Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Background

Artificial intelligence (AI) is a branch of science and technology and an indispensable part of many fields of research in today’s world. Especially in the area of pharmaceutical research and drug development, AI has conferred numerous aids for many inventions as well as discoveries. There have been a lot of advancements and progress in the way that AI is incorporated into the pharmaceutical field, and with time, newer updates have come up which have eased many areas of this field.

Objective

This review aims to provide a basic understanding of and information related to the role of AI in the pharmaceutical field, be it research, drug development, or even the process of dispensing and compounding.

Methods

The literature study was carried out extensively through various databases like Google Scholar, PubMed, ScienceDirect, to support this review. The information which was collected was analyzed and arranged accordingly.

Results and Discussions

From the survey that was carried out, it was found that there are many important roles of AI that have helped the pharmacists and researchers in multiple sectors of the pharmaceutical field. Thus, AI can be considered as a valuable tool to speed up different processes and results can be obtained fast.

Conclusion

The application of AI in the pharmaceutical sector has guided formulators and researchers in ways that were not possible earlier. Therefore, with the help of AI various manual and complex processes can now be easily accomplished without the unnecessary expenditure of resources, time, and money.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031313111241203042224
2024-12-13
2026-02-02
Loading full text...

Full text loading...

References

  1. WirtzB.W. WeyererJ.C. GeyerC. Artificial intelligence and the public sector—applications and challenges.Int. J. Public Adm.201942759661510.1080/01900692.2018.1498103
    [Google Scholar]
  2. SiauK. A qualitative research on marketing and sales in the artificial intelligence age.Inf Syst Conf2018201818
    [Google Scholar]
  3. SchneiderP. WaltersW.P. PlowrightA.T. SierokaN. ListgartenJ. GoodnowR.A.Jr FisherJ. JansenJ.M. DucaJ.S. RushT.S. ZentgrafM. HillJ.E. KrutoholowE. KohlerM. BlaneyJ. FunatsuK. LuebkemannC. SchneiderG. Rethinking drug design in the artificial intelligence era.Nat. Rev. Drug Discov.202019535336410.1038/s41573‑019‑0050‑331801986
    [Google Scholar]
  4. BenekeF. MackenrodtM.O. Artificial intelligence and collusion.IIC Int. Rev. Ind. Prop. Copyr. Law201950110913410.1007/s40319‑018‑00773‑x
    [Google Scholar]
  5. BieleckiA. Models of neurons and perceptrons: Selected problems and challengesSpringer201910.1007/978‑3‑319‑90140‑4
    [Google Scholar]
  6. KalyaneD. Artificial intelligence in the pharmaceutical sector: Current scene and future prospect.INC202010.1016/B978‑0‑12‑814455‑8.00003‑7
    [Google Scholar]
  7. VyasM. ThakurS. RiyazB. BansalK.K. TomarB. MishraV. Artificial intelligence: The beginning of a new era in pharmacy profession.Asian J. Pharm.20181227276
    [Google Scholar]
  8. JiangJ. Advancing drug discovery via artificial intelligence.Drug Discov. Today20231117517610.1021/acs.molpharmaceut.8b00930
    [Google Scholar]
  9. MendezD. GaultonA. BentoA.P. ChambersJ. De VeijM. FélixE. MagariñosM.P. MosqueraJ.F. MutowoP. NowotkaM. Gordillo-MarañónM. HunterF. JuncoL. MugumbateG. Rodriguez-LopezM. AtkinsonF. BoscN. RadouxC.J. Segura-CabreraA. HerseyA. LeachA.R. ChEMBL: Towards direct deposition of bioassay data.Nucleic Acids Res.201947D1D930D94010.1093/nar/gky107530398643
