Skip to content
2000
image of Development and Characterisation of a Self-Emulsifying Drug Delivery System for Furosemide: Enhancing Drug Release and Gastrointestinal Permeability

Abstract

Introduction

This study investigated the use of a self-microemulsifying drug delivery system to enhance the solubility and intestinal permeability of furosemide, a poorly soluble and poorly permeable drug with limited oral bioavailability.

Methods

Formulations were developed using selected surfactants and oils, guided by pseudo-ternary phase diagrams. Dispersions were characterised for droplet size, electrokinetic potential, and drug release. Permeability was assessed using ovine intestinal tissue in diffusion chambers.

Results

The optimised formulation (sesame oil 10%, Tween 80 45%, polyethylene glycol 400 45%) formed droplets with a mean size of 0.78 µm, a size distribution span of 0.320, and an electrokinetic potential of -23.5 ± 3.84 mV, indicating good physical stability. At pH 1.2, the formulation exhibited significantly faster drug release, with a mean drug release time of 8.16 ± 0.36 minutes, compared to 28.76 ± 1.33 minutes for the commercial tablet. , the cumulative transport of furosemide across duodenal tissue was 0.981 ± 0.42% for the formulation, compared to 0.434 ± 0.17% for the tablet. The apparent permeability of furosemide in the formulation was more than twofold higher (7.09 x 10-7 cm/s . 3.06 x 10-7 cm/s) than the commercial tablet.

Discussion

Smaller and uniformly distributed droplets enhanced drug release and intestinal transport. The improved solubility and permeability of the formulation indicate enhanced potential for oral absorption.

Conclusion

The self-microemulsifying system significantly improved furosemide’s solubility and intestinal permeability. Further studies are required to confirm improved oral bioavailability.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031389404251006094753
2025-10-21
2026-02-01
Loading full text...

Full text loading...

