Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

3D Printing, sometimes referred to as additive manufacturing, has made the concept of personalized medicine a reality. The primary objective of 3D and 4D printing is to produce intricate, customized pharmaceuticals at a reasonable cost. With improvements in materials, resolution, and speed, 3D printing technology is quickly developing. It includes faster construction, cost efficiency through reduced waste, design flexibility for complex structures, and sustainability through optimized material usage. An extensive literature survey was done on 3D and 4D printing of pharmaceuticals using PubMed, Elsevier, ScienceDirect, and Springer. The results were then filtered based on the titles, abstracts, and accessibility of the complete texts. The search engine Google Scholar was accessed for literature data mining. From the data mining, it was found that from the year 2009 to 2024 the number of research publications surged more than 200 times on the current topic. Even though 3-D and 4-D printing technologies have advanced significantly in a short amount of time, the most often used ones are still stereolithography, nozzle-based deposition, inkjet, and selective laser sintering. Their use has been modified for the production of nanoparticles, polypills, tablets, and implants, Pharma's aspirations for tailored medications are being revolutionized by 3D printing, but cost, flexibility, and bioequivalence still need to be investigated. The present review offers a thorough analysis of various 3D and 4D printing methods and emphasizes the major advantages and disadvantages and major key challenges of 3D and 4D printing related to pharmaceuticals. Compared to 3D Printing, 4D printing offers better quality, efficacy, and functionality.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031312257241011071610
2024-10-17
2025-12-24
Loading full text...

Full text loading...

References

  1. AgrawalR. GargA. DeshmukhR. A snapshot of current updates and future prospects of 3D printing in medical and pharmaceutical science.Curr. Pharm. Des.202329860461910.2174/1381612829666230228115442
    [Google Scholar]
  2. ChahuanA. VermaA. ShekhoD. MishraR. AwasthiA. Revolutionizing the world of pharmaceuticals: Unleashing the game-changing power of 3D printing.Curr. Drug Targets202425851351610.2174/0113894501304163240429081741
    [Google Scholar]
  3. BácskayI. UjhelyiZ. FehérP. AranyP. The evolution of the 3D-printed drug delivery systems: A review.Pharmaceutics2022147131210.3390/pharmaceutics14071312
    [Google Scholar]
  4. ZukasV ZukasJA An Introduction to 3D Printing.United StatesFirst Edition Design Publishing2015
    [Google Scholar]
  5. CoburnJ LeeJ PatkarM. Ultimate Beginner’s Guide To 3D Printing.2017
  6. AliA AhmadU AkhtarJ. 3D Printing in pharmaceutical sector: An overview.Pharmaceutical Formulation Design - Recent PracticesLondonInTechOpen202010.5772/intechopen.90738
    [Google Scholar]
  7. JosePA 3D Printing of pharmaceuticals – a potential technology in developing personalized medicine.Asian J. Pharmaceut. Res. Devel.201863465410.22270/ajprd.v6i3.375
    [Google Scholar]
  8. ReddyC.V. vB. VenkateshM.P. Pramod KumarT.M. First FDA Approved 3D Printed Drug Paved New Path for Increased Precision in Patient Care.Appl. Clin. Res. Clin. Trials Regul. Aff.2020729310310.2174/2213476X07666191226145027
    [Google Scholar]
  9. PaolettiI CecconL. The evolution of 3D Printing in AEC: From experimental to consolidated techniques.3D PrintingLondonInTechOpen201810.5772/intechopen.79668
    [Google Scholar]
  10. BensoussanH. The History Of 3D Printing: 3D Printing Technologies from the 80s to Today.Blog Post. Sculpteo Np.20161456778
    [Google Scholar]
  11. ZhangJ. FengX. PatilH. TiwariR.V. RepkaM.A. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets.Int. J. Pharm.20175191-218619710.1016/j.ijpharm.2016.12.049
    [Google Scholar]
  12. AbaciA. GedeonC. KunaA. GuvendirenM. Additive manufacturing of oral tablets: Technologies, materials and printed tablets.Pharmaceutics202113215610.3390/pharmaceutics13020156
    [Google Scholar]