    [Google Scholar]
  10. ChenJ. SwamidassS.J. DouY. BruandJ. BaldiP. ChemDB: A public database of small molecules and related chemoinformatics resources.Bioinformatics200521224133413910.1093/bioinformatics/bti68316174682
    [Google Scholar]
  11. SorokinaM. MerseburgerP. RajanK. YirikM.A. SteinbeckC. COCONUT online: Collection of open natural products database.J. Cheminform.2021131210.1186/s13321‑020‑00478‑933423696
    [Google Scholar]
  12. ZhuH. Big data and artificial intelligence modeling for drug discovery.Annu. Rev. Pharmacol. Toxicol.202060157358910.1146/annurev‑pharmtox‑010919‑02332431518513
    [Google Scholar]
  13. CiallellaH.L. ZhuH. Advancing computational toxicology in the big data era by artificial intelligence: Data-driven and mechanism-driven modeling for chemical toxicity.Chem. Res. Toxicol.201932453654710.1021/acs.chemrestox.8b0039330907586
    [Google Scholar]
  14. ChanH.C.S. ShanH. DahounT. VogelH. YuanS. Advancing drug discovery via artificial intelligence.Trends Pharmacol. Sci.201940859260410.1016/j.tips.2019.06.00431320117
    [Google Scholar]
  15. FreshourS.L. KiwalaS. CottoK.C. CoffmanA.C. McMichaelJ.F. SongJ.J. GriffithM. GriffithO.L. WagnerA.H. Integration of the drug–gene interaction database (DGIdb 4.0) with open crowdsource efforts.Nucleic Acids Res.202149D1D1144D115110.1093/nar/gkaa108433237278
    [Google Scholar]
  16. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx103729126136
    [Google Scholar]
  17. TangJ. TanoliZ.R. RavikumarB. AlamZ. RebaneA. Vähä-KoskelaM. PeddintiG. van AdrichemA.J. WakkinenJ. JaiswalA. KarjalainenE. GautamP. HeL. ParriE. KhanS. GuptaA. AliM. YetukuriL. GustavssonA.L. Seashore-LudlowB. HerseyA. LeachA.R. OveringtonJ.P. RepaskyG. WennerbergK. AittokallioT. Drug target commons: A community effort to build a consensus knowledge base for drug-target interactions.Cell Chem. Biol.2018252224229.e210.1016/j.chembiol.2017.11.00929276046
    [Google Scholar]
  18. FirthN.C. AtrashB. BrownN. BlaggJ. MOARF, an integrated workflow for multiobjective optimization: Implementation, synthesis, and biological evaluation.J. Chem. Inf. Model.20155561169118010.1021/acs.jcim.5b0007326054755
    [Google Scholar]
  19. LiX. TangQ. MengF. DuP. ChenW. INPUT: An intelligent network pharmacology platform unique for traditional Chinese medicine.Comput. Struct. Biotechnol. J.2022201345135110.1016/j.csbj.2022.03.00635356545
    [Google Scholar]
  20. PetitjeanM. CamprouxA-C. in silico medicinal chemistry: Computational methods to support drug design. Edited by Nathan Brown.ChemMedChem201611131480148110.1002/cmdc.201600165
    [Google Scholar]
  21. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa97133151290
    [Google Scholar]
  22. PereiraJ.C. CaffarenaE.R. dos SantosC.N. Boosting docking-based virtual screening with deep learning.J. Chem. Inf. Model.201656122495250610.1021/acs.jcim.6b0035528024405
    [Google Scholar]
  23. CampillosM. KuhnM. GavinA.C. JensenL.J. BorkP. Drug target identification using side-effect similarity.Science2008321588626326610.1126/science.1158140
    [Google Scholar]
  24. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa107433237311
    [Google Scholar]
  25. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑234265844
    [Google Scholar]
