Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Aims

The study aims to develop a 3rd generation amorphous solid dispersion (ASD) of Apremilast (APST) employing the Design of Experiment (DoE) methodology, followed by a thorough assessment including pharmacokinetics.

Background

APST, classified as a BCS-Class IV molecule due to its low solubility and permeability, exhibits highly variable oral bioavailability across different species.

Objectives

In this study, a 3rd generation ASD of APST was developed using the DoE approach.

Methods

The miscibility of APST within polymers was assessed using solubility parameters and Flory Huggin equation. Phase solubility studies were conducted to identify the most suitable polymer-surfactant combination for maximizing drug solubility. The produced solid dispersions were characterized using FTIR, DSC, XRD, DVS, and SEM.

Results

The combination of APST and Soluplus® in a 1:5 ratio resulted in the highest improvement in solubility and dissolution, with vitamin E TGPS being identified as the most efficient surfactant. Stability studies were carried out, and findings revealed that the ASD remained stable under accelerated conditions for up to 3 months, suggesting its suitability for scaling up for industrial applications. predictions of the pharmacokinetics of APST following oral administration of solid dispersion formulations were determined by PBBM using GastroPlus™.

Conclusion

The simulation of oral absorption profiles for APST showed a significant improvement in both Cmax and AUC for the solid dispersion formulations compared to plain drugs. This study makes a significant contribution to the field of pharmaceutical science by addressing the formulation complexities inherent in poorly water-soluble compounds like APST.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031309026240905115815
2024-09-19
2025-06-17
Loading full text...

Full text loading...