References

  1. Lou J. Duan H. Qin Q. Teng Z. Gan F. Zhou X. Zhou X. Advances in oral drug delivery systems: Challenges and opportunities. Pharmaceutics 2023 15 2 484 10.3390/pharmaceutics15020484 36839807
    [Google Scholar]
  2. Alqahtani M.S. Kazi M. Alsenaidy M.A. Ahmad M.Z. Advances in oral drug delivery. Front. Pharmacol. 2021 12 618411 10.3389/fphar.2021.618411 33679401
    [Google Scholar]
  3. Ingersoll K.S. Cohen J. The impact of medication regimen factors on adherence to chronic treatment: A review of literature. J. Behav. Med. 2008 31 3 213 224 10.1007/s10865‑007‑9147‑y 18202907
    [Google Scholar]
  4. Maher S. Brayden D.J. Overcoming poor permeability: Translating permeation enhancers for oral peptide delivery. Drug Discov. Today. Technol. 2012 9 2 e113 e119 10.1016/j.ddtec.2011.11.006 24064271
    [Google Scholar]
  5. Park K. Kwon I.C. Park K. Oral protein delivery: Current status and future prospect. React. Funct. Polym. 2011 71 3 280 287 10.1016/j.reactfunctpolym.2010.10.002
    [Google Scholar]
  6. Dokoumetzidis A. Kosmidis K. Argyrakis P. Macheras P. Modeling and Monte Carlo simulations in oral drug absorption. Basic Clin. Pharmacol. Toxicol. 2005 96 3 200 205 10.1111/j.1742‑7843.2005.pto960309.x 15733215
    [Google Scholar]
  7. Lin X. Skolnik S. Chen X. Wang J. Attenuation of intestinal absorption by major efflux transporters: Quantitative tools and strategies using a Caco-2 model. Drug Metab. Dispos. 2011 39 2 265 274 10.1124/dmd.110.034629 21051535
    [Google Scholar]
  8. Sims K.R. Liu Y. Hwang G. Jung H.I. Koo H. Benoit D.S.W. Enhanced design and formulation of nanoparticles for anti-biofilm drug delivery. Nanoscale 2019 11 1 219 236 10.1039/C8NR05784B 30525159
    [Google Scholar]
  9. Wang X. Qiu L. Wang X. Ouyang H. Li T. Han L. Zhang X. Xu W. Chu K. Evaluation of intestinal permeation enhancement with carboxymethyl chitosan-rhein polymeric micelles for oral delivery of paclitaxel. Int. J. Pharm. 2020 573 118840 10.1016/j.ijpharm.2019.118840 31715358
    [Google Scholar]
  10. Lahner E. Virili C. Santaguida M.G. Annibale B. Centanni M. Helicobacter pylori infection and drugs malabsorption. World J. Gastroenterol. 2014 20 30 10331 10337 10.3748/wjg.v20.i30.10331 25132749
    [Google Scholar]
  11. Shen L. Zhang Y. Feng J. Xu W. Chen Y. Li K. Yang X. Zhao Y. Ge S. Li J. Microencapsulation of ionic liquid by interfacial self-assembly of metal-phenolic network for efficient gastric absorption of oral drug delivery. ACS Appl. Mater. Interfaces 2022 14 40 45229 45239 10.1021/acsami.2c15599 36173185
    [Google Scholar]
  12. Biopharmaceutics classification system-based biowaivers 2019 Available from:https://database.ich.org/sites/default/files/M9_Guideline_Step4_2019_1116.pdf
  13. Amidon G.L. Lennernäs H. Shah V.P. Crison J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 1995 12 3 413 420 10.1023/A:1016212804288 7617530
    [Google Scholar]
  14. Dahan A. Khamis M. Agbaria R. Karaman R. Targeted prodrugs in oral drug delivery: The modern molecular biopharmaceutical approach. Expert Opin. Drug Deliv. 2012 9 8 1001 1013 10.1517/17425247.2012.697055 22703376
    [Google Scholar]
  15. Martinez M.N. Amidon G.L. A mechanistic approach to understanding the factors affecting drug absorption: A review of fundamentals. J. Clin. Pharmacol. 2002 42 6 620 643 10.1177/00970002042006005 12043951
    [Google Scholar]
