Skip to content
2000
image of Prolonging Gastric Retention: An In-Depth Study of Gastro-Retentive Delivery Systems

Abstract

The Gastro-Retentive Drug Delivery System (GRDDS) is an innovative method designed to enhance oral drug delivery by delaying the time that medications remain in the stomach. GRDDS addresses the limitations of conventional oral DDS, such as rapid gastric emptying and the low bioavailability of some medications. By maintaining the medication in the stomach for prolonged periods, GRDDS enables improved therapeutic outcomes and sustained drug release. This document explores the physiology and anatomy of the stomach, factors influencing gastric retention, suitable drug candidates, and types of drug delivery systems, including floating, swelling, high-density systems, . The advancement of nanotechnology, combination polymers, and stimuli-responsive materials offers future perspectives for further enhancing the efficacy of GRDDS. The system has shown promise in treating diseases such as peptic ulcers, diabetes, and Helicobacter pylori infections, improving drug delivery to systemic as well as local sites. This review highlights that Gastro-Retentive Drug Delivery Systems (GRDDS) effectively improve drug absorption and enhance treatment outcomes. Integrating different strategies with emerging technologies has the potential to further increase their effectiveness and provide greater benefits to patients.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031390750251012162431
2025-10-22
2026-02-01
Loading full text...

Full text loading...

References

  1. Mandal U.K. Chatterjee B. Senjoti F.G. Gastro-retentive drug delivery systems and their in vivo success: A recent update. Asian J. Pharm. Sci. 2016 11 5 575 584 10.1016/j.ajps.2016.04.007
    [Google Scholar]
  2. Lopes C.M. Bettencourt C. Rossi A. Buttini F. Barata P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int. J. Pharm. 2016 510 1 144 158 10.1016/j.ijpharm.2016.05.016 27173823
    [Google Scholar]
  3. Boldhane S. Kuchekar B. Development and optimization of metoprolol succinate gastroretentive drug delivery system. Acta Pharm. 2010 60 4 415 425 10.2478/v10007‑010‑0031‑x 21169134
    [Google Scholar]
  4. Pawar V.K. Kansal S. Garg G. Awasthi R. Singodia D. Kulkarni G.T. Gastroretentive dosage forms: A review with special emphasis on floating drug delivery systems. Drug Deliv. 2011 18 2 97 110 10.3109/10717544.2010.520354 20958237
    [Google Scholar]
  5. Sugihara H. Matsui Y. Takeuchi H. Wilding I. Connor A. Abe K. Nishiura A. Development of a gastric retentive system as a sustained-release formulation of pranlukast hydrate and its subsequent in vivo verification in human studies. Eur. J. Pharm. Sci. 2014 53 62 68 10.1016/j.ejps.2013.11.018 24316098
    [Google Scholar]
  6. Thakar K. Joshi G. Sawant K.K. Bioavailability enhancement of baclofen by gastroretentive floating formulation: Statistical optimization, in vitro and in vivo pharmacokinetic studies. Drug Dev. Ind. Pharm. 2013 39 6 880 888 10.3109/03639045.2012.709249 22901056
    [Google Scholar]
  7. Prinderre P. Sauzet C. Fuxen C. Advances in gastro retentive drug-delivery systems. Expert Opin. Drug Deliv. 2011 8 9 1189 1203 10.1517/17425247.2011.592828 21671821
    [Google Scholar]
  8. Nayak A.K. Malakar J. Sen K.K. Gastroretentive drug delivery technologies: Current approaches and future potential. J. Pharm. Educ. Res.. 2010 1 2 1
    [Google Scholar]
  9. Kesarla R.S. Vora P.A. Sridhar B.K. Patel G. Omri A. Formulation and evaluation of floating tablet of H 2 -receptor antagonist. Drug Dev. Ind. Pharm. 2015 41 9 1499 1511 10.3109/03639045.2014.959969 25243639
    [Google Scholar]