  26. KimR.Q. van DijkW.J. SixmaT.K. Structure of USP7 catalytic domain and three Ubl-domains reveals a connector α-helix with regulatory role.J. Struct. Biol.20161951111810.1016/j.jsb.2016.05.00527183903
    [Google Scholar]
  27. NowotkaM.M. GaultonA. MendezD. BentoA.P. HerseyA. LeachA. Using ChEMBL web services for building applications and data processing workflows relevant to drug discovery.Expert Opin. Drug Discov.201712875776710.1080/17460441.2017.133903228602100
    [Google Scholar]
  28. BrickleyD. Resource description framework (RDF) schema specification RDF schemas.W3C2012120
    [Google Scholar]
  29. GromskiP.S. GrandaJ.M. CroninL. Universal chemical synthesis and discovery with ‘The Chemputer’.Trends Chem.20202141210.1016/j.trechm.2019.07.004
    [Google Scholar]
  30. LutellierT. PhamH.V. PangL. LiY. WeiM. TanL. CoCoNuT: Combining context-aware neural translation models using ensemble for program repair.Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and AnalysisVirtual Event, USA, 18 July 2020, pp. 101–114.10.1145/3395363.3397369
    [Google Scholar]
  31. RamsundarB. Molecular machine learning with deepchem.Stanford UniversityStanford, CA, USA2018
    [Google Scholar]
  32. ThalheimT. VollmerA. EbertR.U. KühneR. SchüürmannG. Tautomer identification and tautomer structure generation based on the InChI code.J. Chem. Inf. Model.20105071223123210.1021/ci100117920666407
    [Google Scholar]
  33. CaoD.S. XuQ.S. HuQ.N. LiangY.Z. ChemoPy: freely available python package for computational biology and chemoinformatics.Bioinformatics20132981092109410.1093/bioinformatics/btt10523493324
    [Google Scholar]
  34. KingmaD.P. BaJ.L. Adam: A method for stochastic optimization.Proceedings of the 3rd International Conference on Learning Representations (ICLR).San Diega, CA, USA, November 19, 2015, pp. 1–15.
    [Google Scholar]
  35. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature1453926017442
    [Google Scholar]
  36. GiniG. ZanoliF. GambaA. RaitanoG. BenfenatiE. Could deep learning in neural networks improve the QSAR models?SAR QSAR Environ. Res.201930961764210.1080/1062936X.2019.165082731460798
    [Google Scholar]
  37. WuY. LianD. XuY. WuL. ChenE. Graph convolutional networks with markov random field reasoning for social spammer detection.Proc AAAI Conf Artif Intell202034011054106110.1609/aaai.v34i01.5455
    [Google Scholar]
  38. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac95636305812
    [Google Scholar]
  39. KimS. ChengT. HeS. ThiessenP.A. LiQ. GindulyteA. BoltonE.E. PubChem protein, gene, pathway, and taxonomy data collections: Bridging biology and chemistry through target-centric views of pubchem data.J. Mol. Biol.20224341116751410.1016/j.jmb.2022.16751435227770
    [Google Scholar]
  40. KimS. ThiessenP.A. BoltonE.E. ChenJ. FuG. GindulyteA. HanL. HeJ. HeS. ShoemakerB.A. WangJ. YuB. ZhangJ. BryantS.H. PubChem substance and compound databases.Nucleic Acids Res.201644D1D1202D121310.1093/nar/gkv95126400175
    [Google Scholar]
  41. WangY. BryantS.H. ChengT. WangJ. GindulyteA. ShoemakerB.A. ThiessenP.A. HeS. ZhangJ. PubChem BioAssay: 2017 update.Nucleic Acids Res.201745D1D955D96310.1093/nar/gkw111827899599
    [Google Scholar]
  42. GermainM. CaputoF. MetcalfeS. TosiG. SpringK. ÅslundA.K.O. PottierA. SchiffelersR. CeccaldiA. SchmidR. Delivering the power of nanomedicine to patients today.J. Control. Release2020326April16417110.1016/j.jconrel.2020.07.00732681950
    [Google Scholar]
  43. ThotaN. JiangJ. Computational amphiphilic materials for drug delivery.Front. Mater.20152October11510.3389/fmats.2015.00064
