Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

In recent decades, has become a serious issue for public health. The worldwide rapid rise in drug resistance to conventional therapies is the main contributing reason. Moreover, because of their potent activity at low concentrations and apparent lack of toxicity, compounds originating from plants are used in therapeutic treatments because of their potent activity at low concentrations and apparent lack of toxicity. Particularly in immunocompromised people, Candida species can result in a wide range of ailments.

Objectives

Present manuscript describes antifungal activity of an indole derivative 1-(4-((5-methoxy-2-(3,4,5-trimethoxyphenyl)-1-indol-1-yl) methyl) phenoxy)-N,N-dimethylethan-1-amine (, ) by using and anti-candidal activity against two Candida strains; -DS-02 (ATCC-204093) and (AI-clinical isolate, AIIMS-Delhi).

Methods

The synthetic strategy for the preparation of indole derivatives was modified through Fischer indole reaction. Antifungal activity of an indole derivative 1-(4-((5-methoxy-2-(3,4,5-trimethoxyphenyl)-1-indol-1-yl) methyl) phenoxy)-N,N-dimethylethan-1-amine (, ) was done by using and anti-candidal activity against two Candida strains; -DS-02 (ATCC-204093) and (AI-clinical isolate, AIIMS-Delhi). Compound efficacy was determined by Combination synergy study, ergosterol binding assay, MTT toxicity study and Mutagenicity.

Results

Compound was obtained in 65% yield on desired motifs. Docking scores found were (-8.7 kcal/mol) and Fluconazole (-7.6 kcal/mol). Further, RMSD were shown for (0.26 ± 0.23 nm) and fluconazole (1.2 ± 0.62 nm). Indole derivative was active against the tested fungal pathogens and the total zone of inhibition was measured between 13-14 mm in diameter and MIC values between 31.25 μg/mL to 250 μg/mL and MFC values between 62.5 μg/mL to 500 μg/mL. In checkerboard assay synergistic mode of interaction of with known antifungal drugs was observed. In the presence of ergosterol and standard drug (s) increased their MIC values, demonstrating a considerable affinity for ergosterol. Compound was considered to be less-cytotoxic to the cells as determined by MTT assay. Lead compound was found to be non-mutagenic.

Conclusion

In the present study, (indole derivatives) significantly abrupted the ergosterol biosynthetic pathway and showed moderate anti-candidal effects. These studies suggest that significantly enhances antifungal effect of clinical drug fluconazole synergistically and may be considered as in clinical trial prior to some extensive validations.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266278892240102045630
2025-04-01
2025-09-03
Loading full text...

Full text loading...