  13. AzadM.A. OlawuniD. KimbellG. BadruddozaA.Z.M. HossainM.S. SultanaT. Polymers for extrusion-based 3D printing of pharmaceuticals: A holistic materials–process perspective.Pharmaceutics202012212410.3390/pharmaceutics12020124
    [Google Scholar]
  14. ChatterjeeP. AlviMm. Excipients and active pharmaceutical ingredients.Pediatric Formulations.New York, NYSpringer2014347361
    [Google Scholar]
  15. MirzaM.A. IqbalZ. 3D printing in pharmaceuticals: Regulatory perspective.Curr. Pharm. Des.201924425081508310.2174/1381612825666181130163027
    [Google Scholar]
  16. PérezM. CarouD. RubioE.M. TetiR. Current advances in additive manufacturing.Procedia CIRP20208843944410.1016/j.procir.2020.05.076
    [Google Scholar]
  17. MwemaF.M. AkinlabiE.T. Basics Of Fused Deposition Modelling (FDM). Infused Deposition Modeling.ChamSpringer202011510.1007/978‑3‑030‑48259‑6
    [Google Scholar]
  18. TrenfieldS.J. AwadA. MadlaC.M. HattonG.B. FirthJ. GoyanesA. GaisfordS. BasitA.W. Shaping the future: Recent advances of 3D printing in drug delivery and healthcare.Expert Opin. Drug Deliv.201916101081109410.1080/17425247.2019.1660318
    [Google Scholar]
  19. ParkB.J. ChoiH.J. MoonS.J. KimS.J. BajracharyaR. MinJ.Y. HanH.K. Pharmaceutical applications Of 3D printing technology: Current understanding and future perspectives.J. Pharm. Investig.2019496575585
    [Google Scholar]
  20. XuX. AwwadS. Diaz-GomezL. Alvarez-LorenzoC. BrocchiniS. GaisfordS. GoyanesA. BasitA.W. 3D printed punctal plugs for controlled ocular drug delivery.Pharmaceutics20211391421142510.3390/pharmaceutics13091421
    [Google Scholar]
  21. BaileyC. StoyanovS. TilfordT. TourloukisG. 3D-printing and electronic packaging.2016 Pan Pacific Microelectronics Symposium (Pan Pacific)25-28 January 2016Big Island, HI, USA2016
    [Google Scholar]
  22. ZhangY. JarosinskiW. JungY.G. ZhangJ. Additive Manufacturing Processes and Equipment.Additive Manufacturing: Materials, Processes, Quantifications and Applications.AmsterdamElsevier201810.1016/B978‑0‑12‑812155‑9.00002‑5
    [Google Scholar]
  23. PalmeroE.M. BolleroA. 3D and 4D printing of functional and smart composite materials.Encyclopedia of Materials: CompositesAmsterdamElsevier2021
    [Google Scholar]
  24. BaeC.J. DiggsA.B. RamachandranA. Quantification and Certification of Additive Manufacturing Materials and Processes.Additive Manufacturing: Materials, Processes, Quantifications and Applications.AmsterdamElsevier201810.1016/B978‑0‑12‑812155‑9.00006‑2
    [Google Scholar]
  25. HanonM.M. Introduction to 3D printing technologies: Techniques, materials, and applications.2020Available From: https://www.researchgate.net/publication/342815109_Introduction_to_3D_printing_technologies_techniques_materials_and_applications
  26. KempinW, Domsta V, Brecht I, Semmling B, Tillmann S, Weitschies W, Seidlitz A. Development of a dual extrusion printing technique for an acid-and thermo-labile drug.European Journal of Pharmaceutical Sciences201815123191-8http://dx.doi.org/10.1016/j.stlm.2021.100037 PMID: 8150717(b) Mohammed, Aa; Algahtani, MS; Ahmad, MZ; Ahmad, J; Kotta, S 3D Printing in medicine: Technology overview and drug delivery applications. Annals 3D Printed Med, 2021, 6, 100037. http://dx.doi.org/10.1016/j.stlm.2021.100037
    [Google Scholar]
  27. KhaledS.A. BurleyJ.C. AlexanderM.R. YangJ. RobertsC.J. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles.J. Control. Release201521730831410.1016/j.jconrel.2015.09.028
    [Google Scholar]
  28. AlgahtaniM.S. MohammedA.A. AhmadJ. SalehE. Development of a 3D Printed Coating Shell to Control the Drug Release of Encapsulated Immediate-Release Tablets.Polymers (Basel)2020126139510.3390/polym12061395
    [Google Scholar]
  29. Reddy DumpaN. BandariS. Novel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modeling 3D Printing.Pharmaceutics20201215210.3390/pharmaceutics12010052
    [Google Scholar]
  30. DabbaghS.R. SarabiM.R. RahbarghaziR. SokulluE. YetisenA.K. TasogluS. 3D-printed microneedles in biomedical applications.iScience202124110201210.1016/j.isci.2020.102012
    [Google Scholar]
  31. YiH.G. ChoiY.J. KangK.S. HongJ.M. PatiR.G. ParkM.N. ShimI.K. LeeC.M. KimS.C. ChoD.W. A 3D-printed local drug delivery patch for pancreatic cancer growth suppression.J. Control. Release201623823124110.1016/j.jconrel.2016.06.015
