Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

For many years, inulin has been a versatile oligosaccharide that is mainly utilized in food. When compared to other biodegradable polysaccharides, inulin's unique and flexible structure, protective/stabilizing properties, along with organ-targeting abilities make it an ideal drug delivery vehicle. Inulin has drawn a lot of attention as a promising multifunctional natural biopolymer with a wide range of uses in drug delivery, prebiotics, and therapies. The three hydroxyl groups on each fructose unit present in inulin enable chemical modifications like (Esterification, Conjugation, crosslinking, Oxidation, or Reduction), allowing it to be tailored for drug delivery applications. Thus, therapeutics and biomolecules can be released in a sustained and controlled manner, increasing their bioavailability and cellular absorption at the targeted site. It clarifies the complex interactions between the host and inulin, microbiota, and medicinal drugs, exposing a multidimensional biopolymer with transformative potential. They are excellent carriers in healthcare and biomedicine due to their flexible structure, biocompatibility, remarkable target ability, innate ability to govern release behaviour, customizable degradation kinetics, and protective capacity. Drug targeting is the process of delivering a medication to the desired site of action. One of the advantages of drug targeting is that the medicinal molecule is released at a consistent and regulated rate, preventing overdose. The potential of inulin as an encapsulating material was examined in terms of its enzymatic degradability and drug-release characteristics. Inulin has a wide range of therapeutic applications. These include use as a dietary fibre with extra health benefits, as a diagnostic and analytical tool, and as a carrier in a drug delivery system. Inulin has been the subject of extensive research as a drug delivery carrier for colon-specific drug administration. Inulin has a wide range of applications in the pharmaceutical industry overall, and research on it is still ongoing, especially concerning chemically modified inulin. Therefore, it's conceivable that this flexible oligosaccharide will find even more uses.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031325982241211174118
2024-12-13
2025-12-15
Loading full text...

Full text loading...

References

  1. KhanF.F. SohailA. GhazanfarS. AhmadA. RiazA. AbbasiK.S. IbrahimM.S. UzairM. ArshadM. Recent innovations in non-dairy prebiotics and probiotics: Physiological potential, applications, and characterization.Probiotics Antimicr. Prot.202315223926310.1007/s12602‑022‑09983‑936063353
    [Google Scholar]
  2. de AlmeidaG.K. LosiG.R. OdaJ.M.M. FioriL.L. KetelutC.N. de CastroV.D. SoniN.J. WatanabeM.A.E. Inulin: Therapeutic potential, prebiotic properties and immunological aspects.Food Agric. Immunol.2013241213110.1080/09540105.2011.640993
    [Google Scholar]
  3. ŻbikowskaA. SzymańskaI. KowalskaM. Impact of inulin addition on properties of natural yogurt.Appl. Sci.20201012431710.3390/app10124317
    [Google Scholar]
  4. GandhiK.J. DeshmaneS.V. BiyaniK.R. Polymers in pharmaceutical drug delivery system: A review.Int. J. Pharm. Sci. Rev. Res.20121425766
    [Google Scholar]
  5. CarboniA.D. SalinasM.V. PuppoM.C. Inulin Fiber 40.Handbook of Food Bioactive Ingredients.1st Ed.H9P 1H6, CanadaDokumen Pub202313011585