  10. Kim J.Y. Bae H.J. Choi J. Lim J.R. Kim S.W. Lee S.H. Park E.S. Efficacy of gastro-retentive forms of ecabet sodium in the treatment of gastric ulcer in rats. Arch. Pharm. Res. 2014 37 8 1053 1062 10.1007/s12272‑013‑0278‑0 24254934
    [Google Scholar]
  11. Tripathi J. Thapa P. Maharjan R. Jeong S.H. Current state and future perspectives on gastroretentive drug delivery systems. Pharmaceutics 2019 11 4 193 10.3390/pharmaceutics11040193 31010054
    [Google Scholar]
  12. Gröning R. Cloer C. Georgarakis M. Müller R.S. Compressed collagen sponges as gastroretentive dosage forms: In vitro and in vivo studies. Eur. J. Pharm. Sci. 2007 30 1 1 6 10.1016/j.ejps.2006.08.003 17101267
    [Google Scholar]
  13. Ruiz-Caro R. Gago-Guillan M. Otero-Espinar F.J. Veiga M.D. Mucoadhesive tablets for controlled release of acyclovir. Chem. Pharm. Bull. 2012 60 10 1249 1257 10.1248/cpb.c12‑00324 22863800
    [Google Scholar]
  14. Klausner E.A. Lavy E. Stepensky D. Cserepes E. Barta M. Friedman M. Hoffman A. Furosemide pharmacokinetics and pharmacodynamics following gastroretentive dosage form administration to healthy volunteers. J. Clin. Pharmacol. 2003 43 7 711 720 10.1177/0091270003254575 12856384
    [Google Scholar]
  15. Kim S. Hwang K.M. Park Y.S. Nguyen T.T. Park E.S. Preparation and evaluation of non-effervescent gastroretentive tablets containing pregabalin for once-daily administration and dose proportional pharmacokinetics. Int. J. Pharm. 2018 550 1-2 160 169 10.1016/j.ijpharm.2018.08.038 30138708
    [Google Scholar]
  16. Ali J. Arora S. Ahuja A. Babbar A.K. Sharma R.K. Khar R.K. Baboota S. Formulation and development of hydrodynamically balanced system for metformin: In vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 2007 67 1 196 201 10.1016/j.ejpb.2006.12.015 17270409
    [Google Scholar]
  17. Chavanpatil M.D. Jain P. Chaudhari S. Shear R. Vavia P.R. Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for ofloxacin. Int. J. Pharm. 2006 316 1-2 86 92 10.1016/j.ijpharm.2006.02.038 16567072
    [Google Scholar]
  18. Sawicki W. Pharmacokinetics of verapamil and norverapamil from controlled release floating pellets in humans. Eur. J. Pharm. Biopharm. 2002 53 1 29 35 10.1016/S0939‑6411(01)00189‑8 11777750
    [Google Scholar]
  19. Sethi S. Mangla B. Kamboj S. Rana V. A QbD approach for the fabrication of immediate and prolong buoyant cinnarizine tablet using polyacrylamide-g-corn fibre gum. Int. J. Biol. Macromol. 2018 117 350 361 10.1016/j.ijbiomac.2018.05.178 29807074
    [Google Scholar]
  20. Pawar H.A. Gharat P.R. Dhavale R.V. Joshi P.R. Rakshit P.P. Development and evaluation of gastroretentive floating tablets of an antihypertensive drug using hydrogenated cottonseed oil. ISRN Pharm. 2013 2013 1 1 9 10.1155/2013/137238 24455312
    [Google Scholar]
  21. Patil S. Talele G.S. Gastroretentive mucoadhesive tablet of lafutidine for controlled release and enhanced bioavailability. Drug Deliv. 2015 22 3 312 319 10.3109/10717544.2013.877099 24471787
    [Google Scholar]
  22. Jiménez-Martínez I. Quirino-Barreda T. Villafuerte-Robles L. Sustained delivery of captopril from floating matrix tablets. Int. J. Pharm. 2008 362 1-2 37 43 10.1016/j.ijpharm.2008.05.040 18588962
    [Google Scholar]
  23. Kumar R. Philip A. Gastroretentive dosage forms for prolonging gastric residence time. Int. J. Pharm. Med. 2007 21 2 157 171 10.2165/00124363‑200721020‑00005
    [Google Scholar]
  24. Prajapati V.D. Jani G.K. Khutliwala T.A. Zala B.S. Raft forming system—An upcoming approach of gastroretentive drug delivery system. J. Control. Release 2013 168 2 151 165 10.1016/j.jconrel.2013.02.028 23500062
    [Google Scholar]