    [Google Scholar]
  32. AllenE.A. O’MahonyC. CroninM. O’MahonyT. MooreA.C. CreanA.M. Dissolvable microneedle fabrication using piezoelectric dispensing technology.Int. J. Pharm.20165001-211010.1016/j.ijpharm.2015.12.052
    [Google Scholar]
  33. AlexanderN.J. BakerE. KapteinM. KarckU. MillerL. ZampaglioneE. Why consider vaginal drug administration?Fertil. Steril.200482111210.1016/j.fertnstert.2004.01.025
    [Google Scholar]
  34. KrezićS. KrhanE. MandžukaE. KovaĉN. KrajinaD. MarićA. KomićS. NikšićA. TucakA. SirbubaloM. VranićE. Fabrication of rectal and vaginal suppositories using 3D printed moulds: The challenge of personalized therapy.CMBEBIHNew York CitySpringer International Publishing2019
    [Google Scholar]
  35. ElkasabgyN.A. MahmoudA.A. MagedA. 3D printing: An appealing route for customized drug delivery systems.Int. J. Pharm.202058811973210.1016/j.ijpharm.2020.119732
    [Google Scholar]
  36. FuJ. YuX. JinY. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone.Int. J. Pharm.20185391-2758210.1016/j.ijpharm.2018.01.036
    [Google Scholar]
  37. PiccoC.J. Domínguez-RoblesJ. UtomoE. ParedesA.J. Volpe-ZanuttoF. MalinovaD. DonnellyR.F. LarrañetaE. 3D-printed implantable devices with biodegradable rate-controlling membrane for sustained delivery of hydrophobic drugs.Drug Deliv.20222911038104810.1080/10717544.2022.2057620
    [Google Scholar]
  38. MoussiK. BukhamsinA. KoselJ. Implantable 3D printed drug delivery system.2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII).201922432246
    [Google Scholar]
  39. LarochelleR.D. MannS.E. IfantidesC. 3D printing in eye care.Ophthalmol. Ther.202110473375210.1007/s40123‑021‑00379‑6
    [Google Scholar]
  40. GotoE. YagiY. KaidoM. MatsumotoY. KonomiK. TsubotaK. Improved functional visual acuity after punctal occlusion in dry eye patients.Am. J. Ophthalmol.2003135570470510.1016/S0002‑9394(02)02147‑5
    [Google Scholar]
  41. AhmedA.A. MusbahA. AtiyahA. 4D printing technology: A revolution across manufacturing.Int. J. Mech. Indus. Technol.2020724551
    [Google Scholar]
  42. RoyA. HossainM.S. BhowmickA. NizhumN. KumarS. Prospects of 4D printing in pharmaceuticals.Pharmacologyonline20203292302
    [Google Scholar]
  43. ReddyS. Smart materials for 4D printing: A review on developments, challenges and applications. Recent Advances in Manufacturing, Automation.Design and Energy Technologies: Proceedings from ICoFT20212020310
    [Google Scholar]
  44. TibbitsS. McKnellyC. OlguinC. DikovskyD. HirschS. 4D Printing and universal transformation.2014Available From: https://papers.cumincad.org/data/works/att/acadia14_539.content.pdf
  45. SingholiA.K. SharmaA. Finding capabilities of 4D printing.Int. J. Eng. Adv. Technol.20198510951110
    [Google Scholar]
  46. RameshS. Kiran reddyS. UshaC. NaulakhaN.K. AdithyakumarC.R. Lohith Kumar ReddyM. Advancements in the research of 4D printing-a review.IOP Conf. Series Mater. Sci. Eng.20183766101212310.1088/1757‑899X/376/1/012123
    [Google Scholar]
  47. ZhangZ. DemirK.G. GuG.X. Developments in 4D-printing: A review on current smart materials, technologies, and applications.Int. J. Smart Nano Mater.201910320522410.1080/19475411.2019.1591541
    [Google Scholar]
  48. LindquistEM GosnellJM KhanSK BylJL ZhouW JiangJ VettukattilJJ 3D printing in Cardiology: A review of applications and roles for advanced cardiac imaging.Annals of 3D Printed Med.2021141003410.1016/j.stlm.2021.100034
    [Google Scholar]
  49. MüllerM, Winkler D, Möbius R, Sauerstein T, Scholz S, Gutmann S, Flegel T, Meixensberger J, Drossel WG, Grunert R. A concept for a 3D-printed patient-specific stereotaxy platform for brain biopsy-a canine cadaver study.Research in Veterinary Science2019112479-84http://dx.doi.org/10.1016/j.stlm.2021.100039(b) Krauel, L; Valls-Esteve, A; Tejo-Otero, A; Fenollosa-Artés, F. 3D-Printing in surgery: Beyond bone structures. A review. Annals 3D Printed Med., 2021, 4, 100039. http://dx.doi.org/10.1016/j.stlm.2021.100039
    [Google Scholar]
  50. Zabala-TraversS. Biomodeling and 3D printing: A novel radiology subspecialty.Annals 3D Printed Med.2021410003810.1016/j.stlm.2021.100038
    [Google Scholar]
