Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

During and after the COVID-19 pandemic, Tuberculosis (TB) has reestablished with higher figures due to interruptions in the Directly Observed Treatment Short course (DOTS) despite underreporting. The rising consequences would have extended to extra-pulmonary forms of TB as well, including Tuberculous Meningitis (TBM). Considering the fact that TBM is the most dangerous and worst form of TB, we found the need to scan the literature to highlight various aspects of TBM. Epidemiology of TBM is proportionally less frightening, but the consequent mortalities and morbidities are more alarming than pulmonary TB. Here, we address critical research gaps in Tuberculous Meningitis that warrant further investigations. The highlighted aspects encompass a comprehensive understanding of TBM's clinical presentation and improved diagnostic tools for timely detection, the exploration of innovative chemotherapies and surgical interventions, the unraveling of the role of the blood-brain barrier in disease onset, investigating of the contributions of various brain cells to TBM development, deciphering the complex inflammatory response, exploring the involvement of Matrix Metalloproteinases in tissue damage, delving into host-pathogen genetics influencing susceptibility, utilizing robust and models for mechanistic insights, and more importantly between TBM and SARS-COVID-19 are discussed. Addressing these gaps will substantially advance our understanding of TBM's complex pathogenesis, contributing to more effective diagnostic, therapeutic, and preventive strategies against this debilitating disease.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266282277240122073451
2025-04-01
2025-10-30
Loading full text...

Full text loading...

References

  1. BarberisI. BragazziN.L. GalluzzoL. MartiniM. The history of tuberculosis: From the first historical records to the isolation of Koch’s bacillus.J. Prev. Med. Hyg.2017581E9E1228515626
    [Google Scholar]
  2. PayeurJ.B. Mycobacterium.Encyclopedia of Food Microbiology.2nd ed BattC.A. TortorelloM.L. OxfordAcademic Press201484185310.1016/B978‑0‑12‑384730‑0.00229‑9
    [Google Scholar]
  3. PercivalS.L. WilliamsD.W. Chapter nine - mycobacterium.Microbiology of Waterborne Diseases.2nd ed PercivalS.L. YatesM.V. WilliamsD.W. ChalmersR.M. GrayN.F. LondonAcademic Press201417720710.1016/B978‑0‑12‑415846‑7.00009‑3
    [Google Scholar]
  4. KasperbauerS.H. De GrooteM.A. The treatment of rapidly growing mycobacterial infections.Clin. Chest Med.2015361677810.1016/j.ccm.2014.10.00425676520
    [Google Scholar]
  5. WHOGlobal Tuberculosis Report 2022.https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-20222022
  6. Tuberculosis (TB)World TB Day 20242021Available from: https://www.cdc.gov/tb/worldtbday/default.htm
  7. ZiskindB. HaliouaB. La tuberculose en ancienne Égypte.Rev. Mal. Respir.200724101277128310.1016/S0761‑8425(07)78506‑618216748
    [Google Scholar]
  8. MarxG.E. ChanE.D. Tuberculous meningitis: diagnosis and treatment overview.Tuberc. Res. Treat.201120111910.1155/2011/79876422567269
    [Google Scholar]
  9. BreathnachC.S. Robert whyttt (1714–1766): From dropsy in the brain to tuberculous meningitis.Ir. J. Med. Sci.201418349349910.1007/s11845‑014‑1106‑3
    [Google Scholar]
  10. TylerK.L. A History of Bacterial Meningitis.Handbook of Clinical Neurology AminoffM.J. BollerF. SwaabD.F. History of Neurology; Elsevier200995417433
    [Google Scholar]
  11. CambauE. DrancourtM. Steps towards the discovery of Mycobacterium tuberculosis by Robert Koch, 1882.Clin. Microbiol. Infect.201420319620110.1111/1469‑0691.1255524450600
    [Google Scholar]
  12. TurgutM. AkhaddarA. TurgutA.T. GargR.K. Tuberculosis of the Central Nervous System: Pathogenesis, Imaging, and Management.Springer International Publishing201710.1007/978‑3‑319‑50712‑5
    [Google Scholar]
  13. SinghP. KantS. GaurP. TripathiA. PandeyS. Extra pulmonary tuberculosis: An overview and review of literature.IJLSSR20184110.21276/ijlssr.2018.4.1.5