  25. Wilson CG Washington N Physiological pharmaceutics: Biological barriers to drug absorption. Chichester Strathclyde Institute Of Pharmacy And Biomedical Sciences 1989
    [Google Scholar]
  26. Brahmankar DM Jaiswal SB Biopharmaceutics and pharmacokinetics. Vallabh prakashan 2019
    [Google Scholar]
  27. Streubel A. Siepmann J. Bodmeier R. Gastroretentive drug delivery systems. Expert Opin. Drug Deliv. 2006 3 2 217 233 10.1517/17425247.3.2.217 16506949
    [Google Scholar]
  28. Badoni A. Ojha A. Gnanarajan G. Kothiyal P. Review on gastro retentive drug delivery system. Pharma Innov. 2012 1 8, Part A 32
    [Google Scholar]
  29. Adebisi A.O. Laity P.R. Conway B.R. Formulation and evaluation of floating mucoadhesive alginate beads for targeting H elicobacter pylori. J. Pharm. Pharmacol. 2015 67 4 511 524 10.1111/jphp.12345 25496042
    [Google Scholar]
  30. Hilton A.K. Deasy P.B. In vitro and in vivo evaluation of an oral sustained-release floating dosage form of amoxycillin trihydrate. Int. J. Pharm. 1992 86 1 79 88 10.1016/0378‑5173(92)90033‑X
    [Google Scholar]
  31. Getyala A. Gangadharappa H. Prasad M. Reddy M. Kumar T. Formulation and evaluation of non-effervescent floating tablets of losartan potassium. Curr. Drug Deliv. 2013 10 5 620 629 10.2174/1567201811310050013 23286884
    [Google Scholar]
  32. Acharya S. Patra S. Pani N.R. Optimization of HPMC and carbopol concentrations in non-effervescent floating tablet through factorial design. Carbohydr. Polym. 2014 102 360 368 10.1016/j.carbpol.2013.11.060 24507292
    [Google Scholar]
  33. Stockwell A.F. Davis S.S. Walker S.E. In vitro evaluation of alginate gel systems as sustained release drug delivery systems. J. Control. Release 1986 3 1-4 167 175 10.1016/0168‑3659(86)90077‑5
    [Google Scholar]
  34. Garg R. Gupta G.D. Progress in controlled gastroretentive delivery systems. Trop. J. Pharm. Res. 2008 7 3 1055 1066 10.4314/tjpr.v7i3.14691
    [Google Scholar]
  35. Sarojini S. Manavalan R. An overview on various approaches to gastroretentive dosage forms. Int J Drug Dev Res. 2012 4 1 1 3
    [Google Scholar]
  36. Smart J. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev. 2005 57 11 1556 1568 10.1016/j.addr.2005.07.001 16198441
    [Google Scholar]
  37. Vasir J.K. Tambwekar K. Garg S. Bioadhesive microspheres as a controlled drug delivery system. Int. J. Pharm. 2003 255 1-2 13 32 10.1016/S0378‑5173(03)00087‑5 12672598
    [Google Scholar]
  38. Chatterjee B. Amalina N. Sengupta P. Mandal U.K. Mucoadhesive polymers and their mode of action: A recent update. J. Appl. Pharm. Sci. 2017 7 5 195 203 10.7324/JAPS.2017.70533
    [Google Scholar]
  39. Lohani A. Chaudhary G. Mucoadhesive microspheres: A novel approach to increase gastroretention. Chron. Young Scient. 2012 3 2 121 10.4103/2229‑5186.98684
    [Google Scholar]
  40. Makwana A. Sameja K. Parekh H. Pandya Y. Advancements in controlled release gastroretentive drug delivery system: A review. J. Drug Deliv. Ther. 2012 2 3 10.22270/jddt.v2i3.164
    [Google Scholar]
  41. Andrews G.P. Laverty T.P. Jones D.S. Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm. 2009 71 3 505 518 10.1016/j.ejpb.2008.09.028 18984051
    [Google Scholar]
  42. Jiménez-castellanos M.R. Zia H. Rhodes C.T. Mucoadhesive drug delivery systems. Drug Dev. Ind. Pharm. 1993 19 1-2 143 194 10.3109/03639049309038765
    [Google Scholar]
  43. Park K. Robinson J.R. Bioadhesive polymers as platforms for oral-controlled drug delivery: Method to study bioadhesion. Int. J. Pharm. 1984 19 2 107 127 10.1016/0378‑5173(84)90154‑6
    [Google Scholar]