    [Google Scholar]
  6. KaurN. GuptaA.K. Applications of inulin and oligofructose in health and nutrition.J. Biosci.200227770371410.1007/BF0270837912571376
    [Google Scholar]
  7. AhmadI. MasseyS. AsgharA. AhmadI. Phytochemistry, medicinal and nutritional importance of Asparagus racemosus 202317519210.59674/pbk2
    [Google Scholar]
  8. VanL.J. CoussementP. De LeenheerL. HoebregsH. SmitsG. On the presence of inulin and oligofructose as natural ingredients in the western diet.Crit. Rev. Food Sci. Nutr.199535652555210.1080/104083995095277148777017
    [Google Scholar]
  9. MoshfeghA.J. FridayJ.E. GoldmanJ.P. AhujaJ.K.C. Presence of inulin and oligofructose in the diets of Americans.J. Nutr.19991297Suppl.1407S1411S10.1093/jn/129.7.1407S10395608
    [Google Scholar]
  10. de OliveiraFL DalviLP PratissoliD AndradeGS AtaideJO Potentials insect pests of yacon Smallanthus sonchifolius (poeppig & endlicher) h. robinson in brazil.Inter. J. Adv. Eng. Res. Sci.20207411921
    [Google Scholar]
  11. ZallesV.C. PeñarrietaD.A. BrachoB.E. IbarraR.D. DávilaP.R. VillegasS.R. NietoZ.J. A gastroschisis bundle: Effects of a quality improvement protocol on morbidity and mortality.J. Pediatr. Surg.201853112117212210.1016/j.jpedsurg.2018.06.01430318281
    [Google Scholar]
  12. De LeenheerE.M.R. JanssensS. PadalkoE. LooseD. LeroyB.P. DhoogeI.J. Etiological diagnosis in the hearing impaired newborn: Proposal of a flow chart.Int. J. Pediatr. Otorhinolaryngol.2011751273210.1016/j.ijporl.2010.05.04021047691
    [Google Scholar]
  13. MartinezM. PoirrierP. ChamyR. PrüferD. SchulzeG.C. JorqueraL. RuizG. Taraxacum officinale and related species—An ethnopharmacological review and its potential as a commercial medicinal plant.J. Ethnopharmacol.201516924426210.1016/j.jep.2015.03.06725858507
    [Google Scholar]
  14. LimT.K. LimT.K. Musa acuminata (AAA Group)‘Dwarf Cavendish’.Edible Med And Non Med Plants: Fruits2012350252710.1007/978‑94‑007‑2534‑8_66
    [Google Scholar]
  15. KuniyalC.P. PurohitV. ButolaJ.S. SundriyalR.C. Seed size correlates seedling emergence in Terminalia bellerica.S. Afr. J. Bot.201387929410.1016/j.sajb.2013.03.016
    [Google Scholar]
  16. PaniaguaZ.NY KikvidzeZ KhojimatovOK BussmannRW  Allium ampeloprasum L. Allium cepa L. Allium denudatum Redouté Allium oleraceum L. Allium sativum L. Allium schoenoprasum L. Allium scorodoprasum L. Allium siculum Ucria Allium sphaerocephalon L. Allium ursinum L., Allium victorialis L. and Allium vineale L. Amaryllidaceae. Ethnobotany of the Mountain Regions of Eastern Europe: CarpathiansChamSpringer International Publishing.2024132
    [Google Scholar]
  17. OlayemiJ.O. AjaiyeobaE.O. Anti-inflammatory studies of yam (Dioscorea esculenta) extract on wistar rats.Afr. J. Biotechnol.200761610.5897/AJB2007.000‑2289
    [Google Scholar]
  18. HendryGA WallaceRK The origin, distribution, and evolutionary significance of fructans.Sci tech fructans.1993119139
    [Google Scholar]
  19. GültepeM. CoşkunçelebiK. MakbulS. TerzioğluS. Taxonomic notes on Tragopogon, and two newly described taxa from Anatolia.Nord. J. Bot.201634552953710.1111/njb.01133
    [Google Scholar]
  20. KrawiecM. DziwulskaH.A. PalonkaS. KaplanM. BarylaP. Effect of laser irradiation on seed germination and root yield of scorzonera (Scorzonera hispanica L.).Acta Agrophysica.2016234
    [Google Scholar]