    [Google Scholar]
  14. ManyeloC.M. SolomonsR.S. WalzlG. ChegouN.N. Tuberculous meningitis: Pathogenesis, immune responses, diagnostic challenges, and the potential of biomarker-based approaches.J. Clin. Microbiol.2021593e01771-2010.1128/JCM.01771‑2033087432
    [Google Scholar]
  15. MacNeilA. GlaziouP. SismanidisC. DateA. MaloneyS. FloydK. Global epidemiology of tuberculosis and progress toward meeting global targets — worldwide, 2018.MMWR Morb. Mortal. Wkly. Rep.2020691128128510.15585/mmwr.mm6911a232191687
    [Google Scholar]
  16. ShivakotiR. SharmaD. MamoonG. PhamK. Association of HIV infection with extrapulmonary tuberculosis: A systematic review.Infection2017451112110.1007/s15010‑016‑0960‑527830524
    [Google Scholar]
  17. JamesA.S. LillianT. ReganS. KameshwarP. NathanC.B. The current global situation for tuberculous meningitis: epidemiology, diagnostics, treatment and outcomes.Wellcome Open Res.20194167
    [Google Scholar]
  18. DoddPJ OsmanM CresswellFV StadelmanAM LanNH ThuongNTT The global burden of tuberculous meningitis in adults: A modelling study.PLOS Glob Public Health112e0000069
    [Google Scholar]
  19. Navarro-FloresI. Fernandez-ChinguelJ.E. Pacheco-Barrios,A.N. Soriano-MorenoD.R. Pacheco-BarriosK. Global morbidity and mortality of central nervous system tuberculosis: A systematic review and meta-analysis.J. Neurol.202226934823494
    [Google Scholar]
  20. BattS.M. MinnikinD.E. BesraG.S. The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host’s immune system.Biochem. J.2020477101983200610.1042/BCJ2020019432470138
    [Google Scholar]
  21. HettE.C. RubinE.J. Bacterial growth and cell division: a mycobacterial perspective.Microbiol. Mol. Biol. Rev.200872112615610.1128/MMBR.00028‑0718322037
    [Google Scholar]
  22. HeemskerkD. CawsM. MaraisB. FarrarJ. Pathogenesis.Springer2015
    [Google Scholar]
  23. BeN. KimK. BishaiW. JainS. Pathogenesis of central nervous system tuberculosis.Curr. Mol. Med.200992949910.2174/15665240978758165519275620
    [Google Scholar]
  24. DonaldP. SchaafH. SchoemanJ. Tuberculous meningitis and miliary tuberculosis: The Rich focus revisited.J. Infect.200550319319510.1016/j.jinf.2004.02.01015780412
    [Google Scholar]
  25. RadotraB.D. ChatterjeeD. VasishtaR. SharmaK. Vascular complications of tuberculous meningitis: An autopsy study.Neurol. India201563692693210.4103/0028‑3886.17008626588628
    [Google Scholar]
  26. WilkinsonR.J. RohlwinkU. MisraU.K. van CrevelR. MaiN.T.H. DooleyK.E. CawsM. FigajiA. SavicR. SolomonsR. ThwaitesG.E. Tuberculous meningitis.Nat. Rev. Neurol.2017131058159810.1038/nrneurol.2017.12028884751
    [Google Scholar]
  27. LuoM. WangW. ZengQ. LuoY. YangH. YangX. Tuberculous meningitis diagnosis and treatment in adults: A series of 189 suspected cases.Exp. Ther. Med.20181632770277610.3892/etm.2018.649630210618
    [Google Scholar]
  28. BahrN.C. BoulwareD.R. Methods of rapid diagnosis for the etiology of meningitis in adults.Biomarkers Med.2014891085110310.2217/bmm.14.6725402579
    [Google Scholar]
  29. ZhangJ. HuX. HuX. YeY. ShangM. AnY. GouH. ZhaoZ. PengW. SongX. ZhouY. KangM. XieY. ChenX. LuX. YingB. WangL. Clinical features, outcomes and molecular profiles of drug resistance in tuberculous meningitis in non-HIV patients.Sci. Rep.2016611907210.1038/srep1907226738994
    [Google Scholar]
  30. VenturiniE. TurkovaA. ChiappiniE. GalliL. de MartinoM. ThorneC. Tuberculosis and HIV co-infection in children.BMC Infect. Dis.201414S1S510.1186/1471‑2334‑14‑S1‑S524564453
    [Google Scholar]
  31. FieggenG. FigajiT. Postinfectious Hydrocephalus.Cerebrospinal Fluid Disorders.CRC Press2010
    [Google Scholar]
  32. GuptaR.K. KumarS. Central nervous system tuberculosis.Neuroimaging Clin. N. Am.2011214795814, vii-viii10.1016/j.nic.2011.07.00422032500
    [Google Scholar]
  33. HazanyS. GoJ.L. LawM. Magnetic resonance imaging of infectious meningitis and ventriculitis in adults.Top. Magn. Reson. Imaging201423531532510.1097/RMR.000000000000003425296276
    [Google Scholar]
