Current Topics in Medicinal Chemistry - Volume 25, Issue 9, 2025
Volume 25, Issue 9, 2025
-
-
Deciphering Tuberculous Meningitis: From Clinical Challenges to Novel Models and Pathogenic Pathways
During and after the COVID-19 pandemic, Tuberculosis (TB) has reestablished with higher figures due to interruptions in the Directly Observed Treatment Short course (DOTS) despite underreporting. The rising consequences would have extended to extra-pulmonary forms of TB as well, including Tuberculous Meningitis (TBM). Considering the fact that TBM is the most dangerous and worst form of TB, we found the need to scan the literature to highlight various aspects of TBM. Epidemiology of TBM is proportionally less frightening, but the consequent mortalities and morbidities are more alarming than pulmonary TB. Here, we address critical research gaps in Tuberculous Meningitis that warrant further investigations. The highlighted aspects encompass a comprehensive understanding of TBM's clinical presentation and improved diagnostic tools for timely detection, the exploration of innovative chemotherapies and surgical interventions, the unraveling of the role of the blood-brain barrier in disease onset, investigating of the contributions of various brain cells to TBM development, deciphering the complex inflammatory response, exploring the involvement of Matrix Metalloproteinases in tissue damage, delving into host-pathogen genetics influencing susceptibility, utilizing robust in-vivo and in-vitro models for mechanistic insights, and more importantly between TBM and SARS-COVID-19 are discussed. Addressing these gaps will substantially advance our understanding of TBM's complex pathogenesis, contributing to more effective diagnostic, therapeutic, and preventive strategies against this debilitating disease.
-
-
-
Actinomycetes - The Repertoire of Diverse Bioactive Chemical Molecules: From Structures to Antibiotics
Authors: Ishfaq Ahmad Baba, Zubair Ahmad Wani, Shazia Ali, Mohamad Mosa Mubarak and Zahoor AhmadThe urgent need for novel antibiotics in the face of escalating global antimicrobial resistance necessitates innovative approaches to identify bioactive compounds. Actinomycetes, renowned for their prolific production of antimicrobial agents, stand as a cornerstone in this pursuit. Their diverse metabolites exhibit multifaceted bioactivities, including potent antituberculosis, anticancer, immunomodulatory, immuno-protective, antidiabetic, etc. Though terrestrial sources have been exploited significantly, contemporary developments in the field of antimicrobial drug discovery have put marine actinomycetes in a prominent light as a promising and relatively unexplored source of novel bioactive molecules. This is further boosted by post-genomic era advances like bioinformatics-based secretome analysis and reverse engineering that have totally revitalized actinomycetes antibiotic research. This review highlights actinomycetes-based chemically diverse scaffolds and clinically validated antibiotics along with the enduring significance of actinomycetes from untouched ecosystems, especially with recent advanced techniques in the quest for next-generation antimicrobials.
-
-
-
Gallic Acid Derived 1, 2-Diarylindole as a Potential Synergistic Antifungal Agent against Candida Strains
BackgroundIn recent decades, Candida albicans has become a serious issue for public health. The worldwide rapid rise in drug resistance to conventional therapies is the main contributing reason. Moreover, because of their potent activity at low concentrations and apparent lack of toxicity, compounds originating from plants are used in therapeutic treatments because of their potent activity at low concentrations and apparent lack of toxicity. Particularly in immunocompromised people, Candida species can result in a wide range of ailments.
ObjectivesPresent manuscript describes antifungal activity of an indole derivative 1-(4-((5-methoxy-2-(3,4,5-trimethoxyphenyl)-1H-indol-1-yl) methyl) phenoxy)-N,N-dimethylethan-1-amine (7, 100DL-6) by using in-silico and in-vitro anti-candidal activity against two Candida strains; Candida kefyr-DS-02 (ATCC-204093) and Candida albicans (AI-clinical isolate, AIIMS-Delhi).
MethodsThe synthetic strategy for the preparation of indole derivatives was modified through Fischer indole reaction. Antifungal activity of an indole derivative 1-(4-((5-methoxy-2-(3,4,5-trimethoxyphenyl)-1H-indol-1-yl) methyl) phenoxy)-N,N-dimethylethan-1-amine (7, 100DL-6) was done by using in-silico and in-vitro anti-candidal activity against two Candida strains; Candida kefyr-DS-02 (ATCC-204093) and Candida albicans (AI-clinical isolate, AIIMS-Delhi). Compound 100DL-6 efficacy was determined by Combination synergy study, ergosterol binding assay, MTT toxicity study and Mutagenicity.