  44. Wang J. Tauchi Y. Deguchi Y. Morimoto K. Tabata Y. Ikada Y. Positively charged gelatin microspheres as gastric mucoadhesive drug delivery system for eradication of H. pylori. Drug Deliv. 2000 7 4 237 243 10.1080/107175400455173 11195431
    [Google Scholar]
  45. Naseem F. Shah S.U. Rashid S.A. Farid A. Almehmadi M. Alghamdi S. Metronidazole based floating bioadhesive drug delivery system for potential eradication of H. pylori: Preparation and in vitro characterization. Polymers 2022 14 3 519 10.3390/polym14030519 35160508
    [Google Scholar]
  46. Klausner E.A. Lavy E. Friedman M. Hoffman A. Expandable gastroretentive dosage forms. J. Control. Release 2003 90 2 143 162 10.1016/S0168‑3659(03)00203‑7 12810298
    [Google Scholar]
  47. Pandey A. Kumar G. Kothiyal P. Barshiliya Y. A review on current approaches in gastro retentive drug delivery system. Asian J. Pharm. Med. Sci. 2012 2 4
    [Google Scholar]
  48. Munusamy R. Shanmugasundharam S. Enhanced gastric residence time of acyclovir by floating raft formulation using box-behnken design. Heliyon 2024 10 2 24301 10.1016/j.heliyon.2024.e24301 38293518
    [Google Scholar]
  49. Ibrahim H.K. A novel liquid effervescent floating delivery system for sustained drug delivery. Drug Discov. Ther. 2009 3 4 168 175 22495603
    [Google Scholar]
  50. Murphy C. Pillay V. Choonara Y. du Toit L. Gastroretentive drug delivery systems: Current developments in novel system design and evaluation. Curr. Drug Deliv. 2009 6 5 451 460 10.2174/156720109789941687 19751198
    [Google Scholar]
  51. Das S. Kaur S. Rai V.K. Gastro-retentive drug delivery systems: A recent update on clinical pertinence and drug delivery. Drug Deliv. Transl. Res. 2021 11 5 1849 1877 10.1007/s13346‑020‑00875‑5 33403646
    [Google Scholar]
  52. Manoj Kumar MK Deepak Kaushik DK An overview on various approaches and recent patents on gastroretentive drug delivery systems. Recent Pat Drug Deliv Formul 2018 12 2 84 92 10.2174/1872211312666180308150218 29521255
    [Google Scholar]
  53. Awasthi R. Kulkarni G.T. Decades of research in drug targeting to the upper gastrointestinal tract using gastroretention technologies: Where do we stand? Drug Deliv. 2016 23 2 378 394 10.3109/10717544.2014.936535 25026414
    [Google Scholar]
  54. Wang C.P.J. Byun M.J. Kim S.N. Park W. Park H.H. Kim T.H. Lee J.S. Park C.G. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment. J. Control. Release 2022 345 1 19 10.1016/j.jconrel.2022.02.028 35227764
    [Google Scholar]
  55. Kerdsakundee N. Mahattanadul S. Wiwattanapatapee R. Development and evaluation of gastroretentive raft forming systems incorporating curcumin-Eudragit® EPO solid dispersions for gastric ulcer treatment. Eur. J. Pharm. Biopharm. 2015 94 513 520 10.1016/j.ejpb.2015.06.024 26143367
    [Google Scholar]
  56. Bhilare HR Bhagat VC Awate PB Kardile DP Shete RV Formulation development and evaluation of floating microspheres of drotaverine hydrochloride as gastroretentive dosage form. Intell Pharm 2025 3 1 35 45 10.1016/j.ipha.2024.08.002
    [Google Scholar]
  57. Rahamathulla M. Alshahrani S.M. Al Saqr A. Alshetaili A. Shakeel F. Effervescent floating matrix tablets of a novel anti-cancer drug neratinib for breast cancer treatment. J. Drug Deliv. Sci. Technol. 2021 66 102788 10.1016/j.jddst.2021.102788
    [Google Scholar]
  58. Srivastava A. Verma A. Saraf S. Jain A. Tiwari A. Panda P.K. Jain S.K. Mucoadhesive gastroretentive microparticulate system for programmed delivery of famotidine and clarithromycin. J. Microencapsul. 2021 38 3 151 163 10.1080/02652048.2020.1851787 33205689
    [Google Scholar]
  59. Arza R.A.K. Gonugunta C.S.R. Veerareddy P.R. Formulation and evaluation of swellable and floating gastroretentive ciprofloxacin hydrochloride tablets. AAPS PharmSciTech 2009 10 1 220 226 10.1208/s12249‑009‑9200‑y 19277869