  34. NijhawanD. VohraA. MittalA. GoelK. GoyalI. BhargavaK. Imaging features of intracranial tuberculosis on MRI.Correlation with Clinical Results and Laboratory Investigations.2019207
    [Google Scholar]
  35. Ozturk-EnginD. PopescuC.P. Tuberculous meningitis.Extrapulmonary Tuberculosis. SenerA. ErdemH. ChamSpringer International Publishing201910112010.1007/978‑3‑030‑04744‑3_8
    [Google Scholar]
  36. SchallerM.A. WickeF. FoerchC. WeidauerS. Central nervous system tuberculosis.Clin. Neuroradiol.201929131810.1007/s00062‑018‑0726‑930225516
    [Google Scholar]
  37. VernauW. VernauK.A. Sue BaileyC. Cerebrospinal Fluid.Clinical Biochemistry of Domestic Animals200876981910.1016/B978‑0‑12‑370491‑7.00026‑X
    [Google Scholar]
  38. LeonardJ.M. Central nervous system tuberculosis.Microbiol. Spectr.20175521110.1128/9781555819866.ch20
    [Google Scholar]
  39. SenerA. ErdemH. Extrapulmonary Tuberculosis.Springer201910.1007/978‑3‑030‑04744‑3
    [Google Scholar]
  40. LewinsohnD.M. LeonardM.K. LoBueP.A. CohnD.L. DaleyC.L. DesmondE. KeaneJ. LewinsohnD.A. LoefflerA.M. MazurekG.H. O’BrienR.J. PaiM. RicheldiL. SalfingerM. ShinnickT.M. SterlingT.R. WarshauerD.M. WoodsG.L. Official American thoracic society/infectious diseases society of america/centers for disease control and prevention clinical practice guidelines: Diagnosis of tuberculosis in adults and children.Clin. Infect. Dis.201764211111510.1093/cid/ciw77828052967
    [Google Scholar]
  41. FrenchG.L. ChanC.Y. CheungS.W. TeohR. HumphriesM.J. O’MahonyG. Diagnosis of tuberculous meningitis by detection of tuberculostearic acid in cerebrospinal fluid.Lancet1987330855111711910.1016/S0140‑6736(87)92328‑22885596
    [Google Scholar]
  42. TörökM.E. Tuberculous meningitis: Advances in diagnosis and treatment.Br. Med. Bull.2015113111713110.1093/bmb/ldv00325693576
    [Google Scholar]
  43. Same day diagnosis of extrapulmonary TB (TB Serositis and TB Meningitis).Patent NCT061358182023
  44. AulakhR. ChopraS. Pediatric tubercular meningitis: A review.J. Pediatr. Neurosci.201813437338210.4103/JPN.JPN_78_1830937075
    [Google Scholar]
  45. RockR.B. OlinM. BakerC.A. MolitorT.W. PetersonP.K. Central nervous system tuberculosis: Pathogenesis and clinical aspects.Clin. Microbiol. Rev.200821224326110.1128/CMR.00042‑0718400795
    [Google Scholar]
  46. MirzayevF. VineyK. LinhN.N. Gonzalez-AnguloL. GegiaM. JaramilloE. ZignolM. KasaevaT. World Health Organization recommendations on the treatment of drug-resistant tuberculosis, 2020 update.Eur. Respir. J.2021576200330010.1183/13993003.03300‑202033243847
    [Google Scholar]
  47. DavisA. MeintjesG. WilkinsonR.J. Treatment of tuberculous meningitis and its complications in adults.Curr. Treat. Options Neurol.2018203510.1007/s11940‑018‑0490‑929492737
    [Google Scholar]
  48. VilchèzeC. JacobsW.R.Jr The isoniazid paradigm of killing, resistance, and persistence in mycobacterium tuberculosis.J. Mol. Biol.2019431183450346110.1016/j.jmb.2019.02.01630797860
    [Google Scholar]
  49. HarmonR.C. Pyrazinamide.xPharm: The Comprehensive Pharmacology Reference EnnaS.J. BylundD.B. ElsevierNew York200715
    [Google Scholar]
  50. NauR. SörgelF. EiffertH. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections.Clin. Microbiol. Rev.201023485888310.1128/CMR.00007‑1020930076
    [Google Scholar]
  51. SeungK.J. KeshavjeeS. RichM.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis.Cold Spring Harb. Perspect. Med.201559a01786310.1101/cshperspect.a01786325918181
    [Google Scholar]
  52. MaraisS. ThwaitesG. SchoemanJ.F. TörökM.E. MisraU.K. PrasadK. DonaldP.R. WilkinsonR.J. MaraisB.J. Tuberculous meningitis: A uniform case definition for use in clinical research.Lancet Infect. Dis.2010101180381210.1016/S1473‑3099(10)70138‑920822958
    [Google Scholar]
  53. SchutzC. MeintjesG. AlmajidF. WilkinsonR.J. PozniakA. Clinical management of tuberculosis and HIV-1 co-infection.Eur. Respir. J.20103661460148110.1183/09031936.0011021020947678
    [Google Scholar]