ResultsCompound 100DL-6 was obtained in 65% yield on desired motifs. Docking scores found were 100DL-6 (-8.7 kcal/mol) and Fluconazole (-7.6 kcal/mol). Further, RMSD were shown for 100DL6 (0.26 ± 0.23 nm) and fluconazole (1.2 ± 0.62 nm). Indole derivative 100DL-6 was active against the tested fungal pathogens and the total zone of inhibition was measured between 13-14 mm in diameter and MIC values between 31.25 μg/mL to 250 μg/mL and MFC values between 62.5 μg/mL to 500 μg/mL. In checkerboard assay synergistic mode of interaction of 100DL-6 with known antifungal drugs was observed. In the presence of ergosterol 100DL-6 and standard drug (s) increased their MIC values, demonstrating a considerable affinity for ergosterol. Compound 100DL-6 was considered to be less-cytotoxic to the cells as determined by MTT assay. Lead compound 100DL-6 was found to be non-mutagenic.
ConclusionIn the present study, 100DL6 (indole derivatives) significantly abrupted the ergosterol biosynthetic pathway and showed moderate anti-candidal effects. These studies suggest that 100DL6 significantly enhances antifungal effect of clinical drug fluconazole synergistically and may be considered as in clinical trial prior to some extensive in-vivo validations.
-
-
-
In Vivo and In Silico Pharmacokinetics Studies on Coumarinolignoid Cliv-92: Unraveling its Effect on Rifampicin-Induced Hepatic Damage
Authors: Ajay Kumar, Sarfaraz Alam, Sudeep Tandon, Karuna Shanker, Feroz Khan and Dharmendra SaikiaBackgroundDrug-induced hepatotoxicity is a major concern and is caused by all classes of medications, indicating a key area of research. Antitubercular drugs have a beneficial effect but cause hepatotoxicity on prolonged use.
AimThe present work aimed to investigate the role of rifampicin-induced hepatic damage and the effect of Cliv-92 on rifampicin-induced alteration in rats.
MethodsRats were administered with rifampicin, Cliv-92, and silymarin (standard) orally in 0.5% carboxymethyl cellulose (CMC) suspension, in doses of 100 mg/kg, once daily for fourteen days, one hour before the administration of rifampicin. Control animals were treated with 0.5% CMC. On the 14th day, 1hr after the last drug administration, tissue was collected, homogenized, and various parameters, viz. SOD, CAT, GPX, and cytochromes, were estimated from rat liver supernatant and compared with the control group. Blood serum parameters were also measured. Simultaneously, antioxidant activity and in silico studies were performed. The constituent isoforms of Cliv-92 and silymarin and their metabolites were analyzed for different pharmacokinetic characteristics. Silymarin was used as a standard drug.
ResultsThe result of the study suggests that the hepatoprotective potential of Cliv-92 is due to its antioxidant property and inhibitory effect on hepatoproteins, cytochromes (CPY450). An in-silico finding validates the safety profile of Cliv-92, its metabolites, and the standard drug silymarin and also explains that the drug is non-mutagenic.
ConclusionThe result of this study indicated that both Cliv-92 and silymarin could be used to avoid drug-induced overload and hepatic damage.
-
-
-
Non-fused Pyrimidine Derivatives as Potential Pharmacological Entities: A Review
Non-fused pyrimidine scaffold is a significant component for designing new drugs. The review emphasizes the pharmacological importance of non-fused pyrimidine-containing moieties based on the broad spectrum of activities such as antiprotozoal, antibacterial, antimycobacterial, anticancer, anti-inflammatory activity, and CNS depressant. Pyrimidine derivatives are fascinating entities that display biological activities for the treatment of cancer. It also highlights the tendency of non-fused pyrimidine derivatives to suppress cell growth by obstructing the activity of VCP, CDK-2, EGFR, ATR, EphB4 & EphA2, PDGF as well as inhibitory action towards different cell lines such as MCF-7, HeLa, NCI/ADR-RES, NCI-H23, HOP-92, HCT-116, OV-3, MOLT-4, PC-3, MDA-MB-231, MALME-3M, K562 and Bcr-Abl. The review details the importance of morpholine, piperidine, and pyrrolidine ring substitutions on pyrimidine moiety as well as the role of H-bonding and amino linkage along with antibacterial activity due to the presence of pleuromutilin and tetrazole molecules. Researchers were motivated to develop and enhance the non-fused pyrimidine scaffold to uncover novel medicines by reading this review article.