  16. Van der Merwe C.J. Steyn J.D. Hamman J.H. Pheiffer W. Svitina H. Peterson B. Steenekamp J.H. Effect of functional excipients on the dissolution and membrane permeation of furosemide formulated into multiple-unit pellet system (MUPS) tablets. Pharm. Dev. Technol. 2022 27 5 572 587 10.1080/10837450.2022.2089898 35699215
    [Google Scholar]
  17. Sweetman S.C. Martindale The Complete Drug Reference. 33rd ed London The Pharmaceutical Press 2002 2418
    [Google Scholar]
  18. Laulicht B. Tripathi A. Mathiowitz E. Diuretic bioactivity optimization of furosemide in rats. Eur. J. Pharm. Biopharm. 2011 79 2 314 319 10.1016/j.ejpb.2011.04.014 21571067
    [Google Scholar]
  19. Shankar S.S. Brater D.C. Loop diuretics: From the Na-K-2Cl transporter to clinical use. Am. J. Physiol. Renal Physiol. 2003 284 1 F11 F21 10.1152/ajprenal.00119.2002 12473535
    [Google Scholar]
  20. Hammarlund M.M. Paalzow L.K. Odlind B. Pharmacokinetics of furosemide in man after intravenous and oral administration. Application of moment analysis. Eur. J. Clin. Pharmacol. 1984 26 2 197 207 10.1007/BF00630286 6723758
    [Google Scholar]
  21. Michael R.K. Ralph E.C. Arden W.F. Barbara M.K. Pharmacokinetics of orally administered furosemide. Clin. Pharmacol. Ther. 1974 15 2 178 186 10.1002/cpt1974152178 4812154
    [Google Scholar]
  22. Boles Ponto L.L. Schoenwald R.D. Furosemide (frusemide). A pharmacokinetic/pharmacodynamic review (Part I). Clin. Pharmacokinet. 1990 18 5 381 408 10.2165/00003088‑199018050‑00004 2185908
    [Google Scholar]
  23. Boles Ponto L.L. Schoenwald R.D. Furosemide (frusemide). A pharmacokinetic/pharmacodynamic review (Part II). Clin. Pharmacokinet. 1990 18 6 460 471 10.2165/00003088‑199018060‑00003 2191821
    [Google Scholar]
  24. Koh S.K. Jeong J.W. Choi S.I. Kim R.M. Koo T.S. Cho K.H. Seo K.W. Pharmacokinetics and diuretic effect of furosemide after single intravenous, oral tablet, and newly developed oral disintegrating film administration in healthy beagle dogs. BMC Vet. Res. 2021 17 1 295 10.1186/s12917‑021‑02998‑4 34488750
    [Google Scholar]
  25. Hussain M.D. Mohsin K. Alamari R. Ahmad A. Raish M. Alanzi F. Development of self-nanoemulsifying drug delivery systems for the enhancement of solubility and oral bioavailability of fenofibrate, a poorly water-soluble drug. Int. J. Nanomedicine 2016 11 Jun 2829 2838 10.2147/IJN.S104187 27366063
    [Google Scholar]
  26. Chakraborty S. Shukla D. Mishra B. Singh S. Lipid – An emerging platform for oral delivery of drugs with poor bioavailability. Eur. J. Pharm. Biopharm. 2009 73 1 1 15 10.1016/j.ejpb.2009.06.001 19505572
    [Google Scholar]
  27. Kovvasu S. Kunamaneni P. Kovvasu S.P. Joshi R. Betageri G.V. Self-emulsifying drug delivery systems and their marketed products: A review. Asian J. Pharm. 2019 13 2 10.22377/ajp.v13i02.3102
    [Google Scholar]
  28. Souto E.B. Muller R.H. Nanoparticulate Drug Delivery Systems; Thassu, D.; Deleers, M. Pathak Y. CRC Press 2007 1 31
    [Google Scholar]
  29. Ghadi R. Dand N. BCS class IV drugs: Highly notorious candidates for formulation development. J. Control. Release 2017 248 71 95 10.1016/j.jconrel.2017.01.014 28088572
    [Google Scholar]
  30. Kalepu S. Manthina M. Padavala V. Oral lipid-based drug delivery systems – An overview. Acta Pharm. Sin. B 2013 3 6 361 372 10.1016/j.apsb.2013.10.001
    [Google Scholar]
  31. Krstić M. Medarević Đ. Đuriš J. Ibrić S. Self-nanoemulsifying drug delivery systems (SNEDDS) and self-microemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs. Lipid Nanocarriers for Drug Targeting. William Andrew Publishing 2018 473 508 10.1016/B978‑0‑12‑813687‑4.00012‑8