  54. PrasadK. SinghM.B. RyanH. Corticosteroids for managing tuberculous meningitis.Cochrane Database Syst. Rev.201644CD00224427121755
    [Google Scholar]
  55. SinghA.K. MalhotraH.S. GargR.K. JainA. KumarN. KohliN. VermaR. SharmaP.K. Paradoxical reaction in tuberculous meningitis: Presentation, predictors and impact on prognosis.BMC Infect. Dis.201616130610.1186/s12879‑016‑1625‑927329253
    [Google Scholar]
  56. SharmaR.M. PruthiN. ArimappamaganA. SomannaS. DeviB.I. PandeyP. Tubercular meningitis with hydrocephalus with HIV co-infection: Role of cerebrospinal fluid diversion procedures.J. Neurosurg.201512251087109510.3171/2014.12.JNS1425725679277
    [Google Scholar]
  57. LiuJ. ChenZ. LiM. ChenC. YiH. XuL. TanF. PengF. Ventriculoperitoneal shunts in non-HIV cryptococcal meningitis.BMC Neurol.20181815810.1186/s12883‑018‑1053‑029716538
    [Google Scholar]
  58. LuL. ChenH. WengS. XuY. Endoscopic third ventriculostomy versus ventriculoperitoneal shunt in patients with obstructive hydrocephalus: Meta-analysis of randomized controlled trials.World Neurosurg.201912933434010.1016/j.wneu.2019.04.25531136836
    [Google Scholar]
  59. ANRSEmerging Infectious Diseases (Responsible Party) Intensified Tuberculosis Treatment to Reduce the Mortality of Patients With Tuberculous Meningitis.INTENSE-TBM2023
    [Google Scholar]
  60. DanemanR. PratA. The blood-brain barrier.Cold Spring Harb. Perspect. Biol.201571a02041210.1101/cshperspect.a02041225561720
    [Google Scholar]
  61. XuL. NirwaneA. YaoY. Basement membrane and blood–brain barrier.Stroke Vasc. Neurol.201942788210.1136/svn‑2018‑00019831338215
    [Google Scholar]
  62. BrilhaS. OngC.W.M. WekslerB. RomeroN. CouraudP.O. FriedlandJ.S. Matrix metalloproteinase-9 activity and a downregulated Hedgehog pathway impair blood-brain barrier function in an in vitro model of CNS tuberculosis.Sci. Rep.2017711603110.1038/s41598‑017‑16250‑329167512
    [Google Scholar]
  63. DandoS.J. Mackay-SimA. NortonR. CurrieB.J. St JohnJ.A. EkbergJ.A.K. BatzloffM. UlettG.C. BeachamI.R. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion.Clin. Microbiol. Rev.201427469172610.1128/CMR.00118‑1325278572
    [Google Scholar]
  64. NguyenL. PietersJ. The Trojan horse: Survival tactics of pathogenic mycobacteria in macrophages.Trends Cell Biol.200515526927610.1016/j.tcb.2005.03.00915866031
    [Google Scholar]
  65. van LeeuwenL.M. van der KuipM. YoussefS.A. de BruinA. BitterW. van FurthA.M. van der SarA.M. Modelling tuberculous meningitis in zebrafish using Mycobacterium marinum.Dis. Model. Mech.201479dmm.01545310.1242/dmm.01545324997190
    [Google Scholar]
  66. MisraU.K. KalitaJ. SinghA.P. PrasadS. Vascular endothelial growth factor in tuberculous meningitis.Int. J. Neurosci.2012123212813210.3109/00207454.2012.74312723098361
    [Google Scholar]
  67. von BartheldC.S. BahneyJ. Herculano-HouzelS. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting.J. Comp. Neurol.2016524183865389510.1002/cne.2404027187682
    [Google Scholar]
  68. RandallP.J. HsuN.J. LangD. CooperS. SebeshoB. AllieN. KeetonR. FranciscoN.M. SalieS. LabuschagnéA. QuesniauxV. RyffelB. KellawayL. JacobsM. Neurons are host cells for Mycobacterium tuberculosis.Infect. Immun.20148251880189010.1128/IAI.00474‑1324566619
    [Google Scholar]
  69. HirayamaD. IidaT. NakaseH. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis.Int. J. Mol. Sci.20171919210.3390/ijms1901009229286292
    [Google Scholar]
  70. PurvesD. AugustineG.J. FitzpatrickD. KatzL.C. LaMantiaA-S. McNamaraJ.O. WilliamsS.M. Neuroglial Cells.2nd edNeurosci2001
    [Google Scholar]
  71. SimonsM. NaveK.A. Oligodendrocytes: Myelination and axonal support.Cold Spring Harb. Perspect. Biol.201681a02047910.1101/cshperspect.a02047926101081
    [Google Scholar]
  72. DuncanI.D. RadcliffA.B. Inherited and acquired disorders of myelin: The underlying myelin pathology.Exp. Neurol.2016283Pt B45247510.1016/j.expneurol.2016.04.00227068622
    [Google Scholar]
  73. TakahashiN. SakuraiT. DavisK.L. BuxbaumJ.D. Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia.Prog. Neurobiol.2011931132410.1016/j.pneurobio.2010.09.00420950668