  21. MyintP.P. DaoT.T.P. KimY.S. Anticancer activity of Smallanthus sonchifolius methanol extract against human hepatocellular carcinoma cells.Molecules20192417305410.3390/molecules2417305431443460
    [Google Scholar]
  22. BuckmanE.S. OduroI. PlaharW.A. TortoeC. Determination of the chemical and functional properties of yam bean ( Pachyrhizus erosus (L.) Urban) flour for food systems.Food Sci. Nutr.20186245746310.1002/fsn3.57429564113
    [Google Scholar]
  23. RebergH.S.C. BurtonJ.D. DanehowerD.A. MaG. MonksD.W. MurphyJ.P. RanellsN.N. WilliamsonJ.D. CreamerN.G. Changes over time in the allelochemical content of ten cultivars of rye (Secale cereale L.).J. Chem. Ecol.200531117919310.1007/s10886‑005‑0983‑315839489
    [Google Scholar]
  24. de AlmeidaA.B.A. SánchezH.M. MartínA.R. LuizF.A. TrigoJ.R. VilegasW. dos SantosL.C. SouzaB.A.R.M. de la LastraC.A. Anti-inflammatory intestinal activity of Arctium lappa L. (Asteraceae) in TNBS colitis model.J. Ethnopharmacol.2013146130031010.1016/j.jep.2012.12.04823313393
    [Google Scholar]
  25. GunnarssonI.B. SvenssonS.E. JohanssonE. KarakashevD. AngelidakiI. Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop.Ind. Crops Prod.20145623124010.1016/j.indcrop.2014.03.010
    [Google Scholar]
  26. AhmadS. AhmadR. AshrafM.Y. AshrafM. WaraichE.A. Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages.Pak. J. Bot.2009412647654
    [Google Scholar]
  27. AydınÇ. ÖzcanG.T. TuranM. MammadovR. Phenolic contents and antioxidant properties of Echinops ritro L. and E. tournefortii Jaup. Et. Spach extract.Int J. Sec. Metabolite.201632748110.21448/http‑ijate‑net‑index‑php‑ijsm.243309
    [Google Scholar]
  28. CarvalhoM.A. PintoM.M Figueiredo-RibeiroR.D. Inulin production by Vernonia herbacea as influenced by mineral fertilization and time of harvest.Braz. J. Bot.199821275280
    [Google Scholar]
  29. SedejI. SakačM. MandićA. MišanA. TumbasV. Čanadanović-BrunetJ. Buckwheat (Fagopyrum esculentum Moench) grain and fractions: Antioxidant compounds and activities.J. Food Sci.2012779C954C95910.1111/j.1750‑3841.2012.02867.x22888949
    [Google Scholar]
  30. ItayaN.M. BuckeridgeM.S. Figueiredo-RibeiroR.C. Biosynthesis in vitro of high-molecular-mass fructan by cell-free extracts from tuberous roots of Viguiera discolor (Asteraceae).New Phytol.199713615360
    [Google Scholar]
  31. WaliaH. WilsonC. WahidA. CondamineP. CuiX. CloseT.J. Expression analysis of barley (Hordeum vulgare L.) during salinity stress.Funct. Integr. Genomics20066214315610.1007/s10142‑005‑0013‑016450154
    [Google Scholar]
  32. BoecknerLS SchnepfMI TunglandBC Inulin: A review of nutritional and health implications.20014316310.1016/S1043‑4526(01)43002‑611285681
    [Google Scholar]
  33. BruntonD.F. OldhamM.J. GilmanA.V. Himalayan elecampane, Inula racemosa (Asteraceae), in north america.Rhodora2022123993193010.3119/20‑33
    [Google Scholar]
  34. PaseepholT. Characterisation of prebiotic compounds from plant sources and food industry wastes: Inulin from Jerusalem artichoke and lactulose from milk concentration permeate.RMIT University researchers2008
    [Google Scholar]
  35. SánchezMartínez.M.J. SotoJ.S. AntolinosV. MartínezH.G.B. LópezG.A. Manufacturing of short-chain fructooligosaccharides: From laboratory to industrial scale.Food Eng. Rev.202012214917210.1007/s12393‑020‑09209‑0
    [Google Scholar]
  36. MurphyD.J. The extracellular pollen coat in members of the Brassicaceae: Composition, biosynthesis, and functions in pollination.Protoplasma20062281-3313910.1007/s00709‑006‑0163‑516937052