-
-
-
Exploring the Structure-Activity Relationship of COX Inhibitors with Anticancer Effects: A Comprehensive Review
Authors: Ozlem Akgul, Mustafa Gul and Halise Inci GulCancer is a multifaceted disease with high mortality rates, and current treatments face challenges such as chemoresistance and tumor adaptation. Since Virchow reported the first case of cancer-related chronic inflammation, numerous clinical and epidemiological studies have indicated that around 15-20% of malignant tumors are caused by inflammation. Cyclooxygenase-2 (COX-2), which is the key enzyme in inflammation, has been implicated in tumorigenesis through various mechanisms including promoting angiogenesis, inhibiting apoptosis, and enhancing the invasiveness of cancer cells. Moreover, COX inhibitors have demonstrated a substantial reduction in death rates associated with esophageal and colon cancer. In this context, targeting COX-2 is an effective strategy for cancer prevention and treatment.
This review focuses on the analysis of studies conducted between 2014 and 2024, which evaluate the structure-activity relationship of molecules intended to exhibit cytotoxic activity through COX inhibition. The studies followed both classical and non-classical COX-2 selective drug design strategies. While some focused on the classical approach, utilizing diaryl heterocyclic structures, others explored non-classical designs with a cyclic central scaffold and a linear core. Additionally, several manuscripts employed well-known COX inhibitors including licofelone, indomethacin, naproxen, tolfenamate, celecoxib, flumizole, and ketoprofen, as starting points for further derivatization and optimization. Cytotoxic activity was evaluated using various cell lines including MCF-7, HCT-116, and A549, through assays such as MTT, CellTiter, and MTS. Additionally, studies examined the relationship between COX-2 inhibition and key cancer pathways including apoptosis and the involvement of enzymes like HDAC, EGFR, and topoisomerase.
The majority of studies reported promising cytotoxic activity in COX-2 selective inhibitors. Compounds synthesized with diphenyl heterocyclic scaffolds exhibited enhanced COX-2 selectivity and anticancer efficacy. In particular, derivatives in studies 9, 16, and 24 demonstrated significant activity comparable to standard drugs like celecoxib and doxorubicin. However, only a few studies indicated a weak correlation between COX-2 inhibition and cytotoxicity suggesting the need for further investigation into other cancer-related mechanisms.
This review highlights the potential of COX-2 selective inhibitors in anticancer drug development. The findings support the development of selective COX-2 inhibitors with diverse chemical structures as a promising strategy for cancer therapy.
-
-
-
Thymol-Loaded Zinc Ferrite Nanoparticles: A Novel Carrier for Enhanced Antimicrobial and Antibiofilm Activity against M. smegmatis through ROS-Mediated Mechanism
Introduction/ObjectiveTuberculosis (TB) remains a persistent global health challenge, with an increasing incidence of cases and limitations in current treatment strategies. Traditional therapy involves long drug treatments that can cause side effects and lead to drug-resistant strains, making treatment less effective. This study aimed to explore the therapeutic potential of a novel nanoparticle-based delivery system for Thymol (THY), a natural antibacterial bioactive molecule, to combat Mycobacterium smegmatis, a model organism for Mycobacterium tuberculosis.
MethodsA nanoparticle-based delivery system was developed using biocompatible Thymol-conjugated Chitosan Zinc Ferrite Nanoparticles (THY-CH-ZnFe2O4 NPs). The nanoconjugates were characterized for their morphological and chemical properties.
ResultsThe characterization of synthesised nanoparticles showed THY-CH-ZnFe2O4 NPs to exhibit enhanced biocompatibility and antibacterial activity against M. smegmatis compared to THY alone. The nanoconjugates induced Reactive Oxygen Species (ROS)-mediated damage to the bacterial cell membrane, effectively inhibiting bacterial replication, dormancy, and biofilm formation. Additionally, the nanoconjugates demonstrated low cytotoxicity towards the human kidney cell line.
ConclusionThe study's findings highlighted a new direction for developing nanoparticle-based antimycobacterial agents with a wide application in treating TB and other bacterial diseases. The THY-CH-ZnFe2O4 NPs show promise as a safe and effective therapeutic agent, offering a potential solution to the limitations of current TB treatment strategies.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