    [Google Scholar]
  74. CarsonM.J. CameronT.J. WalterB. The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival.Clin. Neurosci. Res.20066523724510.1016/j.cnr.2006.09.00419169437
    [Google Scholar]
  75. PerryV.H. TeelingJ. Microglia and macrophages of the central nervous system: The contribution of microglia priming and systemic inflammation to chronic neurodegeneration.Semin. Immunopathol.201335560161210.1007/s00281‑013‑0382‑823732506
    [Google Scholar]
  76. SpanosJ.P. HsuN.J. JacobsM. Microglia are crucial regulators of neuro-immunity during central nervous system tuberculosis.Front. Cell. Neurosci.2015918210.3389/fncel.2015.0018226041993
    [Google Scholar]
  77. RockR.B. HuS. GekkerG. ShengW.S. MayB. KapurV. PetersonP.K. Mycobacterium tuberculosis-induced cytokine and chemokine expression by human microglia and astrocytes: Effects of dexamethasone.J. Infect. Dis.2005192122054205810.1086/49816516288367
    [Google Scholar]
  78. MolnarC. GairJ. 16.1 Neurons and Glial CellsConcepts of Biology1st ed.2015
    [Google Scholar]
  79. ChenY. QinC. HuangJ. TangX. LiuC. HuangK. XuJ. GuoG. TongA. ZhouL. The role of astrocytes in oxidative stress of central nervous system: A mixed blessing.Cell Prolif.2020533e1278110.1111/cpr.1278132035016
    [Google Scholar]
  80. MahmoudS. GharagozlooM. SimardC. GrisD. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release.Cells20198218410.3390/cells802018430791579
    [Google Scholar]
  81. MartinoG. PluchinoS. BonfantiL. SchwartzM. Brain regeneration in physiology and pathology: The immune signature driving therapeutic plasticity of neural stem cells.Physiol. Rev.20119141281130410.1152/physrev.00032.201022013212
    [Google Scholar]
  82. AndersonM.A. AoY. SofroniewM.V. Heterogeneity of reactive astrocytes.Neurosci. Lett.2014565232910.1016/j.neulet.2013.12.03024361547
    [Google Scholar]
  83. ThuongN.T.T. HeemskerkD. TramT.T.B. ThaoL.T.P. RamakrishnanL. HaV.T.N. BangN.D. ChauT.T.H. LanN.H. CawsM. DunstanS.J. ChauN.V.V. WolbersM. MaiN.T.H. ThwaitesG.E. Leukotriene A4 hydrolase genotype and HIV infection influence intracerebral inflammation and survival from tuberculous meningitis.J. Infect. Dis.201721571020102810.1093/infdis/jix05028419368
    [Google Scholar]
  84. HawnT.R. DunstanS.J. ThwaitesG.E. SimmonsC.P. ThuongN.T. LanN.T.N. QuyH.T. ChauT.T.H. HieuN.T. RodriguesS. JanerM. ZhaoL.P. HienT.T. FarrarJ.J. AderemA. A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis.J. Infect. Dis.200619481127113410.1086/50790716991088
    [Google Scholar]
  85. RuesenC. ChaidirL. van LaarhovenA. DianS. GaniemA.R. Nebenzahl-GuimaraesH. HuynenM.A. AlisjahbanaB. DutilhB.E. van CrevelR. Large-scale genomic analysis shows association between homoplastic genetic variation in Mycobacterium tuberculosis genes and meningeal or pulmonary tuberculosis.BMC Genomics201819112210.1186/s12864‑018‑4498‑z29402222
    [Google Scholar]
  86. CampoM. RandhawaA.K. DunstanS. FarrarJ. CawsM. BangN.D. LanN.N. Hong ChauT.T. HorneD.J. ThuongN.T. ThwaitesG.E. HawnT.R. Common polymorphisms in the CD43 gene region are associated with tuberculosis disease and mortality.Am. J. Respir. Cell Mol. Biol.201552334234810.1165/rcmb.2014‑0114OC25078322
    [Google Scholar]
  87. FaksriK. DrobniewskiF. NikolayevskyyV. BrownT. PrammanananT. PalittapongarnpimP. PrayoonwiwatN. ChaiprasertA. Epidemiological trends and clinical comparisons of Mycobacterium tuberculosis lineages in Thai TB meningitis.Tuberculosis201191659460010.1016/j.tube.2011.08.00521920820
    [Google Scholar]
  88. HusainA.A. TikarihaH. NayakA.R. GuptaU.D. BhullarS.S. ChandakN.C. MonaghanT.M. DaginawlaH.F. SinghL.R. PurohitH.J. Variation in mycobacterium tuberculosis genotype and molecular phenotype influence clinical phenotype of pulmonary tuberculosis and tuberculous meningitis infection in host.MedRxiv202010.1101/2020.11.05.20225789
    [Google Scholar]