    [Google Scholar]
  44. HuynhL. NealeC. PomèsR. AllenC. Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery.Nanomedicine201281203610.1016/j.nano.2011.05.00621669300
    [Google Scholar]
  45. SerovN. VinogradovV. Artificial intelligence to bring nanomedicine to life.Adv. Drug Deliv. Rev.202218411419410.1016/j.addr.2022.11419435283223
    [Google Scholar]
  46. OlivettiE.A. ColeJ.M. KimE. KononovaO. CederG. HanT.Y-J. HiszpanskiA.M. Data-driven materials research enabled by natural language processing and information extraction.Appl. Phys. Rev.20207404131710.1063/5.0021106
    [Google Scholar]
  47. LewinskiN.A. McInnesB.T. Using natural language processing techniques to inform research on nanotechnology.Beilstein J. Nanotechnol.2015611439144910.3762/bjnano.6.14926199848
    [Google Scholar]
  48. MaB. WeiX. LiuC. BanX. HuangH. WangH. XueW. WuS. GaoM. ShenQ. MukeshimanaM. AbuassbaA.O. ShenH. SuY. Data augmentation in microscopic images for material data mining.NPJ Comput Mater20206112510.1038/s41524‑020‑00392‑6
    [Google Scholar]
  49. SchwarzerM. RoganB. RuanY. SongZ. LeeD.Y. PercusA.G. ChauV.T. MooreB.A. RougierE. ViswanathanH.S. SrinivasanG. Learning to fail: Predicting fracture evolution in brittle material models using recurrent graph convolutional neural networks.Comput. Mater. Sci.201916232233210.1016/j.commatsci.2019.02.046
    [Google Scholar]
  50. UlrichN. GossK.U. EbertA. Exploring the octanol–water partition coefficient dataset using deep learning techniques and data augmentation.Commun. Chem.2021419010.1038/s42004‑021‑00528‑936697535
    [Google Scholar]
  51. LudwigA. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods.NPJ Comput Mater2019517010.1038/s41524‑019‑0205‑0
    [Google Scholar]
  52. JariwalaA.S.N. PuttaC.L. GatadeK. UmarjiM. SyedN.R.R. PawdeD.M. Intriguing of pharmaceutical product development processes with the help of artificial intelligence and deep / machine learning or artificial neural network.Preprint202210.1016/j.jddst.2023.104751
    [Google Scholar]
  53. WhiteheadK.A. SahayG. LiG.Z. LoveK.T. AlabiC.A. MaM. ZurenkoC. QuerbesW. LangerR.S. AndersonD.G. Synergistic silencing: Combinations of lipid-like materials for efficacious siRNA delivery.Mol. Ther.20111991688169410.1038/mt.2011.14121750531
    [Google Scholar]
  54. ShityakovS. BroscheitJ. FörsterC. α-Cyclodextrin dimer complexes of dopamine and levodopa derivatives to assess drug delivery to the central nervous system: ADME and molecular docking studies.Int. J. Nanomedicine201273211321910.2147/IJN.S3137322811606
    [Google Scholar]
  55. SinghA.V. VarmaM. LauxP. ChoudharyS. DatusaliaA.K. GuptaN. LuchA. GandhiA. KulkarniP. NathB. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: A comprehensive review.Arch. Toxicol.202397496397910.1007/s00204‑023‑03471‑x36878992
    [Google Scholar]
  56. SinghA.V. KayalA. MalikA. MaharjanR.S. DietrichP. ThissenA. SiewertK. CuratoC. PandeK. PrahladD. KulkarniN. LauxP. LuchA. Interfacial water in the sars spike protein: Investigating the interaction with human ace2 receptor and in vitro uptake in A549 cells.Langmuir202238267976798810.1021/acs.langmuir.2c0067135736838
    [Google Scholar]
  57. FortinoV. KinaretP.A.S. FratelloM. SerraA. SaarimäkiL.A. GalludA. GuptaG. ValesG. CorreiaM. RasoolO. YtterbergJ. MonopoliM. SkoogT. RitchieP. MoyaS. Vázquez-CamposS. HandyR. GrafströmR. TranL. ZubarevR. LahesmaaR. DawsonK. LoeschnerK. LarsenE.H. KrombachF. NorppaH. KereJ. SavolainenK. AleniusH. FadeelB. GrecoD. Biomarkers of nanomaterials hazard from multi-layer data.Nat. Commun.2022131379810.1038/s41467‑022‑31609‑535778420