    [Google Scholar]
  32. USP USP, 〈857〉 Ultraviolet-Visible Spectroscopy In USP-NF 2023 Available from:https://online.uspnf.com/uspnf/document/1_GUID-4C5C1937-524A-4BED-95E7-384EDE3745E0_4_en-US?source=Quick%20Search&highlight=absorbance
  33. USP USP, 〈853〉 Fluorescence spectroscopy 2023 Available from:https://online.uspnf.com/uspnf/document/1_GUID-1996D278-BEC4-40A0-AC53-C8E3B31008D8_1_enUS?source
  34. Bali V. Ali M. Ali J. Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe. Colloids Surf. B Biointerfaces 2010 76 2 410 420 10.1016/j.colsurfb.2009.11.021 20042320
    [Google Scholar]
  35. Mandal S. Mandal S.S. Microemulsion drug delivery system: A platform for improving dissolution rate of poorly water soluble drug. Int. J. Pharm. Sci. Nanotechnol. 2011 3 4 1214 1219 10.37285/ijpsn.2010.3.4.6
    [Google Scholar]
  36. Patel J. Dhingani A. Garala K. Raval M. Sheth N. Quality by design approach for oral bioavailability enhancement of Irbesartan by self-nanoemulsifying tablets. Drug Deliv. 2014 21 6 412 435 10.3109/10717544.2013.853709 24215334
    [Google Scholar]
  37. Nasr A. Gardouh A. Ghorab M. Novel solid self-nanoemulsi-] fying drug delivery system (S-SNEDDS) for oral delivery of olmesartan medoxomil: Design, formulation, pharmacokinetic and bioavailability evaluation. Pharmaceutics 2016 8 3 20 10.3390/pharmaceutics8030020 27355963
    [Google Scholar]
  38. Goyal U. Gupta A. Rana A.C. Aggarwal G. Self microemulsifying drug delivery system: A method for enhancement of bioavailability. Int. J. Pharm. Sci. Res. 2012 3 1 66 10.13040/IJPSR.0975‑8232.3(1).66‑79
    [Google Scholar]
  39. Mukherjee T. Plakogiannis F.M. Development and oral bioavailability assessment of a supersaturated self-microemulsifying drug delivery system (SMEDDS) of albendazole. J. Pharm. Pharmacol. 2010 62 9 1112 1120 10.1111/j.2042‑7158.2010.01149.x 20796189
    [Google Scholar]
  40. Jo K. Kim H. Khadka P. Jang T. Kim S.J. Hwang S.H. Lee J. Enhanced intestinal lymphatic absorption of saquinavir through supersaturated self-microemulsifying drug delivery systems. Asian J. Pharm. Sci. 2020 15 3 336 346 10.1016/j.ajps.2018.11.009 32636951
    [Google Scholar]
  41. Zheng D. Lv C. Sun X. Wang J. Zhao Z. Preparation of a supersaturatable self-microemulsion as drug delivery system for ellagic acid and evaluation of its antioxidant activities. J. Drug Deliv. Sci. Technol. 2019 53 101209 10.1016/j.jddst.2019.101209
    [Google Scholar]
  42. Visetvichaporn V. Kim K.H. Jung K. Cho Y.S. Kim D.D. Formulation of self-microemulsifying drug delivery system (SMEDDS) by D-optimal mixture design to enhance the oral bioavailability of a new cathepsin K inhibitor (HL235). Int. J. Pharm. 2020 573 118772 10.1016/j.ijpharm.2019.118772 31765770
    [Google Scholar]
  43. Codex standard for named vegetable oils (CODEX-STAN 210 - 1999) 2001 Available from:https://www.mt.com/my/en/home/ library/applications/lab-analytical-instruments/refractive-index-of-oils-and-fats-aoac-92108.html.
  44. Singh A.K. Chaurasiya A. Singh M. Upadhyay S.C. Mukherjee R. Khar R.K. Exemestane loaded self-microemulsifying drug delivery system (SMEDDS): Development and optimization. AAPS PharmSciTech 2008 9 2 628 634 10.1208/s12249‑008‑9080‑6 18473177
    [Google Scholar]
  45. Kim D.S. Cho J.H. Park J.H. Kim J.S. Song E.S. Kwon J. Giri B.R. Jin S.G. Kim K.S. Choi H.G. Kim D.W. Self-microemulsifying drug delivery system (SMEDDS) for improved oral delivery and photostability of methotrexate. Int. J. Nanomedicine 2019 14 4949 4960 10.2147/IJN.S211014 31308665