  51. GanguliA. Pagan-DiazG.J. GrantL. CvetkovicC. BramletM. VozenilekJ. KesavadasT. BashirR. 3D printing for preoperative planning and surgical training: a review.Biomed. Microdevices20182036510.1007/s10544‑018‑0301‑9
    [Google Scholar]
  52. DodziukH. Applications of 3D printing in healthcare. Kardiochirurgia i Torakochirurgia Polska/Polish.J. Thorac. Cardiovasc. Surg.2016133283293
    [Google Scholar]
  53. TinoR MooreR AntolineS RaviP WakeN IonitaCN MorrisJM DeckerSJ SheikhA RybickiFJ ChepelevLL COVID-19 and the role of 3D printing in medicine.3D Printed Med.2020611110.1186/s41205‑020‑00064‑7
    [Google Scholar]
  54. RadfarP BazazSR MirakhorliF WarkianiME The role of 3D printing in the fight against COVID-19 outbreak.J. 3D Print Med202151516010.2217/3dp‑2020‑0028
    [Google Scholar]
  55. NovakJI LoyJ A quantitative analysis of 3D printed face shields and masks during COVID-19.Emerald Open Res.202024210.35241/emeraldopenres.13815.1
    [Google Scholar]
  56. MajrashiM.A. YahyaE.B. MushtaqR.Y. Revolutionizing drug delivery: Exploring the impact of advanced 3D printing technologies on polymer-based systems.J. Drug Deliv. Sci. Technol.2024202410583910.1016/j.jddst.2024.105839
    [Google Scholar]
  57. 3D Printing Industry.2021Available From: https://3Dprintingindustry.Com/News/Merck-Aprecia-And-Fabrx-OnTransitioning-3D-Printed-Pharmaceuticals-From-Lab-To-Clinic-194285/
  58. IbrahimO. Five companies personalizing treatments with 3D printed drugs.2022Available From: https://www.labiotech.eu/best-biotech/five-companies-personalizing-treatments-with-3d-printed-drugs/
  59. RahmanM. AlmalkiW.H. AlghamdiS. AlharbiK.S. KhalilullahH. Habban AkhterM. KeshariA.K. SharmaN. SinghT. SoniK. HafeezA. BegS. Three ‘D’s: Design approach, dimensional printing, and drug delivery systems as promising tools in healthcare applications.Drug Discov. Today202126112726273310.1016/j.drudis.2021.06.016
    [Google Scholar]
  60. GrayG. DrS. The rise of the 4D bioprinting industry.2021Available From: https://www.voxelmatters.com/the-rise-of-the-4d-bioprinting-industry/
  61. AlhnanM.A. OkwuosaT.C. Solid dosage form production.US Patent 110454262021
  62. TylerK.L. Method And apparatus for continuous composite three- dimensional printing.US Patent 107447082020
  63. ZhouJ. ChangS. Direct inkjet fabrication of drug delivery devices.US Patent 93811542016
  64. AlmutairiA. NerY. KarpiakJ. MorachisJ. Single step polymerization of covalently bound multilayer matrices.US Patent 94093222016
  65. ZhouS.K. GeigerB. Semantic medical image to 3D print of anatomic structure.US Patent 104092352019
  66. PatiF, Ha DH, Jang J, Han HH, Rhie JW, Cho DW. Biomimetic 3D tissue printing for soft tissue regeneration.Biomaterials201516216475(b) Schlachter, K. 3D Printing devices and methods. US Patent 11220096, 2022.
    [Google Scholar]
  67. PatiF, Gantelius J, Svahn HA. 3D bioprinting of tissue/organ models.Angewandte Chemie International Edition20165515465065(b) Dechev, N.; Coutts, J.; Shrestha, P.; Brussow, D.; Peirone, M.; Christie, K.; Treble, M.; Chan, A.; Richards, M.; Knowlton, R. Custom fitted body powered prosthetic upper limb manufactured by 3D Printing. US Patent 11013620, 2021.
    [Google Scholar]
  68. HullC.W. Methods and apparatus for 3D Printed hydrogel materials.US Patent 113054802022
  69. GhimireT. JoshiA. SenS. KapruanC. ChadhaU. SelvarajS.K. Blockchain in additive manufacturing processes: Recent trends & its future possibilities.Mater. Today Proc.2022502170218010.1016/j.matpr.2021.09.444
    [Google Scholar]
  70. ZhangX. DahuW. Application of artificial intelligence algorithms in image processing.J. Vis. Commun. Image Represent.201961424910.1016/j.jvcir.2019.03.004
    [Google Scholar]
  71. HuangY, Zhang XF, Gao G, Yonezawa T, Cui X. 3D bioprinting and the current applications in tissue engineering.Biotechnology Journal20171281600734http://dx.doi.org/10.1093/ehjci/jew215(b) Muraru, D.; Veronesi, F.; Maddalozzo, A.; Dequal, D.; Frajhof, L.; Rabischoffsky, A.; Iliceto, S.; Badano, L.P. 3D printing of normal and pathologic tricuspid valves from transthoracic 3D echocardiography data sets. Eur. Heart J. Cardiovasc. Imaging, 2017, 18(7), 802-808. http://dx.doi.org/10.1093/ehjci/jew215