References

  1. FisherM.C. HawkinsN.J. SanglardD. GurrS.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security.Science2018360639073974210.1126/science.aap799929773744
    [Google Scholar]
  2. SobelJ.D. FaroS. ForceR.W. FoxmanB. LedgerW.J. NyirjesyP.R. ReedB.D. SummersP.R. Vulvovaginal candidiasis: Epidemiologic, diagnostic, and therapeutic considerations.Am. J. Obstet. Gynecol.1998178220321110.1016/S0002‑9378(98)80001‑X9500475
    [Google Scholar]
  3. AchkarJ.M. FriesB.C. Candida infections of the genitourinary tract.Clin. Microbiol. Rev.201023225327310.1128/CMR.00076‑0920375352
    [Google Scholar]
  4. WangW. ShengC. CheX. JiH. MiaoZ. YaoJ. ZhangW. Design, synthesis, and antifungal activity of novel conformationally restricted triazole derivatives.Arch. Pharm.20093421273273910.1002/ardp.20090010319899102
    [Google Scholar]
  5. ZhangQ. LiD. WeiP. ZhangJ. WanJ. RenY. ChenZ. LiuD. YuZ. FengL. Structure-based rational screening of novel hit compounds with structural diversity for cytochrome P450 sterol 14alpha-demethylase from Penicillium digitatum.J. Chem. Inf. Model.201050231732510.1021/ci900425t20088581
    [Google Scholar]
  6. LepeshevaG.I. HargroveT.Y. KleshchenkoY. NesW.D. VillaltaF. WatermanM.R. CYP51: A major drug target in the cytochrome P450 superfamily.Lipids200843121117112510.1007/s11745‑008‑3225‑y18769951
    [Google Scholar]
  7. NegmW.A. El-AasrM. AttiaG. AlqahtaniM.J. YassienR.I. Abo KamerA. ElekhnawyE. Promising antifungal activity of encephalartos laurentianus de wild against candida albicans clinical isolates: in vitro and in vivo effects on renal cortex of adult albino rats.J. Fungi20228542610.3390/jof805042635628682
    [Google Scholar]
  8. GhoshA.K. GongG. Grum-TokarsV. MulhearnD.C. BakerS.C. CoughlinM. PrabhakarB.S. SleemanK. JohnsonM.E. MesecarA.D. Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors.Bioorg. Med. Chem. Lett.200818205684568810.1016/j.bmcl.2008.08.08218796354
    [Google Scholar]
  9. MathadaB.S. SomappaS.B. An insight into the recent developments in anti-infective potential of indole and associated hybrids.J. Mol. Struct.2022126113280810.1016/j.molstruc.2022.13280835291692
    [Google Scholar]
  10. KaralıN. GürsoyA. KandemirliF. ShvetsN. KaynakF.B. ÖzbeyS. KovalishynV. DimogloA. Synthesis and structure–antituberculosis activity relationship of 1H-indole-2,3-dione derivatives.Bioorg. Med. Chem.200715175888590410.1016/j.bmc.2007.05.06317561405
    [Google Scholar]
  11. XuH. WangQ. YangW-B. Antifungal activities of some indole derivatives. zeitschrift für naturforschung. C.J. Biosci.201465437439
    [Google Scholar]
  12. GautamY. DasS. KhanH. PathakN. IqbalH. YadavP. SirohiV.K. KhanS. RaghuvanshiD.S. DwivediA. ChandaD. ShankerK. KhanF. KonwarR. NegiA.S. Design, synthesis and broad spectrum antibreast cancer activity of diarylindoles via induction of apoptosis in aggressive breast cancer cells.Bioorg. Med. Chem.20214211625210.1016/j.bmc.2021.11625234153643
    [Google Scholar]
  13. AndreaniA. BurnelliS. GranaiolaM. LeoniA. LocatelliA. MorigiR. RambaldiM. VaroliL. LandiL. PrataC. BerridgeM.V. GrassoC. FiebigH.H. KelterG. BurgerA.M. KunkelM.W. Antitumor activity of bis-indole derivatives.J. Med. Chem.200851154563457010.1021/jm800194k18598018
    [Google Scholar]
  14. SevinçliZ.Ş. DuranG.N. ÖzbilM. KaralıN. Synthesis, molecular modeling and antiviral activity of novel 5-fluoro-1H-indole-2,3-dione 3-thiosemicarbazones.Bioorg. Chem.202010410420210.1016/j.bioorg.2020.10420232892069
    [Google Scholar]
  15. ZhangL. HuaZ. SongY. FengC. Monoterpenoid indole alkaloids from Alstonia rupestris with cytotoxic, antibacterial and antifungal activities.Fitoterapia20149714214710.1016/j.fitote.2014.05.01824887700
    [Google Scholar]
