Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction/Objective

Tuberculosis (TB) remains a persistent global health challenge, with an increasing incidence of cases and limitations in current treatment strategies. Traditional therapy involves long drug treatments that can cause side effects and lead to drug-resistant strains, making treatment less effective. This study aimed to explore the therapeutic potential of a novel nanoparticle-based delivery system for Thymol (THY), a natural antibacterial bioactive molecule, to combat , a model organism for .

Methods

A nanoparticle-based delivery system was developed using biocompatible Thymol-conjugated Chitosan Zinc Ferrite Nanoparticles (THY-CH-ZnFeO NPs). The nanoconjugates were characterized for their morphological and chemical properties.

Results

The characterization of synthesised nanoparticles showed THY-CH-ZnFeO NPs to exhibit enhanced biocompatibility and antibacterial activity against compared to THY alone. The nanoconjugates induced Reactive Oxygen Species (ROS)-mediated damage to the bacterial cell membrane, effectively inhibiting bacterial replication, dormancy, and biofilm formation. Additionally, the nanoconjugates demonstrated low cytotoxicity towards the human kidney cell line.

Conclusion

The study's findings highlighted a new direction for developing nanoparticle-based antimycobacterial agents with a wide application in treating TB and other bacterial diseases. The THY-CH-ZnFe2O4 NPs show promise as a safe and effective therapeutic agent, offering a potential solution to the limitations of current TB treatment strategies.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266348684241211072446
2025-04-01
2025-10-27
Loading full text...

Full text loading...