    [Google Scholar]
  72. SommerK. IzzoR.L. ShepardL. PodgorsakA.R. RudinS. SiddiquiA.H. WilsonM.F. AngelE. SaidZ. SpringerM. IonitaC.N. Design optimization for accurate flow simulations in 3D printed vascular phantoms derived from computed tomography angiography.Proc. SPIE Int. Soc. Opt. Eng.201710138101380R
    [Google Scholar]
  73. GrabM. HopfnerC. GesenhuesA. KönigF. HaasN.A. HaglC. CurtaA. ThierfelderN. Development and evaluation of 3D-printed cardiovascular phantoms for interventional planning and training.J. Vis. Exp.2021167e62063
    [Google Scholar]
  74. ChristensenA. HumphriesS. GohK.C. SwiftD. Advanced? tactile? medical imaging for separation surgeries of conjoined twins.Childs Nerv. Syst.2004208-954755310.1007/s00381‑004‑0982‑7
    [Google Scholar]
  75. ChoiJ.Y. DasS. TheodoreN.D. KimI. HonsbergC. ChoiH.W. AlfordT.L. Advances in 2D/3D printing of functional nanomaterials and their applications.ECS J. Solid State Sci. Technol.201544P3001P300910.1149/2.0011504jss
    [Google Scholar]
  76. LinD. NianQ. DengB. JinS. HuY. WangW. ChengG.J. Three-dimensional printing of complex structures: Man made or toward nature?ACS Nano20148109710971510.1021/nn504894j
    [Google Scholar]
  77. WilliamsG. HuntM. BoehmB. MayA. TaverneM. HoD. GiblinS. ReadD. RarityJ. AllenspachR. LadakS. Two-photon lithography for 3D magnetic nanostructure fabrication.Nano Res.201811284585410.1007/s12274‑017‑1694‑0
    [Google Scholar]
  78. HospodiukM. DeyM. SosnoskiD. OzbolatI.T. The bioink: A comprehensive review on bioprintable materials.Biotechnol. Adv.201735221723910.1016/j.biotechadv.2016.12.006
    [Google Scholar]
  79. OzbolatI.T. Scaffold-based or scaffold-free bioprinting: Competing or complementing approaches?J. Nanotechnol. Eng. Med.20156202470110.1115/1.4030414
    [Google Scholar]
  80. WangQ. GuoQ. NiuW. WuL. GongW. YanS. NishinariK. ZhaoM. The pH-responsive phase separation of type-A gelatin and dextran characterized with static multiple light scattering (S-MLS).Food Hydrocoll.202212710750310.1016/j.foodhyd.2022.107503
    [Google Scholar]
  81. LiuC. WangZ. WeiX. ChenB. LuoY. 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing.Acta Biomater.202113131432510.1016/j.actbio.2021.07.011
    [Google Scholar]
  82. ShinD.G. KimT.H. KimD.E. Review of 4D printing materials and their properties.Int. J. Prec. Eng. Manuf.-Green Technol.20174334935710.1007/s40684‑017‑0040‑z
    [Google Scholar]
  83. AgarwalN. SolankiV.S. AmetaK.L. YadavV.K. GuptaP. WanaleS.G. ShrivastavaR. SoniA. SahooD.K. PatelA. 4-Dimensional printing: Exploring current and future capabilities in biomedical and healthcare systems—a Concise review.Front. Bioeng. Biotechnol.202311125142510.3389/fbioe.2023.1251425
    [Google Scholar]
  84. AlgahtaniM.S. Assessment of pharmacist’s knowledge and perception toward 3D printing technology as a dispensing method for personalized medicine and the readiness for implementation.Pharmacy (Basel)2021916810.3390/pharmacy9010068
    [Google Scholar]
  85. GohO. GohW. LimS. HooG. LiewR. NgT. Preferences of healthcare professionals on 3D-printed tablets: A pilot study.Pharmaceutics2022147152110.3390/pharmaceutics14071521
    [Google Scholar]
  86. TepperO.M. RudyH.L. LefkowitzA. WeimerK.A. MarksS.M. SternC.S. GarfeinE.S. Mixed reality with holoLens: Where virtual reality meets augmented reality in the operating room.Plast. Reconstr. Surg.201714051066107010.1097/PRS.0000000000003802
    [Google Scholar]
  87. B DouglasD. A WilkeC. GibsonD. F PetricoinE. LiottaL. Virtual reality and augmented reality: Advances in surgery.Biol. Eng. Med.2017311810.15761/BEM.1000131
    [Google Scholar]
  88. LangH. HuberT. Virtual and augmented reality in liver surgery.Ann. Surg.20202711e810.1097/SLA.0000000000003601
    [Google Scholar]
  89. TianY. ChenC. XuX. WangJ. HouX. LiK. LuX. ShiH. LeeE.S. JiangH.B. A review of 3D printing in dentistry: Technologies, affecting factors, and applications.Scanning20212021111910.1155/2021/9950131
    [Google Scholar]
  90. SampaioC.S. NiemannK.D. SchweitzerD.D. HirataR. AtriaP.J. Microcomputed tomography evaluation of cement film thickness of veneers and crowns made with conventional and 3D printed provisional materials.J. Esthet. Restor. Dent.202133348749510.1111/jerd.12651