    [Google Scholar]
  58. SinghA.V. ChandrasekarV. JanapareddyP. MathewsD.E. LauxP. LuchA. YangY. Garcia-CanibanoB. BalakrishnanS. AbinahedJ. Al AnsariA. DakuaS.P. Emerging application of nanorobotics and artificial intelligence to cross the BBB: Advances in design, controlled maneuvering, and targeting of the barriers.ACS Chem. Neurosci.202112111835185310.1021/acschemneuro.1c0008734008957
    [Google Scholar]
  59. AmmarA. BonarettiS. WinckersL. QuikJ. BakkerM. MaierD. LynchI. van RijnJ. WillighagenE. A semi-automated workflow for fair maturity indicators in the life sciences.Nanomaterials20201010206810.3390/nano1010206833092028
    [Google Scholar]
  60. NanotoxicologyC. Computational Nanotoxicology.1st edJenny Stanford PublishingNew York201910.1201/9780429341373
    [Google Scholar]
  61. NarayananH. DingfelderF. ButtéA. LorenzenN. SokolovM. ArosioP. Machine learning for biologics: Opportunities for protein engineering, developability, and formulation.Trends Pharmacol Sci202142315116510.1016/j.tips.2020.12.004
    [Google Scholar]
  62. Kesik-BrodackaM. Progress in biopharmaceutical development.Biotechnol. Appl. Biochem.201865330632210.1002/bab.161728972297
    [Google Scholar]
  63. VamathevanJ. ClarkD. CzodrowskiP. DunhamI. FerranE. LeeG. LiB. MadabhushiA. ShahP. SpitzerM. ZhaoS. Applications of machine learning in drug discovery and development.Nat. Rev. Drug Discov.201918646347710.1038/s41573‑019‑0024‑530976107
    [Google Scholar]
  64. ChingT. Opportunities and obstacles for deep learning in biology and medicine.J R Soc Interface2018151412017038710.1098/rsif.2017.0387
    [Google Scholar]
  65. XiongW. LiuB. ShenY. JingK. SavageT.R. Protein engineering design from directed evolution to de novo synthesis.Biochem. Eng. J.2021174February10809610.1016/j.bej.2021.108096
    [Google Scholar]
  66. AlleyE.C. KhimulyaG. BiswasS. AlQuraishiM. ChurchG.M. Unified rational protein engineering with sequence-based deep representation learning.Nat. Methods201916121315132210.1038/s41592‑019‑0598‑131636460
    [Google Scholar]
  67. KelleyB. Developing therapeutic monoclonal antibodies at pandemic pace.Nat. Biotechnol.202038554054510.1038/s41587‑020‑0512‑532317764
    [Google Scholar]
  68. FoxR.J. DavisS.C. MundorffE.C. NewmanL.M. GavrilovicV. MaS.K. ChungL.M. ChingC. TamS. MuleyS. GrateJ. GruberJ. WhitmanJ.C. SheldonR.A. HuismanG.W. Improving catalytic function by ProSAR-driven enzyme evolution.Nat. Biotechnol.200725333834410.1038/nbt128617322872
    [Google Scholar]
  69. DongJ. GaoH. OuyangD. PharmSD: A novel AI-based computational platform for solid dispersion formulation design.Int. J. Pharm.2021604May12070510.1016/j.ijpharm.2021.12070533991595
    [Google Scholar]
  70. OussetA. ChavezP.F. MeeusJ. RobinF. SchubertM. SomvilleP. DodouK. Prediction of phase behavior of spray- dried amorphous solid dispersions: Assessment of thermodynamic models, standard screening methods and a novel atomization screening device with regard to prediction accuracy.Pharmaceutics20181012910.3390/pharmaceutics1001002929518936
    [Google Scholar]
  71. FlemingN. How artificial intelligence is changing drug discovery.Nature20185577707S55S5710.1038/d41586‑018‑05267‑x29849160
    [Google Scholar]