References

  1. Global tuberculosis report 2023.2023Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023
  2. DesaiS.K. BeraS. MondalD. Gelatin nanoparticles as carrier for effective antituberculosis drug delivery in combination therapy.J. Bionanosci.202410.1007/s12668‑024‑01317‑z
    [Google Scholar]
  3. KirtaneA.R. VermaM. KarandikarP. FurinJ. LangerR. TraversoG. Nanotechnology approaches for global infectious diseases.Nat. Nanotechnol.202116436938410.1038/s41565‑021‑00866‑833753915
    [Google Scholar]
  4. ZegeyeA. DessieG. WagnewF. GebrieA. IslamS.M.S. TesfayeB. KirossD. Prevalence and determinants of anti-tuberculosis treatment non-adherence in Ethiopia: A systematic review and meta-analysis.PLoS One2019141e021042210.1371/journal.pone.021042230629684
    [Google Scholar]
  5. PatiR. SahuR. PandaJ. SonawaneA. Encapsulation of zinc-rifampicin complex into transferrin-conjugated silver quantum-dots improves its antimycobacterial activity and stability and facilitates drug delivery into macrophages.Sci. Rep.2016612418410.1038/srep2418427113139
    [Google Scholar]
  6. ChakrabortyP. BajeliS. KaushalD. RadotraB.D. KumarA. Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis Nat. Commun.2021121160610.1038/s41467‑021‑21748‑633707445
    [Google Scholar]
  7. PolyudovaT.V. EroshenkoD.V. PimenovaE.V. The biofilm formation of nontuberculous mycobacteria and its inhibition by essential oils.Int. J. Mycobacteriol.2021101435010.4103/ijmy.ijmy_228_2033707371
    [Google Scholar]
  8. NasiruddinM. NeyazM.K. DasS. Nanotechnology‐based approach in tuberculosis treatment.Tuberc. Res. Treat.201720171492020928210505
    [Google Scholar]
  9. KiaP. RumanU. PratiwiA.R. HusseinM.Z. Innovative therapeutic approaches based on nanotechnology for the treatment and management of tuberculosis.Int. J. Nanomedicine2023181159119110.2147/IJN.S36463436919095
    [Google Scholar]
  10. CheungR. NgT. WongJ. ChanW. Chitosan: An update on potential biomedical and pharmaceutical applications.Mar. Drugs20151385156518610.3390/md1308515626287217
    [Google Scholar]
  11. Amarnath PraphakarR. AlarfajA.A. MunusamyM.A. DusthackeerV.N.A. Kumar SubbiahS. RajanM. Phosphorylated κ‐carrageenan‐facilitated chitosan nanovehicle for sustainable anti‐tuberculosis multi drug delivery.ChemistrySelect20172247100710710.1002/slct.201701396
    [Google Scholar]
  12. DasB.S. SarangiA. SahooA. JenaB. PatnaikG. RoutS.S. SahooS. BhattacharyaD. Studies on phytoconstituents, antioxidant and antimicrobial activity of Trachyspermum ammi seed oil extract with reference to specific foodborne pathogens.J. Essent. Oil-Bear. Plants20222551012102810.1080/0972060X.2022.2132834
    [Google Scholar]
  13. DasB.S. SarangiA. RoutS.S. SahooA. GiriS. BhattacharyaD. Antimycobacterial potential of Trachyspermum ammi seed essential oil via fume contact and determination of major compounds.Nat. Prod. Res.20241710.1080/14786419.2023.230040438189354
    [Google Scholar]
  14. KowalczykA. TwarowskiB. FeckaI. TuberosoC.I.G. JerkovićI. Thymol as a component of chitosan systems - Several new applications in medicine: A comprehensive review.Plants202413336210.3390/plants1303036238337895
    [Google Scholar]
  15. JoE.R. OhJ. ChoS.I. Inhibitory effect of thymol on tympanostomy tube biofilms of methicillin-resistant Staphylococcus aureus and ciprofloxacin-resistant Pseudomonas aeruginosa. Microorganisms2022109186710.3390/microorganisms1009186736144469
    [Google Scholar]
  16. ZhouW. WangZ. MoH. ZhaoY. LiH. ZhangH. HuL. ZhouX. Thymol mediates bactericidal activity against Staphylococcus aureus by targeting an aldo-keto reductase and consequent depletion of NADPH.J. Agric. Food Chem.201967308382839210.1021/acs.jafc.9b0351731271032
    [Google Scholar]
  17. LiQ. HuangK.X. PanS. SuC. BiJ. LuX. Thymol disrupts cell homeostasis and inhibits the growth of Staphylococcus aureus.Contrast Media Mol. Imaging202220221874309610.1155/2022/874309636034206
    [Google Scholar]
  18. LiangC. HuangS. GengY. HuangX. ChenD. LaiW. GuoH. DengH. FangJ. YinL. OuyangP. A Study on the antibacterial mechanism of thymol against Aeromonas hydrophila in vitro.Aquacult. Int.202230111512910.1007/s10499‑021‑00789‑0
    [Google Scholar]
  19. BonettiA. TugnoliB. PivaA. GrilliE. Thymol as an adjuvant to restore antibiotic efficacy and reduce antimicrobial resistance and virulence gene expression in enterotoxigenic Escherichia coli strains.Antibiotics (Basel)2022118107310.3390/antibiotics1108107336009942
