molecules20222712370510.3390/molecules2712370535744831
    [Google Scholar]
  63. ChaudharyH. KohliK. KumarV. Nano-transfersomes as a novel carrier for transdermal delivery.Int. J. Pharm.2013454136738010.1016/j.ijpharm.2013.07.03123871739
    [Google Scholar]
  64. ElkomyM.H. El MenshaweS.F. Abou-TalebH.A. ElkarmalawyM.H. Loratadine bioavailability via buccal transferosomal gel: Formulation, statistical optimization, in vitro / in vivo characterization, and pharmacokinetics in human volunteers.Drug Deliv.201724178179110.1080/10717544.2017.132106128480758
    [Google Scholar]
  65. MalakarJ. SenS.O. NayakA.K. SenK.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery.Saudi Pharm. J.201220435536310.1016/j.jsps.2012.02.00123960810
    [Google Scholar]
  66. DasB. SenS.O. MajiR. NayakA.K. SenK.K. Transferosomal gel for transdermal delivery of risperidone: Formulation optimization and ex-vivo permeation.J. Drug Deliv. Sci. Technol.201738597110.1016/j.jddst.2017.01.006
    [Google Scholar]
  67. TsaiC.J. HsuL.R. FangJ.Y. LinH.H. Chitosan hydrogel as a base for transdermal delivery of berberine and its evaluation in rat skin.Biol. Pharm. Bull.199922439740110.1248/bpb.22.39710328561
    [Google Scholar]
  68. AL ShuwailiA.H. RasoolB.K.A. AbdulrasoolA.A. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline.Eur. J. Pharm. Biopharm.201610210111410.1016/j.ejpb.2016.02.01326925505
    [Google Scholar]
  69. TelangeD.R. NirgulkarS.B. UmekarM.J. PatilA.T. PetheA.M. BaliN.R. Enhanced transdermal permeation and anti-inflammatory potential of phospholipids complex-loaded matrix film of umbelliferone: Formulation development, physico-chemical and functional characterization.Eur. J. Pharm. Sci.2019131233810.1016/j.ejps.2019.02.00630735820
    [Google Scholar]
  70. DeshkarS.S. PalveV.K. Formulation and development of thermosensitive cyclodextrin-based in situ gel of voriconazole for vaginal delivery.J. Drug Deliv. Sci. Technol.20194927728510.1016/j.jddst.2018.11.023
    [Google Scholar]
  71. JoshiA. KaurJ. KulkarniR. ChaudhariR. in-vitro and Ex- vivo evaluation of Raloxifene hydrochloride delivery using nano- transfersome based formulations.J. Drug Deliv. Sci. Technol.20184515115810.1016/j.jddst.2018.02.006
    [Google Scholar]
  72. NazI. MasoudM.S. ChauhdaryZ. ShahM.A. PanichayupakaranantP. Anti-inflammatory potential of berberine-rich extract via modulation of inflammation biomarkers.J. Food Biochem.20224612e1438910.1111/jfbc.1438936121315
    [Google Scholar]
  73. AbdellatifM.M. KhalilI.A. KhalilM.A.F. Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: in-vitro, ex-vivo and in-vivo evaluation.Int. J. Pharm.20175271-211110.1016/j.ijpharm.2017.05.02928522423
    [Google Scholar]
  74. AhadA. RaishM. Al-MohizeaA.M. Al-JenoobiF.I. AlamM.A. Enhanced anti-inflammatory activity of carbopol loaded meloxicam nanoethosomes gel.Int. J. Biol. Macromol.2014679910410.1016/j.ijbiomac.2014.03.01124657163
    [Google Scholar]
  75. ElmowafyM. SamyA. AbdelazizA.E. ShalabyK. SalamaA. RaslanM.A. AbdelgawadM.A. Polymeric nanoparticles based topical gel of poorly soluble drug: Formulation, ex-vivo and in vivo evaluation.Beni. Suef Univ. J. Basic Appl. Sci.20176218419110.1016/j.bjbas.2017.03.004
    [Google Scholar]
  76. AdnanM. AfzalO. S A AltamimiA. AlamriM.A. HaiderT. Faheem HaiderM. Development and optimization of transethosomal gel of apigenin for topical delivery: in-vitro, ex- vivo and cell line assessment.Int. J. Pharm.202363112250610.1016/j.ijpharm.2022.12250636535455
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031316213241026192712
Loading
/content/journals/ddl/10.2174/0122103031316213241026192712
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Berberine; phospholipon; skin permeation; topical delivery; transferosome; vesicular carrier
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test