  72. BarmpalexisP. KachrimanisK. GeorgarakisE. Solid dispersions in the development of a nimodipine floating tablet formulation and optimization by artificial neural networks and genetic programming.Eur. J. Pharm. Biopharm.201177112213110.1016/j.ejpb.2010.09.01720934511
    [Google Scholar]
  73. HanR. XiongH. YeZ. YangY. HuangT. JingQ. LuJ. PanH. RenF. OuyangD. Predicting physical stability of solid dispersions by machine learning techniques.J. Control. Release2019311-312August162510.1016/j.jconrel.2019.08.03031465824
    [Google Scholar]
  74. PatelT.B. PatelL.D. PatelT.R. SuhagiaB.N. Artificial neural network as tool for quality by design in formulation development of solid dispersion of fenofibrate.Bull. Pharm. Res.2011131830
    [Google Scholar]
  75. NeloferR. RamananR.N. RahmanR.N.Z.R.A. BasriM. AriffA.B. Comparison of the estimation capabilities of response surface methodology and artificial neural network for the optimization of recombinant lipase production by E. coli BL21.J. Ind. Microbiol. Biotechnol.201239224325410.1007/s10295‑011‑1019‑321833714
    [Google Scholar]
  76. RojekI. MikołajewskiD. DostatniE. KopowskiJ. Specificity of 3D printing and AI-based optimization of medical devices using the example of a group of exoskeletons.Appl. Sci.2023132106010.3390/app13021060
    [Google Scholar]
  77. TracyT. WuL. LiuX. ChengS. LiX. 3D printing: Innovative solutions for patients and pharmaceutical industry.Int J Pharm2023631202212248010.1016/j.ijpharm.2022.122480
    [Google Scholar]
  78. MuhindoD. ElkanayatiR. SrinivasanP. RepkaM.A. AshourE.A. Recent advances in the applications of additive manufacturing (3D Printing) in drug delivery: A comprehensive review.AAPS PharmSciTech20232425710.1208/s12249‑023‑02524‑936759435
    [Google Scholar]
  79. ElbadawiM. McCoubreyL.E. GavinsF.K.H. OngJ.J. GoyanesA. GaisfordS. BasitA.W. Harnessing artificial intelligence for the next generation of 3D printed medicines.Adv. Drug Deliv. Rev.202117511380510.1016/j.addr.2021.05.01534019957
    [Google Scholar]
  80. ElbadawiM. McCoubreyL.E. GavinsF.K.H. OngJ.J. GoyanesA. GaisfordS. BasitA.W. Disrupting 3D printing of medicines with machine learning.Trends Pharmacol. Sci.202142974575710.1016/j.tips.2021.06.00234238624
    [Google Scholar]
  81. OngJ.J. CastroB.M. GaisfordS. CabalarP. BasitA.W. PérezG. GoyanesA. Accelerating 3D printing of pharmaceutical products using machine learning.Int. J. Pharm. X20224May10012010.1016/j.ijpx.2022.10012035755603
    [Google Scholar]
  82. JiangJ. MaX. OuyangD. WilliamsR.O.III Emerging artificial intelligence (AI) technologies used in the development of solid dosage forms.Pharmaceutics20221411225710.3390/pharmaceutics1411225736365076
    [Google Scholar]
  83. PalM.P. VaidyaB.K. DesaiK.M. JoshiR.M. NeneS.N. KulkarniB.D. Media optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: Artificial intelligence versus a statistical approach.J. Ind. Microbiol. Biotechnol.200936574775610.1007/s10295‑009‑0547‑619283419
    [Google Scholar]
  84. AtaeefardM. Sadati TilebonS.M. Reza SaebM. Intelligent modeling and optimization of emulsion aggregation method for producing green printing ink.Green Process Synth20198170371810.1515/gps‑2019‑0041
    [Google Scholar]
  85. DemirH. Arica-YeginB. OnerL. Application of an artificial neural network to predict dissolution data and determine the combined effect of pH and surfactant addition on the solubility and dissolution of the weak acid drug etodolac.J. Drug Deliv. Sci. Technol.20184721522210.1016/j.jddst.2018.07.022