    [Google Scholar]
  91. ParkJ.Y. JeongD. LeeJ-J. BaeS-Y. KimJ.H. KimW-C. in vitro assessment of the marginal and internal fits of interim implant restorations fabricated with different methods.J. Prosthet. Dent.2016116453654210.1016/j.prosdent.2016.03.012
    [Google Scholar]
  92. MunozS. RamosV.Jr DickinsonD.P. Comparison of margin discrepancy of complete gold crowns fabricated using printed, milled, and conventional hand-waxed patterns.J. Prosthet. Dent.20171181899410.1016/j.prosdent.2016.09.018
    [Google Scholar]
  93. van NoortR. The future of dental devices is digital.Dent. Mater.201228131210.1016/j.dental.2011.10.014
    [Google Scholar]
  94. AhmedA. AryaS. GuptaV. FurukawaH. KhoslaA. 4D printing: Fundamentals, materials, applications and challenges.Polymer (Guildf.)202122812392610.1016/j.polymer.2021.123926
    [Google Scholar]
  95. MomeniF. NiJ. Laws of 4D Printing.Engineering (Beijing)2020691035105510.1016/j.eng.2020.01.015
    [Google Scholar]
  96. JeongB. GutowskaA. Lessons from nature: Stimuli-responsive polymers and their biomedical applications.Trends Biotechnol.200220730531110.1016/S0167‑7799(02)01962‑5
    [Google Scholar]
  97. LiuF. UrbanM.W. Recent advances and challenges in designing stimuli-responsive polymers.Prog. Polym. Sci.2010351-232310.1016/j.progpolymsci.2009.10.002
    [Google Scholar]
  98. ZarekM. LayaniM. CoopersteinI. SachyaniE. CohnD. MagdassiS. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices.Adv. Mater.201628224449445410.1002/adma.201503132
    [Google Scholar]
  99. MiaoS. ZhuW. CastroN.J. NowickiM. ZhouX. CuiH. FisherJ.P. ZhangL.G. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.Sci. Rep.2016612722610.1038/srep27226
    [Google Scholar]
  100. GaoB. YangQ. ZhaoX. JinG. MaY. XuF. 4D Bioprinting for Biomedical Applications. Trends n.Biotechnology.2016349746756
    [Google Scholar]
  101. GeQ. QiH.J. DunnM.L. Active materials by four-dimension printing.Appl. Phys. Lett.20131031313190110.1063/1.4819837
    [Google Scholar]
  102. KhooZ.X. TeohJ.E.M. LiuY. ChuaC.K. YangS. AnJ. LeongK.F. YeongW.Y. 3D printing of smart materials: A review on recent progresses in 4D printing.Virtual Phys. Prototyp.201510310312210.1080/17452759.2015.1097054
    [Google Scholar]
  103. ChandekarA. MishraD.K. SharmaS. SaraogiG.K. GuptaU. GuptaG. 3D printing technology: A new milestone in the development of pharmaceuticals.Curr. Pharm. Des.201925993794510.2174/1381612825666190507115504
    [Google Scholar]
  104. JainV. HaiderN. JainK. 3D printing in personalized drug delivery.Curr. Pharm. Des.2018244250625071
    [Google Scholar]
  105. AlgahtaniM.S. AhmadJ. 3D printing technology in pharmaceutical manufacturing and drug delivery application.Curr. Pharm. Des.201924424947494810.2174/138161282442190320152952
    [Google Scholar]
  106. DeshkarS. RathiM. ZambadS. GandhiK. Hot melt extrusion and its application in 3D printing of pharmaceuticals.Curr. Drug Deliv.202118438740710.2174/1567201817999201110193655
    [Google Scholar]
  107. OladejiS. MohylyukV. JonesD.S. AndrewsG.P. 3D printing of pharmaceutical oral solid dosage forms by fused deposition: The enhancement of printability using plasticised HPMCAS.Int. J. Pharm.202261612155310.1016/j.ijpharm.2022.121553
    [Google Scholar]
  108. GorantlaS. WaghuleT. RapalliV.K. SinghP.P. DubeyS.K. SahaR.N. SinghviG. Advanced Hydrogels Based Drug Delivery Systems for Ophthalmic Delivery.Recent Pat. Drug Deliv. Formul.202013429130010.2174/1872211314666200108094851
    [Google Scholar]
  109. LiR. TingY.H. YoussefS. SongY. GargS. Three-dimensional printing for cancer applications: Research landscape and technologies.Pharmaceuticals (Basel)202114878710.3390/ph14080787
    [Google Scholar]
  110. SafhiA.Y. Three-Dimensional (3D) printing in cancer therapy and diagnostics: Current status and future perspectives.Pharmaceuticals (Basel)202215667810.3390/ph15060678
    [Google Scholar]
  111. XuX. TangL. Bioengineered 3D scaffolds in cancer research: Focus on epithelial to mesenchymal transition and drug screening.Curr. Pharm. Des.201723111710172010.2174/1381612822666161201151832
    [Google Scholar]