    [Google Scholar]
  60. Lin H.L. Chen L.C. Cheng W.T. Cheng W.J. Ho H.O. Sheu M.T. Preparation and characterization of a novel swellable and floating gastroretentive drug delivery system (sf GRDDS) for enhanced oral bioavailability of nilotinib. Pharmaceutics 2020 12 2 137 10.3390/pharmaceutics12020137 32041184
    [Google Scholar]
  61. Blanco-García E. Otero-Espinar F.J. Blanco-Méndez J. Leiro-Vidal J.M. Luzardo-Álvarez A. Development and characterization of anti-inflammatory activity of curcumin-loaded biodegradable microspheres with potential use in intestinal inflammatory disorders. Int. J. Pharm. 2017 518 1-2 86 104 10.1016/j.ijpharm.2016.12.057 28040561
    [Google Scholar]
  62. Hani U. Rahamathulla M. Osmani R.A.M. Begum M.Y. Wahab S. Ghazwani M. Fatease A.A. Alamri A.H. Gowda D.V. Alqahtani A. Development and characterization of oral raft forming in situ gelling system of neratinib anticancer drug using 32 factorial design. Polymers 2022 14 13 2520 10.3390/polym14132520 35808569
    [Google Scholar]
  63. Darwish M.K.M. Abu El-Enin A.S.M. Mohammed K.H.A. Formulation, optimization, and evaluation of raft-forming formulations containing Nizatidine. Drug Dev. Ind. Pharm. 2019 45 4 651 663 10.1080/03639045.2019.1569033 30638411
    [Google Scholar]
  64. Gadge G. Sabale V. Khade A. Current approaches on gastro retentive drug delivery system: An overview. Int. J. Pharm. Res. Technol. 2019 9 2 16 28 10.31838/ijprt/09.02.04
    [Google Scholar]
  65. Dennis A. Timmins P. Lee K. Buoyant controlled release powder formulation. US Patent 5,169,638 1992
  66. Wong P.S. Theeuwes F. Larsen S.D. Self-retaining gastrointestinal delivery device. US Patent 5,198,229 1993
  67. Franz M.R. Oth M.P. Sustained release, bilayer buoyant dosage form. US Patent 5,232,704 1993
  68. Müller W. Anders E. Floating system for oral therapy. US Patent 5,626,876 1997
  69. Illum L. Ping H. Gastroretentive controlled release microspheres for improved drug delivery. US Patent 6,207,197 2001
  70. Singh A. Singh S. Puthli S. Tandale R. Programmable buoyant delivery technology. US Patent 8,277,843 2012
  71. Muthusamy R. Kulkarni M.G. Gastroretentive, extended release composition of therapeutic agent. US Patent 8,808,669 2014
  72. Grenier P. Nhamias A. Vergnault G. Floating gastric retentive dosage form. US Patent 9,314,430 2016
  73. Castan C. Caisse P. Controlled-release floating pharmaceutical compositions. US Patent 9,561,179 2017
  74. Santus G. Bottoni G. Sala G. Pharmaceutical controlled-release composition with bioadhesive properties. US Patent 5,472,704 1995
  75. Rault I. Pichon G. Mucoadhesive pharmaceutical composition for the controlled release of active principles. US Patent 5,900,247 1999
  76. Gilis P.M. Bioadhesive solid dosage form. US Patent 6,303,147 2001
  77. Dettmar P.W. Dickson P.A. Hampson F.C. Jollife I.G. Peers W. Mucoadhesive granules of carbomer suitable for oral administration of drugs. US Patent 6,306,789 2001
  78. Jahagirdar H.A. Pharmaceutical compositions for gastrointestinal drug delivery. US Patent 8,974,825 2015
  79. Pedersen M. Multiple unit drug dose. US Patent 4,193,985 1980
  80. John M. Pharmaceutical formulations. US Patent 4,938,967 1990
  81. Caldwell L.J. Gardner C.R. Cargill R.C. Drug delivery device which can be retained in the stomach for a controlled period of time. United States patent US 4,767,627 1988
  82. Curatolo W.J. Lo J. Gastric retention system for controlled drug release. US Patent 5,443,843 1995
  83. Conte U. Maggi L. Pharmaceutical tablet characterized by a showing high volume increase when coming into contact with biological fluids. US Patent 5,780,057 1998