  89. ZaharieS.D. FrankenD.J. van der KuipM. van ElslandS. de BakkerB.S. HagoortJ. RoestS.L. van DamC.S. TimmersC. SolomonsR. van ToornR. KrugerM. Marceline vanF.A. The immunological architecture of granulomatous inflammation in central nervous system tuberculosis.Tuberculosis202012510201610.1016/j.tube.2020.10201633137697
    [Google Scholar]
  90. DasturD.K. ManghaniD.K. UdaniP.M. Pathology and pathogenetic mechanisms in neurotuberculosis.Radiol. Clin. North Am.199533473375210.1016/S0033‑8389(22)00616‑97610242
    [Google Scholar]
  91. MalhotraK.P. KulshreshthaD. Pathology of tuberculosis of the nervous system (Tuberculous Meningitis, Tuberculoma, Tuberculous Abscess).Tuberculosis of the Central Nervous System: Pathogenesis, Imaging, and Management. TurgutM. AkhaddarA. TurgutA.T. GargR.K. ChamSpringer International Publishing2017335310.1007/978‑3‑319‑50712‑5_4
    [Google Scholar]
  92. FauciA.S. Infectious diseases: Considerations for the 21st century.Clin. Infect. Dis.200132567568510.1086/31923511229834
    [Google Scholar]
  93. PikorN.B. CupovicJ. OnderL. GommermanJ.L. LudewigB. Stromal cell niches in the inflamed central nervous system.J. Immunol.201719851775178110.4049/jimmunol.160156628223405
    [Google Scholar]
  94. KartalM.G. AlginO. Evaluation of hydrocephalus and other cerebrospinal fluid disorders with MRI: An update.Insights Imaging20145453154110.1007/s13244‑014‑0333‑524903254
    [Google Scholar]
  95. CuocoJ.A. BenkoM.J. KleinB.J. KeyesD.C. PatelB.M. WitcherM.R. Idiopathic fourth ventricular outlet obstruction misdiagnosed as normal pressure hydrocephalus: A cautionary case.Surg. Neurol. Int.20201130510.25259/SNI_408_202033093982
    [Google Scholar]
  96. CavalcantiY.V.N. BrelazM.C.A. Lemoine NevesJ.K.A. FerrazJ.C. PereiraV.R.A. Role of TNF-Alpha, IFN-Gamma, and IL-10 in the development of pulmonary tuberculosis.Pulm. Med.2012201211010.1155/2012/74548323251798
    [Google Scholar]
  97. DorhoiA. KaufmannS.H.E. Tumor necrosis factor alpha in mycobacterial infection.Semin. Immunol.201426320320910.1016/j.smim.2014.04.00324819298
    [Google Scholar]
  98. LiangL. ShiR. LiuX. YuanX. ZhengS. ZhangG. WangW. WangJ. EnglandK. ViaL.E. CaiY. GoldfederL.C. DoddL.E. BarryC.E. ChenR.Y. Interferon-gamma response to the treatment of active pulmonary and extra-pulmonary tuberculosis.Int. J. Tuberc. Lung Dis.201721101145114910.5588/ijtld.16.088028911359
    [Google Scholar]
  99. LaronhaH. CaldeiraJ. Structure and function of human matrix metalloproteinases.Cells202095107610.3390/cells905107632357580
    [Google Scholar]
  100. BarillariG. The impact of matrix metalloproteinase-9 on the sequential steps of the metastatic process.Int. J. Mol. Sci.20202112452610.3390/ijms2112452632630531
    [Google Scholar]
  101. SathyamoorthyT. SandhuG. TezeraL.B. ThomasR. SinghaniaA. WoelkC.H. DimitrovB.D. AgranoffD. EvansC.A.W. FriedlandJ.S. ElkingtonP.T. Gender-dependent differences in plasma matrix metalloproteinase-8 elevated in pulmonary tuberculosis.PLoS One2015101e011760510.1371/journal.pone.011760525635689
    [Google Scholar]
  102. RandL. GreenJ.A. SaraivaL. FriedlandJ.S. ElkingtonP.T.G. Matrix metalloproteinase-1 is regulated in tuberculosis by a p38 MAPK-dependent, p-aminosalicylic acid-sensitive signaling cascade.J. Immunol.200918295865587210.4049/jimmunol.080193519380835
    [Google Scholar]
  103. MajeedS. SinghP. SharmaN. SharmaS. Title: role of matrix metalloproteinase −9 in progression of tuberculous meningitis: A pilot study in patients at different stages of the disease.BMC Infect. Dis.201616172210.1186/s12879‑016‑1953‑927899068
    [Google Scholar]
  104. JhambR. GaurawA.K. KarR. GogoiP. AvasthiR. A comparative study of serum matrix metalloproteinase-9 in tuberculous meningitis with and without stroke.Int. J. Healthc. Med. Sci.201953741
    [Google Scholar]
  105. FischerT. RiedlR. Challenges with matrix metalloproteinase inhibition and future drug discovery avenues.Expert Opin. Drug Discov.2021161758810.1080/17460441.2020.181923532921161
    [Google Scholar]