    [Google Scholar]
  20. CirinoI.C.S. de SantanaC.F. BezerraM.J.R. RochaI.V. LuzA.C.O. CoutinhoH.D.M. de FigueiredoR.C.B.Q. RaposoA. LhoL.H. HanH. Leal-BalbinoT.C. Comparative transcriptomics analysis of multidrug-resistant Acinetobacter baumannii in response to treatment with the terpenic compounds thymol and carvacrol.Biomed. Pharmacother.202316511518910.1016/j.biopha.2023.11518937481932
    [Google Scholar]
  21. dos Santos BarbosaC.R. ScherfJ.R. de FreitasT.S. de MenezesI.R.A. PereiraR.L.S. dos SantosJ.F.S. de JesusS.S.P. LopesT.P. de Sousa SilveiraZ. de Morais Oliveira-TintinoC.D. JúniorJ.P.S. CoutinhoH.D.M. TintinoS.R. da CunhaF.A.B. Effect of carvacrol and thymol on nora efflux pump inhibition in multidrug-resistant (MDR) Staphylococcus aureus strains.J. Bioenerg. Biomembr.202153448949810.1007/s10863‑021‑09906‑334159523
    [Google Scholar]
  22. Piri-GharaghieT. BeiranvandS. RiahiA. ShirinN.J. BadmastiF. MirzaieA. ElahianfarY. GhahariS. GhahariS. PasbanK. HajrasoulihaS. Fabrication and characterization of thymol‐loaded chitosan nanogels: Improved antibacterial and anti‐biofilm activities with negligible cytotoxicity.Chem. Biodivers.2022193e20210042610.1002/cbdv.20210042634989129
    [Google Scholar]
  23. SheorainJ. MehraM. ThakurR. GrewalS. KumariS. In vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier.Int. J. Biol. Macromol.20191251069107410.1016/j.ijbiomac.2018.12.09530552929
    [Google Scholar]
  24. WangZ. BaiH. LuC. HouC. QiuY. ZhangP. DuanJ. MuH. Light controllable chitosan micelles with ROS generation and essential oil release for the treatment of bacterial biofilm.Carbohydr. Polym.201920553353910.1016/j.carbpol.2018.10.09530446137
    [Google Scholar]
  25. AhmadyA.R. RazmjooeeK. Saber-SamandariS. ToghraieD. Fabrication of chitosan-gelatin films incorporated with thymol-loaded alginate microparticles for controlled drug delivery, antibacterial activity and wound healing: In-vitro and in-vivo studies.Int. J. Biol. Macromol.2022223Part A56758210.1016/j.ijbiomac.2022.10.249
    [Google Scholar]
  26. Olivas-FloresJ. Chávez-MéndezJ.R. Castillo-MartínezN.A. Sánchez-PérezH.J. Serrano-MedinaA. Cornejo-BravoJ.M. Antimicrobial effect of chitosan nanoparticles and Allium species on Mycobacterium tuberculosis and several other microorganisms.Microorganisms2024128160510.3390/microorganisms1208160539203447
    [Google Scholar]
  27. ChittratanP. ChalitangkoonJ. WongsariyaK. MathaweesansurnA. DetsriE. MonvisadeP. New chitosan-grafted thymol coated on gold nanoparticles for control of cariogenic bacteria in the oral cavity.ACS Omega2022730265822659010.1021/acsomega.2c0277635936441
    [Google Scholar]
  28. SarangiA. DasB.S. RoutS.S. SahooA. GiriS. BhattacharyaD. Antimycobacterial and antibiofilm activity of garlic essential oil using vapor phase techniques.J. Appl. Biol.20231116672
    [Google Scholar]
  29. Leena PanigrahiL. ShekharS. SahooB. ArakhaM. Adsorption of antimicrobial peptide onto chitosan-coated iron oxide nanoparticles fosters oxidative stress triggering bacterial cell death.RSC Advances20231336254972550710.1039/D3RA04070D37636508
    [Google Scholar]
  30. BuritiB.M.A.B. FigueiredoP.L.B. PassosM.F. da SilvaJ.K.R. Polymer-based wound dressings loaded with essential oil for the treatment of wounds: A review.Pharmaceuticals (Basel)202417789710.3390/ph1707089739065747
    [Google Scholar]
  31. Mohammed-SadhakathullahA.H.M. Paulo-MirasolS. TorrasJ. ArmelinE. Advances in functionalization of bioresorbable nanomembranes and nanoparticles for their use in biomedicine.Int. J. Mol. Sci.202324121031210.3390/ijms24121031237373461
    [Google Scholar]
  32. MohamedJ.M.M. AlqahtaniA. KumarT.V.A. FateaseA.A. AlqahtaniT. KrishnarajuV. AhmadF. MenaaF. AlamriA. MuthumaniR. VijayaR. Superfast synthesis of stabilized silver nanoparticles using aqueous Allium sativum (garlic) extract and isoniazid hydrazide conjugates: Molecular docking and in-vitro characterizations.Molecules202127111010.3390/molecules2701011035011342
    [Google Scholar]
  33. OluochG. MatiruV. MamatiE.G. NyongesaM. Nanoencapsulation of thymol and eugenol with chitosan nanoparticles and the effect against Ralstonia solanacearum. Adv. Microbiol.2021111272373910.4236/aim.2021.1112052
    [Google Scholar]
  34. GhasemiM. TurnbullT. SebastianS. KempsonI. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis.Int. J. Mol. Sci.202122231282710.3390/ijms22231282734884632