  84. John W. Gastric-retentive, oral drug dosage forms for the controlled-release of sparingly soluble drugs and insoluble matter. US Patent 5,972,389 1999
  85. Berner B. Louie-Helm J. Tablet shapes to enhance gastric retention of swellable controlled-release oral dosage forms. US Patent 6,488,962 2002
  86. Wong P.S. Dong L.C. Edgren D.E. Theeuwes F. Gardner P.I. Jao F. Wan J.J. Prolonged release active agent dosage form adapted for gastric retention. US Patent 6,548,083 2003
  87. Shell J.W. Louie-Helm J. Markey M. Extending the duration of drug release within the stomach during the fed mode. US Patent 6,635,280 2003
  88. Gusler G. Berner B. Chau M. Padua A. Optimal polymer mixtures for gastric retentive tablets. US Patent 6,723,340 2004
  89. Krumme M. Expandable gastroretentive therapeutical system with prolonged stomach retention time. US Patent 6,776,999 2004
  90. Berner B. Louie-Helm J. Shell J.W. Gastric retentive oral dosage form with restricted drug release in the lower gastrointestinal tract. US Patent 7,976,870 2011
  91. Kumar V. Ahmad S. Singh R.B. Gastroretentive tablets. US Patent 9,393,205 2016
  92. Berner B. Gastric retentive dosage forms for extended release of acamprosate into the upper gastrointestinal tract. US Patent 9,801,816 2017
  93. Ni Y. Kenneth M. In situ gelation of pectin substance. US Patent 01,199,941 2001
  94. Gillian E. Gastric raft composition. US Patent 6,398,000 2002
  95. William J. Rafting antacid formulation. US Patent 5,360,793 1994
  96. Wong P.S. Edgren D.E. Gastric retaining oral liquid dosage form. US Patent 6,635,281 2003
  97. Edgren D.E. Jao F. Wong P.S. Gastric retention dosage form having multiple layers. US Patent 6,797,283 2004
  98. Mohammad H. Gastroretentive drug delivery system comprising an extruded hydratable polymer. US Patent 8,586,083 2013
  99. Bakan D.A. Jitpraphai W. Newhard S.B. Wortzman M.S. Gastroretentive dosage forms for doxycycline. US Patent 9,119,793 2015
  100. Navon N. Moor E. Kirmayer D. Kluev E. Carni G. Carbidopa/Levodopa gastroretentive drug delivery. US Patent 2015/0366832 2015
  101. Kumar V. Ahmad S. Singh R.B. Singla A.K. Osmotic floating tablets. US Patent 2015/0231084 2015
  102. Kumar V. Ahmad S. Singh R.B. Nayyar K. Mohan P. Stabilized gastroretentive tablets of pregabalin. US Patent 2016/0338949 2016
  103. John W. Gastric-retentive, oral drug dosage forms for the controlled-release of sparingly soluble drugs and insoluble matter. EP Patent 0941071 2004
  104. Menachem A.V. Zalit I. Expandable gastroretentive dosage form. EP Patent 3148514 2017
  105. Pilgaonkar P.S. Rustomjee M.T. Gandhi A.S. Gastroretentive dosage forms of gaba analogs. EP Patent 2575798 2017
  106. Gupta P. Gnanarajan P.K. Kothiyal P. Floating drug delivery system: A review. Int. J. Pharm. Sci. Res. 2013 4 8 37 44 10.13040/IJPSR.0975‑8232.4(8).2893‑99
    [Google Scholar]
  107. Singh B. Kim K.H. Floating drug delivery systems: An approach to oral controlled drug delivery via gastric retention. J. Control. Release 2000 63 3 235 259 10.1016/S0168‑3659(99)00204‑7 10601721
    [Google Scholar]
  108. Moës A.J. Gastroretentive dosage forms. Crit. Rev. Ther. Drug Carrier Syst. 1993 10 2 143 195 8370085
    [Google Scholar]
  109. Dave B.S. Amin A.F. Patel M.M. Gastroretentive drug delivery system of ranitidine hydrochloride: Formulation and in vitro evaluation. AAPS PharmSciTech 2004 5 2 77 82 10.1208/pt050234 15760092
    [Google Scholar]
  110. Lane M.E. Modified-release drug delivery technology. Rathbone M.J. Hadgraft J. Roberts M.S. New York Marcel Dekker 2003 10.1081/DDC‑200040239
    [Google Scholar]