    [Google Scholar]
  46. Dissolution 2011 Available from:https://www.usp.org/sites/de fault/files/usp/document/ harmonization/genmethod/stage_6_mono graph_25_feb_2011.pdf.
  47. Terao T. Matsuda K. Shouji H. Improvement in site-specific intestinal absorption of furosemide by Eudragit L100-55. J. Pharm. Pharmacol. 2001 53 4 433 440 10.1211/0022357011775721 11341359
    [Google Scholar]
  48. British pharmacopoeia 2023 Available from:https://www-pharmacopoeia-com.nwulib.idm.oclc.org/bp-2023/appendices/appendix-12/appendix-xii-b--dissolution.html?date=2023-07-01&text= DISSOLUTION.
  49. Hossain M.A. Alam S. Paul P. Development and evaluation of sustained release matrix tablets of Indapamide using methocel K15M CR. J. Appl. Pharm. Sci. 2013 3 5 85 90 10.7324/JAPS.2013.3516
    [Google Scholar]
  50. Moore J.W. Flanner H.H. Mathematical comparison of dissolution profiles. Pharm. Technol. 1996 20 6 64 74
    [Google Scholar]
  51. Ballent M. Lifschitz A. Virkel G. Sallovitz J. Maté L. Lanusse C. In vivo and ex vivo assessment of the interaction between ivermectin and danofloxacin in sheep. Vet. J. 2012 192 3 422 427 10.1016/j.tvjl.2011.09.006 22079145
    [Google Scholar]
  52. Aucamp M. Odendaal R. Liebenberg W. Hamman J. Amorphous azithromycin with improved aqueous solubility and intestinal membrane permeability. Drug Dev. Ind. Pharm. 2015 41 7 1100 1108 10.3109/03639045.2014.931967 24980913
    [Google Scholar]
  53. Zhao W. Uehera S. Tanaka K. Tadokoro S. Kusamori K. Katsumi H. Sakane T. Yamamoto A. Effects of polyoxyethylene alkyl ethers on the intestinal transport and absorption of rhodamine123: A p-glycoprotein substrate by in vitro and in vivo studies. j pharm sci 2016 105 4 15261534 10.1016/j.xphs.2016.01.020 26968974
    [Google Scholar]
  54. Palumbo P. Picchini U. Beck B. van Gelder J. Delbar N. DeGaetano A. A general approach to the apparent permeability index. J. Pharmacokinet. Pharmacodyn. 2008 35 2 235 248 10.1007/s10928‑008‑9086‑4 18351296
    [Google Scholar]
  55. Kotzé A.F. Lueßen H.L. de Leeuw B.J. de Boer B.G. Coos Verhoef J. Junginger H.E. Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J. Control. Release 1998 51 1 35 46 10.1016/S0168‑3659(97)00154‑5 9685902
    [Google Scholar]
  56. Patel M.J. Patel S.S. Patel N.M. Patel M.M. A self-microemulsifying drug delivery system (SMEDDS). Int. J. Pharm. Sci. Rev. Res. 2010 4 3 29 35 10.3109/10717544.2014.896058
    [Google Scholar]
  57. Pol A.S. Patel P. Hedge D.D. Peppermint oil based drug delivery system of aceclofenac with improved anti-inflammatory activity and reduced ulcerogenecity. 2013 1 2 89 101
  58. Cui S. Nie S. Li L. Wang C. Pan W. Sun J. Preparation and evaluation of self-microemulsifying drug delivery system containing vinpocetine. Drug Dev. Ind. Pharm. 2009 35 5 603 611 10.1080/03639040802488089 19040178
    [Google Scholar]
  59. Dixit A.R. Rajput S.J. Patel S.G. Preparation and bioavailability assessment of SMEDDS containing valsartan. AAPS PharmSciTech 2010 11 1 314 321 10.1208/s12249‑010‑9385‑0 20182825
    [Google Scholar]
  60. Patel A.R. Vavia P.R. Preparation and in vivo evaluation of SMEDDS (self-microemulsifying drug delivery system) containing fenofibrate. AAPS J. 2007 9 3 E344 E352 10.1208/aapsj0903041 18170981
    [Google Scholar]