  106. LenciE. CosottiniL. TrabocchiA. Novel matrix metalloproteinase inhibitors: An updated patent review (2014 - 2020).Expert Opin. Ther. Pat.202131650952310.1080/13543776.2021.188148133487088
    [Google Scholar]
  107. ShopeR.E. LewisP.A. A paralytic disease of guinea pigs due to the tubercle bacillus.J. Exp. Med.192950336537010.1084/jem.50.3.36519869629
    [Google Scholar]
  108. BurnC.G. FinleyK.H. The role of hypersensitivity in the production of experimental meningitis: I. experimental meningitis in tuberculous animals.J. Exp. Med.193256220322110.1084/jem.56.2.20319870061
    [Google Scholar]
  109. PierceC. DubosR.J. MiddlebrookG. Infection of mice with mammalian tubercle bacilli grown in tween-albumin liquid medium.J. Exp. Med.194786215917410.1084/jem.86.2.15919871664
    [Google Scholar]
  110. LeeJ. LingC. KosmalskiM.M. HulsebergP. SchreiberH.A. SandorM. FabryZ. Intracerebral mycobacterium bovis bacilli calmette–guerin infection-induced immune responses in the CNS.J. Neuroimmunol.20092131-211212210.1016/j.jneuroim.2009.05.00819535154
    [Google Scholar]
  111. van WellG.T.J. WielandC.W. FlorquinS. RoordJ.J. van der PollT. van FurthA.M. A new murine model to study the pathogenesis of tuberculous meningitis.J. Infect. Dis.2007195569469710.1086/51127317262711
    [Google Scholar]
  112. BeN.A. LamichhaneG. GrossetJ. TyagiS. ChengQ.J. KimK.S. BishaiW.R. JainS.K. Murine model to study the invasion and survival of Mycobacterium tuberculosis in the central nervous system.J. Infect. Dis.2008198101520152810.1086/59244718956986
    [Google Scholar]
  113. BolinC.A. WhippleD.L. KhannaK.V. RisdahlJ.M. PetersonP.K. MolitorT.W. Infection of swine with mycobacterium bovis as a model of human tuberculosis.J. Infect. Dis.199717661559156610.1086/5141559395368
    [Google Scholar]
  114. De GrooteM.A. GillilandJ.C. WellsC.L. BrooksE.J. WoolhiserL.K. GruppoV. PeloquinC.A. OrmeI.M. LenaertsA.J. Comparative studies evaluating mouse models used for efficacy testing of experimental drugs against Mycobacterium tuberculosis.Antimicrob. Agents Chemother.20115531237124710.1128/AAC.00595‑1021135176
    [Google Scholar]
  115. TsenovaL. SokolK. FreedmanV.H. KaplanG. A combination of thalidomide plus antibiotics protects rabbits from mycobacterial meningitis-associated death.J. Infect. Dis.199817761563157210.1086/5153279607834
    [Google Scholar]
  116. Hernandez PandoR. AguilarD. CohenI. GuerreroM. RibonW. AcostaP. OrozcoH. MarquinaB. SalinasC. RembaoD. EspitiaC. Specific bacterial genotypes of Mycobacterium tuberculosis cause extensive dissemination and brain infection in an experimental model.Tuberculosis201090426827710.1016/j.tube.2010.05.00220580613
    [Google Scholar]
  117. BallabhP. BraunA. NedergaardM. The blood–brain barrier: An overview.Neurobiol. Dis.200416111310.1016/j.nbd.2003.12.01615207256
    [Google Scholar]
  118. NavoneS.E. MarfiaG. InverniciG. CristiniS. NavaS. BalbiS. SangiorgiS. CiusaniE. BosuttiA. AlessandriG. SlevinM. ParatiE.A. Isolation and expansion of human and mouse brain microvascular endothelial cells.Nat. Protoc.2013891680169310.1038/nprot.2013.10723928501
    [Google Scholar]
  119. PatabendigeA. SkinnerR.A. AbbottN.J. Establishment of a simplified in vitro porcine blood–brain barrier model with high transendothelial electrical resistance.Brain Res.2013152111510.1016/j.brainres.2012.06.05722789905
    [Google Scholar]
  120. CardosoF.L. BritesD. BritoM.A. Looking at the blood–brain barrier: Molecular anatomy and possible investigation approaches.Brain Res. Brain Res. Rev.201064232836310.1016/j.brainresrev.2010.05.00320685221
    [Google Scholar]
  121. WilhelmI. KrizbaiI.A. in vitro models of the blood-brain barrier for the study of drug delivery to the brain.Mol. Pharm.20141171949196310.1021/mp500046f24641309
    [Google Scholar]
  122. ZhangZ. McGoronA.J. CrumplerE.T. LiC.Z. Co-culture based blood-brain barrier in vitro model, a tissue engineering approach using immortalized cell lines for drug transport study.Appl. Biochem. Biotechnol.2011163227829510.1007/s12010‑010‑9037‑620652765
    [Google Scholar]