  16. PawarR.J. BromhalG.S. CareyJ.W. FoxallW. KorreA. RingroseP.S. TuckerO. WatsonM.N. WhiteJ.A. Recent advances in risk assessment and risk management of geologic CO2 storage.Int. J. Greenh. Gas Control20154029231110.1016/j.ijggc.2015.06.014
    [Google Scholar]
  17. ZhangM.Z. JiaC.Y. GuY.C. MulhollandN. TurnerS. BeattieD. ZhangW.H. YangG.F. CloughJ. Synthesis and antifungal activity of novel indole-replaced streptochlorin analogues.Eur. J. Med. Chem.201712666967410.1016/j.ejmech.2016.12.00127936445
    [Google Scholar]
  18. MishraN. Study and Characterization of Indole Carboxylate Derivative Synthesized via Condensation.Vidya201914287101
    [Google Scholar]
  19. KoesD.R. CamachoC.J. ZINCPharmer: Pharmacophore search of the ZINC database.Nucleic Acids Res.201240(Web Server issue)W40941410.1093/nar/gks378
    [Google Scholar]
  20. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑3321982300
    [Google Scholar]
  21. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  22. SinghA.P. AryaH. SinghV. KumarP. GautamH.K. Identification of natural inhibitors to inhibit C. acnes lipase through docking and simulation studies.J. Mol. Model.202228928110.1007/s00894‑022‑05289‑336040538
    [Google Scholar]
  23. VanommeslaegheK. HatcherE. AcharyaC. KunduS. ZhongS. ShimJ. DarianE. GuvenchO. LopesP. VorobyovI. MackerellA.D.Jr CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields.J. Comput. Chem.201031467169010.1002/jcc.2136719575467
    [Google Scholar]
  24. BharathiM. SivamaruthiB.S. KesikaP. ThangaleelaS. ChaiyasutC. in silico screening of potential phytocompounds from several herbs against SARS-CoV-2 indian delta variant B.1.617.2 to inhibit the spike glycoprotein trimer.Appl. Sci.202212266510.3390/app12020665
    [Google Scholar]
  25. SharpM.E. VázquezF.X. WagnerJ.W. Dannenhoffer-LafageT. VothG.A. Multiconfigurational coarse-grained molecular dynamics.J. Chem. Theory Comput.20191553306331510.1021/acs.jctc.8b0113330897328
    [Google Scholar]
  26. SeptamaA.W. PanichayupakaranantP. Synergistic effect of artocarpin on antibacterial activity of some antibiotics against methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.Pharm. Biol.201654468669110.3109/13880209.2015.107256626427318
    [Google Scholar]
  27. PadaliaR. p-Menthenols chemotype of Cymbopogon distans from India: Composition, antibacterial and antifungal activity of the essential oil against pathogens.J. Essent. Oil Res.201717
    [Google Scholar]
  28. BlN. NMR assignment and antimicrobial/antioxidant activities of 1β-hydroxyeuscaphic acid from the seeds of butyrospermum parkii.Nat. Prod. Sci.2009157682
    [Google Scholar]
  29. Cuenca-EstrellaM. Combinations of antifungal agents in therapy–what value are they?J. Antimicrob. Chemother.200454585486910.1093/jac/dkh43415375111
    [Google Scholar]
  30. EscalanteA. GattusoM. PérezP. ZacchinoS. Evidence for the mechanism of action of the antifungal phytolaccoside B isolated from Phytolacca tetramera Hauman.J. Nat. Prod.200871101720172510.1021/np070660i18816139
    [Google Scholar]
  31. SaxenaH. FaridiU. KumarJ. LuqmanS. DarokarM. ShankerK. ChanotiyaC. GuptaM. NegiA. Synthesis of chalcone derivatives on steroidal framework and their anticancer activities.Steroids2007721389290010.1016/j.steroids.2007.07.01217850837
    [Google Scholar]
  32. Abdul-HafeezE.Y. KaramovaN.S. IlinskayaO.N. Evaluation of mutagenic and antimutagenic potential of stem bark aqueous extracts of eight trees by the bacterial reverse mutation assay.Ekol. Genet.2018163556110.17816/ecogen16355‑61
    [Google Scholar]
  33. MortelmansK. ZeigerE. The Ames Salmonella/microsome mutagenicity assay.Mutat. Res.20004551-2296010.1016/S0027‑5107(00)00064‑611113466
    [Google Scholar]