    [Google Scholar]
  35. XuC. AkakuruO.U. ZhengJ. WuA. Applications of iron oxide-based magnetic nanoparticles in the diagnosis and treatment of bacterial infections.Front. Bioeng. Biotechnol.2019714110.3389/fbioe.2019.0014131275930
    [Google Scholar]
  36. SharifiE. ReisiF. YousefiaslS. ElahianF. BarjuiS.P. SartoriusR. FattahiN. ZareE.N. RabieeN. GaziE.P. Paiva-SantosA.C. ParlantiP. GemmiM. MobiniG-R. Hashemzadeh-ChaleshtoriM. De BerardinisP. SharifiI. MattoliV. MakvandiP. Chitosan decorated cobalt zinc ferrite nanoferrofluid composites for potential cancer hyperthermia therapy: Anti-cancer activity, genotoxicity, and immunotoxicity evaluation.Adv. Compos. Hybrid Mater.20236619110.1007/s42114‑023‑00768‑4
    [Google Scholar]
  37. ZunigaE.S. EarlyJ. ParishT. The future for early-stage tuberculosis drug discovery.Future Microbiol.201510221722910.2217/fmb.14.12525689534
    [Google Scholar]
  38. ChenC.C. ChenY.Y. YehC.C. HsuC.W. YuS.J. HsuC.H. WeiT.C. HoS.N. TsaiP.C. SongY.D. YenH.J. ChenX.A. YoungJ.J. ChuangC.C. DouH.Y. Alginate-capped silver nanoparticles as a potent anti-mycobacterial agent against mycobacterium tuberculosis.Front. Pharmacol.20211274649610.3389/fphar.2021.74649634899300
    [Google Scholar]
  39. KowalczykA. PrzychodnaM. SopataS. BodalskaA. FeckaI. Thymol and thyme essential oil - New insights into selected therapeutic applications.Molecules20202518412510.3390/molecules2518412532917001
    [Google Scholar]
  40. BasavegowdaN. BaekK.H. Combination strategies of different antimicrobials: An efficient and alternative tool for pathogen inactivation.Biomedicines2022109221910.3390/biomedicines1009221936140320
    [Google Scholar]
  41. HaghniazR. RabbaniA. VajhadinF. KhanT. KousarR. KhanA.R. MontazerianH. IqbalJ. LibanoriA. KimH.J. WahidF. Anti‐bacterial and wound healing‐promoting effects of zinc ferrite nanoparticles.J. Nanobiotechnology20211913810.1186/s12951‑021‑00776‑w33546702
    [Google Scholar]
  42. AisidaS.O. GospelE.C. AlshoaibiA. OkeudoD. IjehR. EzemaF.I. Effect of chitosan on the microstructural properties of zinc ferrite nanoparticles.Macromol. Chem. Phys.20242256230037510.1002/macp.202300375
    [Google Scholar]
  43. MohsenA.M. NagyY.I. ShehabeldineA.M. OkbaM.M. Thymol-Loaded Eudragit RS30D cationic nanoparticles-based hydrogels for topical application in wounds: In vitro and in vivo evaluation.Pharmaceutics20221511910.3390/pharmaceutics1501001936678648
    [Google Scholar]
  44. ZhangH. MardyaniS. ChanW.C.W. KumachevaE. Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics.Biomacromolecules2006751568157210.1021/bm050912z16677040
    [Google Scholar]
  45. ShettaA. KegereJ. MamdouhW. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities.Int. J. Biol. Macromol.201912673174210.1016/j.ijbiomac.2018.12.16130593811
    [Google Scholar]
  46. BehzadiS. SerpooshanV. TaoW. HamalyM.A. AlkawareekM.Y. DreadenE.C. BrownD. AlkilanyA.M. FarokhzadO.C. MahmoudiM. Cellular uptake of nanoparticles: Journey inside the cell.Chem. Soc. Rev.201746144218424410.1039/C6CS00636A28585944
    [Google Scholar]
  47. SarangiA. SinghS.P. DasB.S. RajputS. FatimaS. BhattacharyaD. Mycobacterial biofilms: A therapeutic target against bacterial persistence and generation of antibiotic resistance.Heliyon20241011e3200310.1016/j.heliyon.2024.e3200338882302
    [Google Scholar]
  48. ChandraP. GrigsbyS.J. PhilipsJ.A. Immune evasion and provocation by Mycobacterium tuberculosis.Nat. Rev. Microbiol.2022201275076610.1038/s41579‑022‑00763‑435879556
    [Google Scholar]
  49. OjhaA.K. BaughnA.D. SambandanD. HsuT. TrivelliX. GuerardelY. AlahariA. KremerL. JacobsW.R. HatfullG.F. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug‐tolerant bacteria.Mol. Microbiol.200869116417410.1111/j.1365‑2958.2008.06274.x18466296
    [Google Scholar]
  50. LiuX. HuJ. WangW. YangH. TaoE. MaY. ShaS. Mycobacterial biofilm: Mechanisms, clinical problems, and treatments.Int. J. Mol. Sci.20242514777110.3390/ijms2514777139063012
    [Google Scholar]
  51. SalinaE.G. MakarovV. Mycobacterium tuberculosis dormancy: How to fight a hidden danger.Microorganisms20221012233410.3390/microorganisms1012233436557586
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266348684241211072446
Loading
/content/journals/ctmc/10.2174/0115680266348684241211072446
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test