    [Google Scholar]
  37. AkramW. JoshiR. GarudN. Inulin: A promising carrier for controlled and targeted drug delivery system.J. Drug Deliv. Ther.201991-s43744110.22270/jddt.v9i1‑s.2398
    [Google Scholar]
  38. LivingstonD.P.III HinchaD.K. HeyerA.G. Fructan and its relationship to abiotic stress tolerance in plants.Cell. Mol. Life Sci.200966132007202310.1007/s00018‑009‑0002‑x19290476
    [Google Scholar]
  39. PraznikW. LoeppertR. ViernsteinH. HaslbergerA.G. UngerF.M. Dietary fiber and prebiotics. Polysaccharides: Bioactivity and Biotechnology.ChamSpringer International Publishing201589192510.1007/978‑3‑319‑16298‑0_54
    [Google Scholar]
  40. LaitenbergerK. The potential of growing Yacon and other Lost Crops of the Incas and Jerusalem Artichoke as crops and functional foods in Ireland.2019Available from: https://www.nuffieldscholar.org/sites/default/files/reports/2018_IE_Klaus-Laitenberger_The-Potential-Of-Growing-Yacon-And-Other-Lost-Crops-Of-The-Incas-And-Jerusalem-Artichoke-As-Crops-And-Functional-Foods-In-Ireland.pdf
  41. KosaricN. CosentinoG.P. WieczorekA. DuvnjakZ. The Jerusalem artichoke as an agricultural crop.Biomass19845113610.1016/0144‑4565(84)90066‑0
    [Google Scholar]
  42. DestaniF. GabrieleB. SalernoG. CassanoA. BartolinoR. Recovery of molecules of pharmacological interest from blood orange juice by integrated membrane operations.Research, Innovation and Social Impact AreaUniversità della Calabria201215110.13126/UNICAL.IT/DOTTORATI/1142
    [Google Scholar]
  43. OsmanA.I. El-MonaemE.M.A. ElgarahyA.M. AniagorC.O. HosnyM. FarghaliM. RashadE. EjimoforM.I. LópezM.E.A. IharaI. YapP.S. RooneyD.W. EltaweilA.S. Methods to prepare biosorbents and magnetic sorbents for water treatment: A review.Environ. Chem. Lett.20232142337239810.1007/s10311‑023‑01603‑4
    [Google Scholar]
  44. ZimmermannA. VisscherC. KaltschmittM. Plant-based fructans for increased animal welfare: Provision processes and remaining challenges.Biomass Convers. Biorefin.2023132667268510.1007/s13399‑021‑01473‑2
    [Google Scholar]
  45. SiddharthS. SharmaD. Racial disparity and triple-negative breast cancer in African-American women: A multifaceted affair between obesity, biology, and socioeconomic determinants.Cancers2018101251410.3390/cancers1012051430558195
    [Google Scholar]
  46. MelilliM.G. BuzzancaC. Di StefanoV. Quality characteristics of cereal-based foods enriched with different degree of polymerization inulin: A review.Carbohydr. Polym.202433212191810.1016/j.carbpol.2024.12191838431396
    [Google Scholar]
  47. MykhalevychA. PolishchukG. NassarK. OsmakT. BuniowskaO.M. β-Glucan as a techno-functional ingredient in dairy and milk-based products: A review.Molecules20222719631310.3390/molecules2719631336234850
    [Google Scholar]
  48. MensinkM.A. FrijlinkH.W. van der Voort MaarschalkK. HinrichsW.L.J. Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications.Carbohydr. Polym.201513441842810.1016/j.carbpol.2015.08.02226428143
    [Google Scholar]
  49. LowensteinJ. GranthamJ.J. The rebirth of interest in renal tubular function.Am. J. Physiol. Renal Physiol.201631011F1351F135510.1152/ajprenal.00055.201626936872
    [Google Scholar]
  50. MensinkM.A. FrijlinkH.W. van der Voort MaarschalkK. HinrichsW.L.J. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics.Carbohydr. Polym.201513040541910.1016/j.carbpol.2015.05.02626076642