  112. SerranoDR TerresMC LalatsaA Applications Of 3D Printing in cancer.J. 3D Print. Med.20182311527
    [Google Scholar]
  113. XiaZ. JinS. YeK. Tissue and Organ 3D Bioprinting.SLAS Technol.201823430131410.1177/2472630318760515
    [Google Scholar]
  114. PatiF. HaD.H. JangJ. HanH.H. RhieJ.W. ChoD.W. Biomimetic 3D tissue printing for soft tissue regeneration.Biomaterials20156216417510.1016/j.biomaterials.2015.05.043
    [Google Scholar]
  115. HockadayL.A. KangK.H. ColangeloN.W. CheungP.Y.C. DuanB. MaloneE. WuJ. GirardiL.N. BonassarL.J. LipsonH. ChuC.C. ButcherJ.T. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds.Biofabrication20124303500510.1088/1758‑5082/4/3/035005
    [Google Scholar]
  116. MuehlederS. OvsianikovA. ZipperleJ. RedlH. HolnthonerW. Connections matter: Channeled hydrogels to improve vascularization.Front. Bioeng. Biotechnol.201425210.3389/fbioe.2014.00052
    [Google Scholar]
  117. HuangY. HeK. WangX. Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine.Mater. Sci. Eng. C20133363220322910.1016/j.msec.2013.03.048
    [Google Scholar]
  118. NorotteC. MargaF.S. NiklasonL.E. ForgacsG. Scaffold-free vascular tissue engineering using bioprinting.Biomaterials200930305910591710.1016/j.biomaterials.2009.06.034
    [Google Scholar]
  119. MironovV. ViscontiR.P. KasyanovV. ForgacsG. DrakeC.J. MarkwaldR.R. Organ printing: Tissue spheroids as building blocks.Biomaterials200930122164217410.1016/j.biomaterials.2008.12.084
    [Google Scholar]
  120. LiuY. ShawB. DickeyM.D. GenzerJ. Sequential self-folding of polymer sheets.Sci. Adv.201733e160241710.1126/sciadv.1602417
    [Google Scholar]
  121. JavaidM. HaleemA. 4D printing applications in medical field: A brief review.Clin. Epidemiol. Glob. Health20197331732110.1016/j.cegh.2018.09.007
    [Google Scholar]
  122. CeliS. GasparottiE. CapelliniK. VignaliE. FanniB.M. AliL.A. CantinottiM. MurziM. BertiS. SantoroG. PositanoV. 3D printing in modern cardiology.Curr. Pharm. Des.202127161918193010.2174/1381612826666200622132440
    [Google Scholar]
  123. WangC. ZhangL. QinT. XiZ. SunL. WuH. LiD. 3D printing in adult cardiovascular surgery and interventions: A systematic review.J. Thorac. Dis.20201263227323710.21037/jtd‑20‑455
    [Google Scholar]
  124. HuanbuttaK. BurapapadhK. SriamornsakP. SangnimT. Practical application of 3D printing for pharmaceuticals in hospitals and pharmacies.Pharmaceutics2023157187710.3390/pharmaceutics15071877
    [Google Scholar]
  125. HaniU. Jaswanth GowdaB.H. SiddiquaA. WahabS. BegumM.Y. SathishbabuP. UsmaniS. AhmadM.P. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems.J. Mol. Liq.202339012303710.1016/j.molliq.2023.123037
    [Google Scholar]
  126. KhanM.S. GowdaB.H.J. NasirN. WahabS. PichikaM.R. SahebkarA. KesharwaniP. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer.Int. J. Pharm.202364312327610.1016/j.ijpharm.2023.123276
    [Google Scholar]
  127. AhamedJ. Jaswanth GowdaB.H. AlmalkiW.H. GuptaN. SahebkarA. KesharwaniP. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges.Eur. Polym. J.202319311211110.1016/j.eurpolymj.2023.112111
    [Google Scholar]
  128. GowdaB.H.J. MohantoS. SinghA. BhuniaA. AbdelgawadM.A. GhoshS. AnsariM.J. PramanikS. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art.Mater. Today Chem.20232710131910.1016/j.mtchem.2022.101319
    [Google Scholar]
  129. DamiriF GowdaBJ AndraS BaluS RojekarS BerradaM Chitosan nanocomposites as scaffolds for bone tissue regeneration.Chitosan NanocompositesBerlin, HeidelbergSpringer Link202310.1007/978‑981‑19‑9646‑7_16
    [Google Scholar]
  130. NarayanaS. NasrineA. Gulzar AhmedM. SultanaR. Jaswanth GowdaB.H. SuryaS. AlmuqbilM. AsdaqS.M.B. AlshehriS. Arif HussainS. Potential benefits of using chitosan and silk fibroin topical hydrogel for managing wound healing and coagulation.Saudi Pharm. J.202331346247110.1016/j.jsps.2023.01.013
    [Google Scholar]
  131. HaniU. OsmaniR.A.M. YasminS. GowdaB.H.J. AtherH. AnsariM.Y. SiddiquaA. GhazwaniM. FateaseA.A. AlamriA.H. RahamathullaM. BegumM.Y. WahabS. Novel drug delivery systems as an emerging platform for stomach cancer therapy.Pharmaceutics2022148157610.3390/pharmaceutics14081576
    [Google Scholar]