  123. WekslerB. RomeroI.A. CouraudP.O. The hCMEC/D3 cell line as a model of the human blood brain barrier.Fluids Barriers CNS20131011610.1186/2045‑8118‑10‑1623531482
    [Google Scholar]
  124. NaikP. CuculloL. in vitro blood-brain barrier models: Current and perspective technologies.J. Pharm. Sci.201210141337135410.1002/jps.2302222213383
    [Google Scholar]
  125. ZyskG. Schneider-WaldB.K. HwangJ.H. BejoL. KimK.S. MitchellT.J. HakenbeckR. HeinzH.P. Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae.Infect. Immun.200169284585210.1128/IAI.69.2.845‑852.200111159977
    [Google Scholar]
  126. BoothR. KimH. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB).Lab Chip201212101784179210.1039/c2lc40094d22422217
    [Google Scholar]
  127. SantaguidaS. JanigroD. HossainM. ObyE. RappE. CuculloL. Side by side comparison between dynamic versus static models of blood–brain barrier in vitro: A permeability study.Brain Res.20061109111310.1016/j.brainres.2006.06.02716857178
    [Google Scholar]
  128. JainS.K. Paul-SatyaseelaM. LamichhaneG. KimK.S. BishaiW.R. Mycobacterium tuberculosis invasion and traversal across an in vitro human blood-brain barrier as a pathogenic mechanism for central nervous system tuberculosis.J. Infect. Dis.200619391287129510.1086/50263116586367
    [Google Scholar]
  129. VargheseE.H. StanislausA.C. An update on COVID-19: SARS-CoV-2 variants, antiviral drugs, and vaccines .Heliyon202393e13952
    [Google Scholar]
  130. CarloC. JohnC.R. BenedettaP. MatteoG. De GiorgioR. Special issue: Advances in SARS-CoV-2 infection .Microorganisms20231141048
    [Google Scholar]
  131. LeeH.M. KangJ. LeeS.J. JoE.K. Microglial activation of the NLRP3 inflammasome by the priming signals derived from macrophages infected with mycobacteria.Glia201361344145210.1002/glia.2244823280493
    [Google Scholar]
  132. CoomesE.A. HaghbayanH. Interleukin-6 in Covid-19: A systematic review and meta-analysis.Rev. Med. Virol.20203061910.1002/rmv.214132845568
    [Google Scholar]
  133. Picchianti DiamantiA. RosadoM.M. PioliC. SestiG. LaganàB. cytokine release syndrome in Covid-19 patients, a new scenario for an old concern: The fragile balance between infections and autoimmunity.Int. J. Mol. Sci.2020219333010.3390/ijms2109333032397174
    [Google Scholar]
  134. CostelloF. DalakasM.C. Cranial neuropathies and COVID-19.Neurology202095519519610.1212/WNL.000000000000992132487714
    [Google Scholar]
  135. NikbakhtF. MohammadkhanizadehA. MohammadiE. How does the COVID-19 cause seizure and epilepsy in patients? The potential mechanisms.Mult. Scler. Relat. Disord.20204610253510.1016/j.msard.2020.10253533010584
    [Google Scholar]
  136. DavisA.G. RohlwinkU.K. ProustA. FigajiA.A. WilkinsonR.J. The pathogenesis of tuberculous meningitis.J. Leukoc. Biol.2019105226728010.1002/JLB.MR0318‑102R30645042
    [Google Scholar]
  137. OtsukaR. SeinoK. Macrophage activation syndrome and COVID-19.Inflamm. Regen.20204011910.1186/s41232‑020‑00131‑w32834892
    [Google Scholar]
  138. Fine-CoulsonK. ReavesB.J. KarlsR.K. QuinnF.D. The role of lipid raft aggregation in the infection of type II pneumocytes by Mycobacterium tuberculosis.PLoS One201279e4502810.1371/journal.pone.004502823024786
    [Google Scholar]
  139. NomuraR. KiyotaA. SuzakiE. KataokaK. OheY. MiyamotoK. SendaT. FujimotoT. Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae.J. Virol.200478168701870810.1128/JVI.78.16.8701‑8708.200415280478
    [Google Scholar]
  140. SchwabenlandM. SaliéH. TanevskiJ. KillmerS. LagoM.S. SchlaakA.E. MayerL. MatschkeJ. PüschelK. FitzekA. OndruschkaB. MeiH.E. BoettlerT. Neumann-HaefelinC. HofmannM. BreithauptA. GencN. StadelmannC. Saez-RodriguezJ. BronsertP. KnobelochK.P. BlankT. ThimmeR. GlatzelM. PrinzM. BengschB. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions.Immunity202154715941610.e1110.1016/j.immuni.2021.06.00234174183
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266282277240122073451
Loading
/content/journals/ctmc/10.2174/0115680266282277240122073451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test