    [Google Scholar]
  51. HughesS.R. QureshiN. LópezN.J.C. JonesM.A. JarodskyJ.M. GalindoL.L.Á. LindquistM.R. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals.World J. Microbiol. Biotechnol.20173347810.1007/s11274‑017‑2241‑628341907
    [Google Scholar]
  52. GueimondeM. DelgadoS. MayoB. RuasM.P. MargollesA. de los Reyes-GavilánC.G. Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks.Food Res. Int.200437983985010.1016/j.foodres.2004.04.006
    [Google Scholar]
  53. OliveiraR.P.S. PeregoP. de OliveiraM.N. ConvertiA. Growth, organic acids profile and sugar metabolism of Bifidobacterium lactis in co-culture with Streptococcus thermophilus: The inulin effect.Food Res. Int.2012481212710.1016/j.foodres.2012.02.012
    [Google Scholar]
  54. SinghR.S. SinghT. KennedyJ.F. Enzymatic synthesis of fructooligosaccharides from inulin in a batch system.Carbohy. Poly. Techn. Appli.2020110000910.1016/j.carpta.2020.100009
    [Google Scholar]
  55. ValluruR. Van den EndeW. Plant fructans in stress environments: Emerging concepts and future prospects.J. Exp. Bot.200859112905291610.1093/jxb/ern16418603617
    [Google Scholar]
  56. BharathidasanA.K. Production of Biobutanol from inulin-rich biomass and industrial food processing wastes.The Ohio State Uni.2013
    [Google Scholar]
  57. ApolinárioA.C. de Lima DamascenoB.P.G. de MacêdoB.N.E. PessoaA. ConvertiA. da SilvaJ.A. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology.Carbohydr. Polym.201410136837810.1016/j.carbpol.2013.09.08124299785
    [Google Scholar]
  58. MárquezL.R.E. LoyolaV.V.M. SantiagoG.P.A. Interaction between fructan metabolism and plant growth regulators.Planta202225524910.1007/s00425‑022‑03826‑135084581
    [Google Scholar]
  59. MohammadalinejhadS. KurekM.A. Microencapsulation of anthocyanins: Critical review of techniques and wall materials.Appl. Sci.2021119393610.3390/app11093936
    [Google Scholar]
  60. SantivarangknaC. HiglB. FoerstP. Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures.Food Microbiol.200825342944110.1016/j.fm.2007.12.00418355668
    [Google Scholar]
  61. MaininiF. EcclesM.R. Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy.Molecules20202511269210.3390/molecules2511269232532030
    [Google Scholar]
  62. KasperJ.C. SchaffertD. OgrisM. WagnerE. FriessW. Development of a lyophilized plasmid/LPEI polyplex formulation with long-term stability—A step closer from promising technology to application.J. Control. Release2011151324625510.1016/j.jconrel.2011.01.00321223985
    [Google Scholar]
  63. FavaroT.C.S. OkuroP.K. MatosF.E.Jr Encapsulation via spray chilling/cooling/congealing.Handbook of Encapsulation and Controlled Release. MishraM. Boca Raton, FL, USACRC Press2015718710.1201/b19038‑8
    [Google Scholar]
  64. van DroogeD.J. HinrichsW.L.J. DickhoffB.H.J. ElliM.N.A. VisserM.R. ZijlstraG.S. FrijlinkH.W. Spray freeze drying to produce a stable Δ9-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation.Eur. J. Pharm. Sci.200526223124010.1016/j.ejps.2005.06.00716084699
    [Google Scholar]
  65. AungstB.J. Intestinal permeation enhancers.J. Pharm. Sci.200089442944210.1002/(SICI)1520‑6017(200004)89:4<429::AID‑JPS1>3.0.CO;2‑J10737905
    [Google Scholar]
  66. DahanA. MillerJ.M. AmidonG.L. Prediction of solubility and permeability class membership: Provisional BCS classification of the world’s top oral drugs.AAPS J.200911474074610.1208/s12248‑009‑9144‑x19876745