  132. GowdaB.H.J. AhmedM.G. ChinnamS. PaulK. AshrafuzzamanM. ChavaliM. GahtoriR. PanditS. KesariK.K. GuptaP.K. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery.J. Drug Deliv. Sci. Technol.20227110330510.1016/j.jddst.2022.103305
    [Google Scholar]
  133. NarayanaS. AhmedM.G. GowdaB.H.J. ShettyP.K. NasrineA. ThriveniM. NoushidaN. SanjanaA. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review.Future J. Pharmaceut. Sci.20217118610.1186/s43094‑021‑00331‑2
    [Google Scholar]
  134. SanjanaA. AhmedM.G. Gowda BHJ. Development and evaluation of dexamethasone loaded cubosomes for the treatment of vitiligo.Mater. Today Proc.20225019720510.1016/j.matpr.2021.04.120
    [Google Scholar]
  135. Sameer KhanM. Jaswanth GowdaB.H. HasanN. GuptaG. SinghT. MdS. KesharwaniP. Carbon nanotube-mediated platinum-based drug delivery for the treatment of cancer: Advancements and future perspectives.Eur. Polym. J.202420611280010.1016/j.eurpolymj.2024.112800
    [Google Scholar]
  136. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.103959
    [Google Scholar]
  137. SharmaD. ThomasA.M. KoshyG. Tumor infiltrating lymphocytes as immunebiomarkers in oral cancer: An update.J. Cancer Res. Updates202312333910.30683/1929‑2279.2023.12.6
    [Google Scholar]
  138. NagS. MitraO. PS. BhattacharjeeA. MohantoS. GowdaB.H.J. KarS. RamaiahS. AnbarasuA. AhmedM.G. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review.Mater. Today Chem.20243510189410.1016/j.mtchem.2023.101894
    [Google Scholar]
  139. RiccardiD. BaldinoL. ReverchonE. Liposomes, transfersomes and niosomes: Production methods and their applications in the vaccinal field.J. Transl. Med.202422133910.1186/s12967‑024‑05160‑4
    [Google Scholar]
  140. GowdaB.H.J. AhmedM.G. AlmoyadM.A.A. WahabS. AlmalkiW.H. KesharwaniP. Nanosponges as an emerging platform for cancer treatment and diagnosis.Adv. Funct. Mater.2024347230707410.1002/adfm.202307074
    [Google Scholar]
  141. BanazadehM. BehnamB. GanjooeiN.A. GowdaB.H.J. KesharwaniP. SahebkarA. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy.J. Drug Deliv. Sci. Technol.20238910504010.1016/j.jddst.2023.105040
    [Google Scholar]
  142. MohantoS. NarayanaS. MeraiK.P. KumarJ.A. BhuniaA. HaniU. Al FateaseA. GowdaB.H.J. NagS. AhmedM.G. PaulK. VoraL.K. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review.Int. J. Biol. Macromol.202325312714310.1016/j.ijbiomac.2023.127143
    [Google Scholar]
  143. GowdaB.H.J. AhmedM.G. AlshehriS.A. WahabS. VoraL.K. Singh ThakurR.R. KesharwaniP. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics.Environ. Res.202323711689410.1016/j.envres.2023.116894
    [Google Scholar]
  144. SinghO.P. AhmedM. AbhilashM. Modern 3D printing technologies: Future trends and developments.Recent Pat. Eng.2015929110310.2174/1872212109666150213000747
    [Google Scholar]
  145. SinhaP. LahareP. SahuM. CimlerR. SchnitzerM. HlubenovaJ. HudakR. SinghN. GuptaB. KucaK. Concept and evolution in 3-D printing for excellence in healthcare.Curr. Med. Chem.202431910252010.2174/0109298673262300231129102520
    [Google Scholar]
  146. ChaudharyA. SharmaS. ThakkarA.R. 3D Printing – A revolution in modern healthcare: Recent achievements & challenges.Curr. Drug Ther.202419327928810.2174/1574885519666230828152530
    [Google Scholar]
  147. TangL. XieB. Research progress of 3D printing technology for pharmaceutical preparation.Recent Pat. Eng.2024182e06032321435310.2174/1872212118666230306091103
    [Google Scholar]
  148. SinghS. KumarM. DoolaaneaA.A. MandalU.K. A recent review on 3D-printing: Scope and challenges with special focus on pharmaceutical field.Curr. Pharm. Des.202228302488250710.2174/1381612828666220623091629
    [Google Scholar]
  149. GaoB ZhaoH YuH LinY LiuJ WangJ. Application of 3D printing technology in the medical field.Recent Adv. Electric. Electron. Eng.20221586213310.2174/2352096515666221006142356
    [Google Scholar]
  150. LongJ. GholizadehH. LuJ. BuntC. SeyfoddinA. Application of fused deposition modelling (FDM) method of 3D printing in drug delivery.Curr. Pharm. Des.201723343343910.2174/1381612822666161026162707
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031312257241011071610
Loading
/content/journals/ddl/10.2174/0122103031312257241011071610
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test