  111. Chaudhari KD Nimbalwar MG Singhal NS Panchale WA Manwar JV Bakal RL Comprehensive review on characterizations and application of gastro-retentive floating drug delivery system. GSC Adv Res Rev 2021 7 1 35 44 10.1016/0378‑5173(96)85200‑8
    [Google Scholar]
  112. Talukder R. Fassihi R. Gastroretentive delivery systems: A mini review. Drug Dev. Ind. Pharm. 2004 30 10 1019 1028 10.1081/DDC‑200040239 15595568
    [Google Scholar]
  113. Rouge N. Buri P. Doelker E. Drug absorption sites in the gastrointestinal tract and dosage forms for site-specific delivery. Int. J. Pharm. 1996 136 1-2 117 139 10.1016/0378‑5173(96)85200‑8
    [Google Scholar]
  114. Vrettos N.N. Roberts C.J. Zhu Z. Gastroretentive technologies in tandem with controlled-release strategies: A potent answer to oral drug bioavailability and patient compliance implications. Pharmaceutics 2021 13 10 1591 10.3390/pharmaceutics13101591 34683884
    [Google Scholar]
  115. Sungthongjeen S. Paeratakul O. Limmatvapirat S. Puttipipatkhachorn S. Preparation and in vitro evaluation of a multiple-unit floating drug delivery system based on gas formation technique. Int. J. Pharm. 2006 324 2 136 143 10.1016/j.ijpharm.2006.06.002 16828997
    [Google Scholar]
  116. Amrutkar P.P. Chaudhari P.D. Patil S.B. Design and in vitro evaluation of multiparticulate floating drug delivery system of zolpidem tartarate. Colloids Surf. B Biointerfaces 2012 89 182 187 10.1016/j.colsurfb.2011.09.011 21974910
    [Google Scholar]
  117. Deshpande A.A. Rhodes C.T. Shah N.H. Malick A.W. Controlled-release drug delivery systems for prolonged gastric residence: An overview. Drug Dev. Ind. Pharm. 1996 22 6 531 539 10.3109/03639049609108355
    [Google Scholar]
  118. Porwal A. Dwivedi H. Pathak K. Decades of research in drug targeting using gastroretentive drug delivery systems for antihypertensive therapy. Braz. J. Pharm. Sci. 2017 53 3 00173 10.1590/s2175‑97902017000300173
    [Google Scholar]
  119. Teaima M. Abdelmonem R. Saady M. El-Nabarawi M. Shoman N.A. Comprehensive overview on recent updates of gastroretentive raft-forming systems. Int. J. Appl. Pharm. 2022 14 3 40 48 10.22159/ijap.2022v14i3.44098
    [Google Scholar]
  120. Patel N. Nagesh C. Chandrashekhar S. Jinal P. Devdatt J. Floating drug delivery system: An innovative acceptable approach in gastro retentive drug delivery. Asian J. Pharm. Res. 2012 2 1 7 18
    [Google Scholar]
  121. Mahmoud D.B. Schulz-Siegmund M. Utilizing 4D printing to design smart gastroretentive, esophageal, and intravesical drug delivery systems. Adv. Healthc. Mater. 2023 12 10 2202631 10.1002/adhm.202202631 36571721
    [Google Scholar]
  122. Suradkar P. Mishra R. Nandgude T. Overview on trends in development of gastroretentive drug delivery system. Res. J. Pharm. Technol. 2019 12 11 5633 5640 10.5958/0974‑360X.2019.00975.2
    [Google Scholar]
  123. Vinchurkar K. Sainy J. Khan M.A. Mane S. Mishra D.K. Dixit P. Features and facts of a gastroretentive drug delivery system-a review. Turk. J. Pharm. Sci. 2022 19 4 476 487 10.4274/tjps.galenos.2021.44959 36047602
    [Google Scholar]
  124. Rath G. Anothra P. Pradhan D. Halder J. Ghosh G. Gastroretentive drug delivery system in cancer chemotherapy. Curr. Drug Deliv. 2023 20 5 483 496 10.2174/1567201819666220608141124 35676836
    [Google Scholar]
  125. Mohammed AA Algahtani MS Ahmad MZ Ahmad J Kotta S. 3D 3D printing in medicine: Technology overview and drug delivery applications. Ann. 3D Print Med. 2021 4 100037 10.1016/j.stlm.2021.100037
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031390750251012162431
Loading
/content/journals/ddl/10.2174/0122103031390750251012162431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test