  61. Bahadur S. Yadu K. Baghel P. Naurange T. Sahu M. Review of formulation and evaluation of self-micro emulsifying drug delivery system (SMEDDS). ScienceRise. Pharm. Sci. 2020 0 4 (26) 25 35 10.15587/2519‑4852.2020.210825
    [Google Scholar]
  62. Javed I. Ranjha N.M. Mahmood K. Kashif S. Rehman M. Usman F. Drug release optimization from microparticles of poly(E-caprolactone) and hydroxypropyl methylcellulose polymeric blends: Formulation and characterization. J. Drug Deliv. Sci. Technol. 2014 24 6 607 612 10.1016/S1773‑2247(14)50126‑8
    [Google Scholar]
  63. A basic guide to particle characterization 2015 Available from: https://www.cif.iastate.edu/sites/default/files/uploads/Other_Inst/Particle%20Size/Particle%20Characterization%20Guide.pdf
  64. Roland I. Piel G. Delattre L. Evrard B. Systematic characterization of oil-in-water emulsions for formulation design. Int. J. Pharm. 2003 263 1-2 85 94 10.1016/S0378‑5173(03)00364‑8 12954183
    [Google Scholar]
  65. Nielsen N.S. Horn A.F. Jacobsen C. Effect of emulsifier type, p H and iron on oxidative stability of 5% fish oil‐in‐water emulsions. Eur. J. Lipid Sci. Technol. 2013 115 8 874 889 10.1002/ejlt.201200303
    [Google Scholar]
  66. Suganthi K.S. Rajan K.S. Temperature induced changes in ZnO–water nanofluid: Zeta potential, size distribution and viscosity profiles. Int. J. Heat Mass Transf. 2012 55 25-26 7969 7980 10.1016/j.ijheatmasstransfer.2012.08.032
    [Google Scholar]
  67. Jokerst J.V. Lobovkina T. Zare R.N. Gambhir S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011 6 4 715 728 10.2217/nnm.11.19 21718180
    [Google Scholar]
  68. Saggar S. Upadhayay A. Goswami M. Design, preparation, and evaluation of self-microemulsifying drug delivery system of bambuterol hydrochloride. Asian J. Pharm. Clin. Res. 2018 11 12 389 398 10.22159/ajpcr.2018.v11i12.27890
    [Google Scholar]
  69. Oral drug products-product quality tests. 2023 Available from:https://online.uspnf.com/uspnf/document/1_GUID-DA161518-EC27-4647-AACD-29D28F2A4E92_5_en-US?source
  70. Molavi F. Hamishehkar H. Nokhodchi A. Impact of tablet shape on drug dissolution rate through immediate released tablets. Adv. Pharm. Bull. 2020 10 4 656 661 10.34172/apb.2020.079 33072542
    [Google Scholar]
  71. Elmubarak E.H. Osman Z.A. Abdelrahman M. Formulation and evaluation of solid dispersion tablets of furosemide using polyvintlpryrrolidone K-30. Int. J. Curr. Pharm. Res. 2021 13 2 43 50 10.22159/ijcpr.2021v13i2.41554
    [Google Scholar]
  72. Wahyuningsih I. Sugiyanto S. Yuswanto A. Martien R. The dissolution and diffusion of furosemide on self-nanoemulsifying drug delivery system (SNEDDS). Indones. J. Pharm. 2017 28 2 112 10.14499/indonesianjpharm28iss2pp112
    [Google Scholar]
  73. Yadav P. Yadav E. Verma A. Amin S. In vitro characterization and pharmacodynamic evaluation of furosemide loaded self nano emulsifying drug delivery systems (SNEDDS). J. Pharm. Investig. 2014 44 6 443 453 10.1007/s40005‑014‑0138‑z
    [Google Scholar]
  74. Nielsen L.H. Melero A. Keller S.S. Jacobsen J. Garrigues T. Rades T. Müllertz A. Boisen A. Polymeric microcontainers improve oral bioavailability of furosemide. Int. J. Pharm. 2016 504 1-2 98 109 10.1016/j.ijpharm.2016.03.050 27033999
    [Google Scholar]
  75. Indulkar A.S. Lou X. Zhang G.G.Z. Taylor L.S. Insights into the dissolution mechanism of ritonavir–copovidone amorphous solid dispersions: Importance of congruent release for enhanced performance. Mol. Pharm. 2019 16 3 1327 1339 10.1021/acs.molpharmaceut.8b01261 30669846