    [Google Scholar]
  67. SalawiA. Self-emulsifying drug delivery systems: A novel approach to deliver drugs.Drug Deliv.20222911811182310.1080/10717544.2022.208372435666090
    [Google Scholar]
  68. JanssensS. Van den MooterG. Review: Physical chemistry of solid dispersions.J. Pharm. Pharmacol.200961121571158610.1211/jpp.61.12.000119958579
    [Google Scholar]
  69. KashapovR. GaynanovaG. GabdrakhmanovD. KuznetsovD. PavlovR. PetrovK. ZakharovaL. SinyashinO. Self-assembly of amphiphilic compounds as a versatile tool for construction of nanoscale drug carriers.Int. J. Mol. Sci.20202118696110.3390/ijms2118696132971917
    [Google Scholar]
  70. GessnerM.O. ChauvetE. A case for using litter breakdown to assess functional stream integrity.Ecol. Appl.200212249851010.1890/1051‑0761(2002)012[0498:ACFULB]2.0.CO;2
    [Google Scholar]
  71. PokaM.S. MilneM. WesselsA. AucampM. Sugars and polyols of natural origin as carriers for solubility and dissolution enhancement.Pharmaceutics20231511255710.3390/pharmaceutics1511255738004536
    [Google Scholar]
  72. StankovićM. TomarJ. HiemstraC. SteendamR. FrijlinkH.W. HinrichsW.L.J. Tailored protein release from biodegradable poly(ε-caprolactone-PEG)-b-poly(ε-caprolactone) multiblock-copolymer implants.Eur. J. Pharm. Biopharm.201487232933710.1016/j.ejpb.2014.02.01224602675
    [Google Scholar]
  73. AfinjuomoF. AbdellaS. YoussefS.H. SongY. GargS. Inulin and its application in drug delivery.Pharmaceuticals202114985510.3390/ph1409085534577554
    [Google Scholar]
  74. GiteauA. VenierJ.M.C. AubertP.A. BenoitJ.P. How to achieve sustained and complete protein release from PLGA-based microparticles?Int. J. Pharm.20083501-2142610.1016/j.ijpharm.2007.11.01218162341
    [Google Scholar]
  75. YamaguchiY. TakenagaM. KitagawaA. OgawaY. MizushimaY. IgarashiR. Insulin-loaded biodegradable PLGA microcapsules: Initial burst release controlled by hydrophilic additives.J. Control. Release200281323524910.1016/S0168‑3659(02)00060‑312044564
    [Google Scholar]
  76. FarraR. MusianiF. PerroneF. ČemažarM. KamenšekU. TononF. AbramiM. RučigajA. GrassiM. PozzatoG. BonazzaD. ZanconatiF. ForteG. El BoustaniM. ScarabelL. GarzieraM. RussoS.C. De StefanoL. SalisB. ToffoliG. RizzolioF. GrassiG. DapasB. Polymer-mediated delivery of siRNAs to hepatocellular carcinoma: Variables affecting specificity and effectiveness.Molecules201823477710.3390/molecules2304077729597300
    [Google Scholar]
  77. AkramW. PandeyV. SharmaR. JoshiR. MishraN. GarudN. HaiderT. Inulin: Unveiling its potential as a multifaceted biopolymer in prebiotics, drug delivery, and therapeutics.Int. J. Biol. Macromol.2024259Pt 112913110.1016/j.ijbiomac.2023.12913138181920
    [Google Scholar]
  78. GiriS. DuttaP. GiriT.K. Inulin-based carriers for colon drug targeting.J. Drug Deliv. Sci. Technol.20216410259510.1016/j.jddst.2021.102595
    [Google Scholar]
  79. RouparD. BerniP. MartinsJ.T. CaetanoA.C. TeixeiraJ.A. NobreC. Bioengineering approaches to simulate human colon microbiome ecosystem.Trends Food Sci. Technol.202111280882210.1016/j.tifs.2021.04.035
    [Google Scholar]
  80. SavinaI.N. ZoughaibM. YergeshovA.A. Design and assessment of biodegradable macroporous cryogels as advanced tissue engineering and drug carrying materials.Gels2021737910.3390/gels703007934203439
    [Google Scholar]
  81. ChourasiaM.K. JainS.K. Polysaccharides for colon targeted drug delivery.Drug Deliv.200411212914810.1080/1071754049028077815200012