  34. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  35. ParrishN. FisherS.L. GartlingA. CraigD. BoireN. KhuvisJ. RiedelS. ZhangS. Activity of various essential oils against clinical dermatophytes of microsporum and trichophyton. Front. Cell. Infect. Microbiol.20201054591310.3389/fcimb.2020.54591333178620
    [Google Scholar]
  36. Ostrosky-ZeichnerL. KullbergB.J. BowE.J. HadleyS. LeónC. NucciM. PattersonT.F. PerfectJ.R. Early treatment of candidemia in adults: A review.Med. Mycol.201149211312010.3109/13693786.2010.51230020818922
    [Google Scholar]
  37. Alvarez-RuedaN. FleuryA. MorioF. PagniezF. GastinelL. Le PapeP. Amino acid substitutions at the major insertion loop of Candida albicans sterol 14alpha-demethylase are involved in fluconazole resistance.PLoS One201166e2123910.1371/journal.pone.002123921698128
    [Google Scholar]
  38. JohnsonM.D. PerfectJ.R. Use of antifungal combination therapy: Agents, order, and timing.Curr. Fungal Infect. Rep.201042879510.1007/s12281‑010‑0018‑620574543
    [Google Scholar]
  39. PfallerM.A. Rhine-ChalbergJ. BarryA.L. RexJ.H. Strain variation and antifungal susceptibility among bloodstream isolates of Candida species from 21 different medical institutions.Clin. Infect. Dis.19952161507150910.1093/clinids/21.6.15078749647
    [Google Scholar]
  40. FranzR. KellyS.L. LambD.C. KellyD.E. RuhnkeM. MorschhäuserJ. Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains.Antimicrob. Agents Chemother.199842123065307210.1128/AAC.42.12.30659835492
    [Google Scholar]
  41. SanglardD. IscherF. KoymansL. BilleJ. Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents.Antimicrob. Agents Chemother.199842224125310.1128/AAC.42.2.2419527767
    [Google Scholar]
  42. MarichalP. KoymansL. WillemsensS. BellensD. VerhasseltP. LuytenW. BorgersM. RamaekersF.C.S. OddsF.C. Vanden BosscheH. Contribution of mutations in the cytochrome P450 14α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans.Microbiology1999145102701271310.1099/00221287‑145‑10‑270110537192
    [Google Scholar]
  43. GoldmanG.H. da Silva FerreiraM.E. dos Reis MarquesE. SavoldiM. PerlinD. ParkS. Godoy MartinezP.C. GoldmanM.H.S. ColomboA.L. Evaluation of fluconazole resistance mechanisms in candida albicans clinical isolates from HIV-infected patients in Brazil.Diagn. Microbiol. Infect. Dis.2004501253210.1016/j.diagmicrobio.2004.04.00915380275
    [Google Scholar]
  44. ChauA.S. MendrickC.A. SabatelliF.J. LoebenbergD. McNicholasP.M. Application of real-time quantitative PCR to molecular analysis of Candida albicans strains exhibiting reduced susceptibility to azoles.Antimicrob. Agents Chemother.20044862124213110.1128/AAC.48.6.2124‑2131.200415155210
    [Google Scholar]
  45. CosteA. SelmeckiA. ForcheA. DiogoD. BougnouxM.E. d’EnfertC. BermanJ. SanglardD. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates.Eukaryot. Cell20076101889190410.1128/EC.00151‑0717693596
    [Google Scholar]
  46. JubairN. RajagopalM. ChinnappanS. AbdullahN.B. FatimaA. Review on the antibacterial mechanism of plant-derived compounds against Multidrug-Resistant Bacteria (MDR).Evid. Based Complement. Alternat. Med.2021202113010.1155/2021/366331534447454
    [Google Scholar]
  47. Al-KarmalawyA.A. DahabM.A. MetwalyA.M. ElhadyS.S. ElkaeedE.B. EissaI.H. DarwishK.M. Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor.Front Chem.2021966123010.3389/fchem.2021.66123034017819
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266278892240102045630
Loading
/content/journals/ctmc/10.2174/0115680266278892240102045630
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Anti-candidal; Docking; MD simulation; MIC; Synergistic assay; Zone of inhibition
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test