References

  1. SchaferP. Apremilast mechanism of action and application to psoriasis and psoriatic arthritis.Biochem. Pharmacol.201283121583159010.1016/j.bcp.2012.01.00122257911
    [Google Scholar]
  2. WangF.Y. ZhangQ. ZhangZ. GongX. WangJ.R. MeiX. Solid-state characterization and solubility enhancement of apremilast drug–drug cocrystals.CrystEngComm201820395945594810.1039/C8CE00689J
    [Google Scholar]
  3. SahaS.K. JoshiA. SinghR. DubeyK. Review of industrially recognized polymers and manufacturing processes for amorphous solid dispersion based formulations.Pharm. Dev. Technol.202328767869610.1080/10837450.2023.223359537427544
    [Google Scholar]
  4. HallouardF. MehenniL. Lahiani-SkibaM. AnouarY. SkibaM. Solid dispersions for oral administration: An overview of the methods for their preparation.Curr. Pharm. Des.201622324942495810.2174/138161282266616072609591627464728
    [Google Scholar]
  5. Van den MooterG. The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate.Drug Discov. Today. Technol.201292e79e8510.1016/j.ddtec.2011.10.00224064267
    [Google Scholar]
  6. HiguchiT. Connors.A. L. Phase Solubility Techniques1965
    [Google Scholar]
  7. YangL. WuP. XuJ. XieD. WangZ. WangQ. ChenY. LiC.H. ZhangJ. ChenH. QuanG. Development of apremilast solid dispersion using TPGS and PVPVA with enhanced solubility and bioavailability.AAPS PharmSciTech202122414210.1208/s12249‑021‑02005‑x33893566
    [Google Scholar]
  8. MuvvaA. LakshmanD. DwibhashyamV.S.N.M. DengaleS. LewisS.A. In vitro-in silico evaluation of Apremilast solid dispersions preparedvia corotating twin screw extruder.J. Drug Deliv. Sci. Technol.20205910184410.1016/j.jddst.2020.101844
    [Google Scholar]
  9. ZhangQ. DurigT. BlassB. FassihiR. Development of an amorphous based sustained release system for apremilast a selective phosphodiesterase 4 (PDE4) inhibitor.Int. J. Pharm.202261512151610.1016/j.ijpharm.2022.12151635091003
    [Google Scholar]
  10. MadanJ. PawarA. PatilR. AwasthiR. DuaK. Preparation, characterization and in vitro evaluation of tablets containing microwave-assisted solid dispersions of apremilast.Polim. Med.2019481172410.17219/pim/9980130657654
    [Google Scholar]
  11. FandaA. K. JadhavA. NarukaP. S. RanaD. BenivalD. Systematic development of hot melt extrusion-based amorphous solid dispersion: Integrating quality by design and in silico modeling.J. Pharm. Innov.202419311910.1007/s12247‑024‑09843‑9
    [Google Scholar]
  12. ShettyD. YarlagaddaD.L. BrahmamB. DengaleS.J. LewisS.A. Investigating the influence of the type of polymer on sustaining the supersaturation from amorphous solid dispersions of apremilast and its pharmacokinetics.J. Drug Deliv. Sci. Technol.20238410452010.1016/j.jddst.2023.104520
    [Google Scholar]
  13. MontgomeryD. C. Design and Analysis of Experiments.20128th Edition, John Wiley & Sons, New York
    [Google Scholar]
  14. RanaD. SalaveS. JainS. ShahR. BenivalD. Systematic development and optimization of teriparatide-loaded nanoliposomes employing quality by design approach for osteoporosis.J. Pharm. Innov.202211510.1007/S12247‑022‑09663‑9/METRICS
    [Google Scholar]
  15. TaylorL.S. ZografiG. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions.Pharm. Res.199714121691169810.1023/A:10121674103769453055
    [Google Scholar]
  16. BairdJ.A. Van EerdenbrughB. TaylorL.S. A classification system to assess the crystallization tendency of organic molecules from undercooled melts.J. Pharm. Sci.20109993787380610.1002/jps.2219720623696
    [Google Scholar]
  17. YuD. LiJ. WangH. PanH. LiT. BuT. ZhouW. ZhangX. Role of polymers in the physical and chemical stability of amorphous solid dispersion: A case study of carbamazepine.Eur. J. Pharm. Sci.202216910608610.1016/j.ejps.2021.10608634861411
    [Google Scholar]
  18. VAN KREVELEND. W. Cohesive properties and solubility.Properties of Polymers199718922510.1016/B978‑0‑444‑82877‑4.50014‑7
    [Google Scholar]
  19. SubrahmanyamR. GurikovP. DieringerP. SunM. SmirnovaI. On the road to biopolymer aerogels—dealing with the solvent.Gels20151229131310.3390/gels1020291
    [Google Scholar]
  20. TianY. QianK. JacobsE. AmstadE. JonesD. S. StellaL. AndrewsG. P. The investigation of flory–huggins interaction parameters for amorphous solid dispersion across the entire temperature and composition range.Pharmaceutics201911842010.3390/pharmaceutics11080420
    [Google Scholar]
  21. ZhaoY. InbarP. ChokshiH.P. MalickA.W. ChoiD.S. Prediction of the thermal phase diagram of amorphous solid dispersions by flory-huggins theory.J. Pharm. Sci.201110083196320710.1002/jps.2254121416468
    [Google Scholar]
  22. ShivakumarH.N. DesaiB.G. DeshmukhG. Design and optimization of diclofenac sodium controlled release solid dispersions by response surface methodology.Indian J. Pharm. Sci.2008701223010.4103/0250‑474X.4032720390076
    [Google Scholar]
  23. SalaveS. RanaD. KumarH. KommineniN. BenivalD. Anabolic peptide-enriched stealth nanoliposomes for effective anti-osteoporotic therapy.Pharmaceutics20221411241710.3390/pharmaceutics1411241736365235
    [Google Scholar]
  24. SahaS.K. JoshiA. SinghR. DubeyK. Enhanced solubility and dissolution by surface-modified solid dispersion of alectinib hydrochloride.International Journal of Applied Pharmaceutics202315425726510.22159/ijap.2023v15i4.47851
    [Google Scholar]
  25. SahaS.K. JoshiA. SinghR. JanaS. DubeyK. An investigation into solubility and dissolution improvement of alectinib hydrochloride as a third-generation amorphous solid dispersion.J. Drug Deliv. Sci. Technol.20238110425910.1016/j.jddst.2023.104259