    [Google Scholar]
  82. BarclayT. GinicM.M. CooperP. PetrovskyN. Inulin-a versatile polysaccharide with multiple pharmaceutical and food chemical uses.J. Excip. Food Chem.201613
    [Google Scholar]
  83. FigueiredoM MouraMJ FerreiraPJ Selecting a particle sizer for the pharmaceutical industry.Char Phar Nano Micro2021 Jan 1912510.1002/9781119414018.ch1
    [Google Scholar]
  84. MorganB.A. Experimental and numerical modelling of the spray drying process for the production of thermally stable vaccine powders.Chemical EngineeringMcMaster University1280 Main Street West, Hamilton, Ontario2021139
    [Google Scholar]
  85. ChanH.W. ChowS. ZhangX. ZhaoY. TongH.H.Y. ChowS.F. Inhalable nanoparticle-based dry powder formulations for respiratory diseases: Challenges and strategies for translational research.AAPS PharmSciTech20232449810.1208/s12249‑023‑02559‑y37016029
    [Google Scholar]
  86. SalujaV. AmorijJ-P. KapteynJ.C. de BoerA.H. FrijlinkH.W. HinrichsW.L.J. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation.J. Control. Release2010144212713310.1016/j.jconrel.2010.02.02520219608
    [Google Scholar]
  87. ZijlstraG.S.J. PonsioenB.J. HummelS.A. SandersN. HinrichsW.L. de BoerA.H. FrijlinkH.W. Formulation and process development of (recombinant human) deoxyribonuclease I as a powder for inhalation.Pharm. Dev. Technol.200914435836810.1080/1083745080266282019552563
    [Google Scholar]
  88. QuigleyE.M. Gut bacteria in health and disease.Gastroenterol. Hepatol.20139956056924729765
    [Google Scholar]
  89. CarabinI.G. FlammW.G. Evaluation of safety of inulin and oligofructose as dietary fiber.Regul. Toxicol. Pharmacol.199930326828210.1006/rtph.1999.134910620476
    [Google Scholar]
  90. ConnollyB.M. JensonA.B. PetersC.J. GeyerS.J. BarthF. McPhersonR.A. Pathogenesis of Pichinde virus infection in strain 13 guinea pigs: An immunocytochemical, virologic, and clinical chemistry study.Am. J. Trop. Med. Hyg.1993491102410.4269/ajtmh.1993.49.108394659
    [Google Scholar]
  91. PascalG. Prebiotics and food safety.InHandbook of PrebioticsCRC Press1st Ed.200846748810.1201/9780849381829.ch23
    [Google Scholar]
  92. AzumaK. KagiN. YanagiU. OsawaH. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance.Environ. Int.2018121Pt 1515610.1016/j.envint.2018.08.05930172928
    [Google Scholar]
  93. ParkerRM Testing for reproductive toxicity. Developmental and reproductive toxicology: A practical approach.3rd Ed.CRC Press200642548710.1201/9781420040548.ch10
    [Google Scholar]
  94. FranckA. Technological functionality of inulin and oligofructose.Br. J. Nutr.200287S2Suppl. 2S287S29110.1079/BJN/200255012088531
    [Google Scholar]
  95. NaskarB. DanA. GhoshS. MoulikS.P. Characteristic physicochemical features of the biopolymer inulin in solvent added and depleted states.Carbohydr. Polym.201081370070610.1016/j.carbpol.2010.03.041
    [Google Scholar]
  96. BouchardA. HoflandG.W. WitkampG.J. Properties of sugar, polyol, and polysaccharide water− ethanol solutions.J. Chem. Eng. Data20075251838184210.1021/je700190m
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031325982241211174118
Loading
/content/journals/ddl/10.2174/0122103031325982241211174118
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biopolymer; control release; drug delivery; Inulin; stabilizer; therapeutic effect
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test