    [Google Scholar]
  76. Granero G.E. Longhi M.R. Mora M.J. Junginger H.E. Midha K.K. Shah V.P. Stavchansky S. Dressman J.B. Barends D.M. Biowaiver monographs for immediate release solid oral dosage forms. Furosemide. J. Pharm. Sci. 2010 99 6 2544 2556 10.1002/jps.22030 19960529
    [Google Scholar]
  77. Rwobotham P.C. Stanford J.B. Sugden J.K. Some aspects of the photochemical degradation of frusemide. Pharm. Acta Helv. 1976 51 10 304 307 996033
    [Google Scholar]
  78. Devarakonda B. Otto D. Judefeind A. Hill R. Devilliers M. Effect of pH on the solubility and release of furosemide from polyamidoamine (PAMAM) dendrimer complexes. Int. J. Pharm. 2007 345 1-2 142 153 10.1016/j.ijpharm.2007.05.039 17600643
    [Google Scholar]
  79. Hsieh C.M. Yang T.L. Putri A.D. Chen C.T. Application of design of experiments in the development of self-microemulsifying drug delivery systems. Pharmaceuticals 2023 16 2 283 10.3390/ph16020283 37259427
    [Google Scholar]
  80. Shekhawat B. P.; B Pokharkar, V. Understanding peroral absorption: Regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm. Sin. B 2017 7 3 260 280 10.1016/j.apsb.2016.09.005 28540164
    [Google Scholar]
  81. Bhushani J.A. Karthik P. Anandharamakrishnan C. Nanoemulsion based delivery system for improved bioaccessibility and Caco-2 cell monolayer permeability of green tea catechins. Food Hydrocoll. 2016 56 372 382 10.1016/j.foodhyd.2015.12.035
    [Google Scholar]
  82. Haasbroek A. Willers C. Glyn M. du Plessis L. Hamman J. Intestinal drug absorption enhancement by Aloe vera gel and whole leaf extract: In vitro investigations into the mechanisms of action. Pharmaceutics 2019 11 1 36 10.3390/pharmaceutics11010036 30669246
    [Google Scholar]
  83. Prajapati R. Singh U. Patil A. Khomane K.S. Bagul P. Bansal A.K. Sangamwar A.T. In silico model for P-glycoprotein substrate prediction: Insights from molecular dynamics and in vitro studies. J. Comput. Aided Mol. Des. 2013 27 4 347 363 10.1007/s10822‑013‑9650‑x 23612916
    [Google Scholar]
  84. Wahlang B. Pawar Y.B. Bansal A.K. Identification of permeability-related hurdles in oral delivery of curcumin using the Caco-2 cell model. Eur. J. Pharm. Biopharm. 2011 77 2 275 282 10.1016/j.ejpb.2010.12.006 21147222
    [Google Scholar]
  85. Mirzaeei S. Tahmasebi N. Islambulchilar Z. Optimization of a self-microemulsifying drug delivery system for oral administration of the lipophilic drug, resveratrol: Enhanced intestinal permeability in rat. Adv. Pharm. Bull. 2023 13 3 521 531 10.34172/apb.2023.054 37646050
    [Google Scholar]
  86. Di L. Artursson P. Avdeef A. Benet L.Z. Houston J.B. Kansy M. Kerns E.H. Lennernäs H. Smith D.A. Sugano K. The critical role of passive permeability in designing successful drugs. ChemMedChem 2020 15 20 1862 1874 10.1002/cmdc.202000419 32743945
    [Google Scholar]
  87. Menichetti R. Kanekal K.H. Bereau T. Drug–membrane permeability across chemical space. ACS Cent. Sci. 2019 5 2 290 298 10.1021/acscentsci.8b00718 30834317
    [Google Scholar]
  88. Hintzen F. Laffleur F. Sarti F. Müller C. Bernkop-Schnürch A. In vitro and ex vivo evaluation of an intestinal permeation enhancing self-microemulsifying drug delivery system (SMEDDS). J. Drug Deliv. Sci. Technol. 2013 23 3 261 267 10.1016/S1773‑2247(13)50039‑6
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031389404251006094753
Loading
/content/journals/ddl/10.2174/0122103031389404251006094753
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test