    [Google Scholar]
  26. CrowleyK.J. ZografiG. Water vapor absorption into amorphous hydrophobic drug/poly(vinylpyrrolidone) dispersions.J. Pharm. Sci.200291102150216510.1002/jps.1020512226842
    [Google Scholar]
  27. GramagliaD. ConwayB.R. KettV.L. MalcolmR.K. BatchelorH.K. High speed DSC (hyper-DSC) as a tool to measure the solubility of a drug within a solid or semi-solid matrix.Int. J. Pharm.20053011-21510.1016/j.ijpharm.2005.04.03816061335
    [Google Scholar]
  28. MarsacP.J. ShamblinS.L. TaylorL.S. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility.Pharm. Res.200623102417242610.1007/s11095‑006‑9063‑916933098
    [Google Scholar]
  29. HaddadinR. QianF. DesikanS. HussainM. SmithR.L. Estimation of drug solubility in polymers via differential scanning calorimetry and utilization of the fox equation.Pharm. Dev. Technol.2009141192710.1080/1083745080240937018825543
    [Google Scholar]
  30. MahieuA. WillartJ.F. DudognonE. DanèdeF. DescampsM. A new protocol to determine the solubility of drugs into polymer matrixes.Mol. Pharm.201310256056610.1021/mp300225423253068
    [Google Scholar]
  31. TheeuwesF. HussainA. HiguchiT. Quantitative analytical method for determination of drugs dispersed in polymers using differential scanning calorimetry.J. Pharm. Sci.197463342742910.1002/jps.26006303254820377
    [Google Scholar]
  32. MarsacP.J. LiT. TaylorL.S. Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters.Pharm. Res.200926113915110.1007/s11095‑008‑9721‑118779927
    [Google Scholar]
  33. VermaS. RudrarajuV.S. A systematic approach to design and prepare solid dispersions of poorly water-soluble drug.AAPS PharmSciTech201415364165710.1208/s12249‑014‑0093‑z24563175
    [Google Scholar]
  34. SaokhamP. MuankaewC. JansookP. LoftssonT. Solubility of cyclodextrins and drug/cyclodextrin complexes.Molecules2018235116110.3390/molecules2305116129751694
    [Google Scholar]
  35. JMP HelpAvailable from: https://www.jmp.com/support/help/en/18.0/index.shtml#page/jmp/effect-summary-report.shtmlaccessed 2024-06-06
  36. LuY. TangN. LianR. QiJ. WuW. Understanding the relationship between wettability and dissolution of solid dispersion.Int. J. Pharm.20144651-2253110.1016/j.ijpharm.2014.02.00424524825
    [Google Scholar]
  37. WilsonV.R. LouX. OsterlingD.J. StolarikD.F. JenkinsG.J. NicholsB.L.B. DongY. EdgarK.J. ZhangG.G.Z. TaylorL.S. Amorphous solid dispersions of enzalutamide and novel polysaccharide derivatives: Investigation of relationships between polymer structure and performance.Sci. Rep.20201011853510.1038/s41598‑020‑75077‑733116200
    [Google Scholar]
  38. VasconcelosT. SarmentoB. CostaP. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs.Drug Discov. Today20071223-241068107510.1016/j.drudis.2007.09.00518061887
    [Google Scholar]
  39. DintamanJ.M. SilvermanJ.A. Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS).Pharm. Res.199916101550155610.1023/A:101500050362910554096
    [Google Scholar]
  40. BogmanK. Erne-BrandF. AlsenzJ. DreweJ. The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins.J. Pharm. Sci.20039261250126110.1002/jps.1039512761814
    [Google Scholar]
  41. CornaireG. WoodleyJ. HermannP. CloarecA. ArellanoC. HouinG. Impact of excipients on the absorption of P-glycoprotein substrates in vitroandin vivo.Int. J. Pharm.2004278111913110.1016/j.ijpharm.2004.03.00115158955
    [Google Scholar]
  42. RegeB.D. KaoJ.P.Y. PolliJ.E. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers.Eur. J. Pharm. Sci.2002164-523724610.1016/S0928‑0987(02)00055‑612208453
    [Google Scholar]
  43. MandeP.P. BachhavS.S. DevarajanP.V. Bioenhanced advanced third generation solid dispersion of tadalafil: Repurposing with improved therapy in pyelonephritis.Asian Journal of Pharmaceutical Sciences201712656957910.1016/j.ajps.2017.07.00132104370
    [Google Scholar]
  44. VasconcelosT. PrezottiF. AraújoF. LopesC. LoureiroA. MarquesS. SarmentoB. Third-generation solid dispersion combining Soluplus and poloxamer 407 enhances the oral bioavailability of resveratrol.Int. J. Pharm.202159512024510.1016/j.ijpharm.2021.12024533484925
    [Google Scholar]
  45. XiongK. MaX. CaoN. LiuL. SunL. ZouQ. WeiP. Identification, characterization and HPLC quantification of impurities in apremilast.Anal. Methods2016881889189710.1039/C5AY01759A
    [Google Scholar]
  46. HomayouniA. SadeghiF. VarshosazJ. Afrasiabi GarekaniH. NokhodchiA. Promising dissolution enhancement effect of soluplus on crystallized celecoxib obtained through antisolvent precipitation and high pressure homogenization techniques.Colloids Surf. B Biointerfaces201412259160010.1016/j.colsurfb.2014.07.03725124835
    [Google Scholar]
  47. TongM. WuX. ZhangS. HuaD. LiS. YuX. WangJ. ZhangZ. Application of TPGS as an efflux inhibitor and a plasticizer in baicalein solid dispersion.Eur. J. Pharm. Sci.202216810607110.1016/j.ejps.2021.10607134774716
    [Google Scholar]
  48. PatelN.G. SerajuddinA.T.M. Moisture sorption by polymeric excipients commonly used in amorphous solid dispersion and its effect on glass transition temperature: I. Polyvinylpyrrolidone and related copolymers.Int. J. Pharm.202261612153210.1016/j.ijpharm.2022.12153235121046
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031309026240905115815
Loading
/content/journals/ddl/10.2174/0122103031309026240905115815
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Amorphous solid dispersion; apremilast; DoE; GastroPlus; population modelling; simulation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test