    [Google Scholar]
  86. UnnikrishnanS. DonovanJ. MacphersonR. TormeyD. Machine learning for automated quality evaluation in pharmaceutical manufacturing of emulsions.J. Pharm. Innov.202015339240310.1007/s12247‑019‑09390‑8
    [Google Scholar]
  87. PatelR. ShahU. PatelG. Optimization of poly(E-caprolactone) based biodegradable in situ porous drug-eluting insert of BCS class II/IV drug for targeted application.Int. J. Polym. Mater. Polym. Biomater.202311210.1080/00914037.2023.2222334
    [Google Scholar]
  88. Agatonovic-KustrinS. BeresfordR. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.J. Pharm. Biomed. Anal.200022571772710.1016/S0731‑7085(99)00272‑110815714
    [Google Scholar]
  89. YangX. WangY. ByrneR. SchneiderG. YangS. Concepts of artificial intelligence for computer-assisted drug discovery.Chem. Rev.201911918105201059410.1021/acs.chemrev.8b0072831294972
    [Google Scholar]
  90. ÇelikI.N. ArslanF.K. TunR. YildizI. Artificial Intelligence on drug discovery and development.Ankara Univ. Eczac. Fak. Derg.202246240042710.33483/jfpau.878041q
    [Google Scholar]
  91. Blanco-GonzálezA. CabezónA. Seco-GonzálezA. Conde- TorresD. Antelo-RiveiroP. PiñeiroÁ. Garcia-FandinoR. The role of AI in drug discovery: Challenges, opportunities, and strategies.Pharmaceuticals202316689110.3390/ph1606089137375838
    [Google Scholar]
  92. DhakalA. McKayC. TannerJ.J. ChengJ. Artificial intelligence in the prediction of protein–ligand interactions: Recent advances and future directions.Brief. Bioinform.2022231bbab47610.1093/bib/bbab47634849575
    [Google Scholar]
  93. PatelV. ShahM. Artificial intelligence and machine learning in drug discovery and development.Intelligent Medicine20222313414010.1016/j.imed.2021.10.001
    [Google Scholar]
  94. SelvarajC. ChandraI. SinghS.K. Artificial intelligence and machine learning approaches for drug design: Challenges and opportunities for the pharmaceutical industries.Mol. Divers.20222631893191310.1007/s11030‑021‑10326‑z34686947
    [Google Scholar]
  95. HesslerG. BaringhausK.H. Artificial intelligence in drug design.Molecules20182310252010.3390/molecules2310252030279331
    [Google Scholar]
  96. LavecchiaA. Deep learning in drug discovery: Opportunities, challenges and future prospects.Drug Discov. Today201924102017203210.1016/j.drudis.2019.07.00631377227
    [Google Scholar]
  97. KolluriS. LinJ. LiuR. ZhangY. ZhangW. Machine learning and artificial intelligence in pharmaceutical research and development: A review.AAPS J.20222411910.1208/s12248‑021‑00644‑334984579
    [Google Scholar]
  98. Jiménez-LunaJ. GrisoniF. WeskampN. SchneiderG. Artificial intelligence in drug discovery: Recent advances and future perspectives.Expert Opin. Drug Discov.202116994995910.1080/17460441.2021.190956733779453
    [Google Scholar]
  99. LeiteM.L. de Loiola CostaL.S. CunhaV.A. KreniskiV. de Oliveira Braga FilhoM. da CunhaN.B. CostaF.F. Artificial intelligence and the future of life sciences.Drug Discov. Today202126112515252610.1016/j.drudis.2021.07.00234245910
    [Google Scholar]
  100. KimH. KimE. LeeI. BaeB. ParkM. NamH. Artificial intelligence in drug discovery: A comprehensive review of data-driven and machine learning approaches.Biotechnol. Bioprocess Eng.; BBE202025689593010.1007/s12257‑020‑0049‑y33437151
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031313111241203042224
Loading
/content/journals/ddl/10.2174/0122103031313111241203042224
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test