Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

The urgent need for novel antibiotics in the face of escalating global antimicrobial resistance necessitates innovative approaches to identify bioactive compounds. Actinomycetes, renowned for their prolific production of antimicrobial agents, stand as a cornerstone in this pursuit. Their diverse metabolites exhibit multifaceted bioactivities, including potent antituberculosis, anticancer, immunomodulatory, immuno-protective, antidiabetic, Though terrestrial sources have been exploited significantly, contemporary developments in the field of antimicrobial drug discovery have put marine actinomycetes in a prominent light as a promising and relatively unexplored source of novel bioactive molecules. This is further boosted by post-genomic era advances like bioinformatics-based secretome analysis and reverse engineering that have totally revitalized actinomycetes antibiotic research. This review highlights actinomycetes-based chemically diverse scaffolds and clinically validated antibiotics along with the enduring significance of actinomycetes from untouched ecosystems, especially with recent advanced techniques in the quest for next-generation antimicrobials.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266282919240224130345
2025-04-01
2025-10-31
Loading full text...

Full text loading...

References

  1. SocietyM. Actinomycetes as nature’s pharmacists.Available from: https://microbiologysociety.org/publication/past-issues/natural-products-and-drug-discovery/article/actinomycetes-as-natures-pharmacists.html (Accessed Jan 21, 2024).
    [Google Scholar]
  2. De SimeisD. SerraS. Actinomycetes: A never-ending source of bioactive compounds—an overview on antibiotics production.Antibiotics202110548310.3390/antibiotics1005048333922100
    [Google Scholar]
  3. Global antimicrobial resistance and use surveillance system (GLASS) report.2021Available from: https://www.who.int/publications/i/item/9789240027336 (Accessed Feb 6, 2023).
  4. RossiterS.E. FletcherM.H. WuestW.M. Natural products as platforms to overcome antibiotic resistance.Chem. Rev.201711719124151247410.1021/acs.chemrev.7b0028328953368
    [Google Scholar]
  5. BehieS.W. BonetB. ZachariaV.M. McClungD.J. TraxlerM.F. Molecules to ecosystems: Actinomycete natural products in situ. Front. Microbiol.20177214910.3389/fmicb.2016.0214928144233
    [Google Scholar]
  6. KhanS.T. TamuraT. TakagiM. Shin-yaK. Streptomyces tateyamensis sp. nov., Streptomyces marinus sp. nov. and Streptomyces haliclonae sp. nov., isolated from the marine sponge Haliclona sp.Int. J. Syst. Evol. Microbiol.201060122775277910.1099/ijs.0.019869‑020061489
    [Google Scholar]
  7. JensenP.R. MooreB.S. FenicalW. The marine actinomycete genus Salinispora: A model organism for secondary metabolite discovery.Nat. Prod. Rep.201532573875110.1039/C4NP00167B25730728
    [Google Scholar]
  8. GenilloudO. Mining actinomycetes for novel antibiotics in the omics era: Are we ready to exploit this new paradigm?Antibiotics2018748510.3390/antibiotics704008530257490
    [Google Scholar]
  9. SubramaniR. SipkemaD. Marine rare actinomycetes: A promising source of structurally diverse and unique novel natural products.Mar. Drugs201917524910.3390/md1705024931035452
    [Google Scholar]
  10. BricknerS.J. Oxazolidinone antibiotics.Comprehensive Medicinal Chemistry II. TaylorJ.B. TriggleD.J. OxfordElsevier200767369810.1016/B0‑08‑045044‑X/00223‑6
    [Google Scholar]
  11. RamdeenS. BoucherH.W. Dalbavancin for the treatment of acute bacterial skin and skin structure infections.Expert Opin. Pharmacother.201516132073208110.1517/14656566.2015.107550826239321
    [Google Scholar]
  12. ZhanelG.G. EsquivelJ. ZelenitskyS. LawrenceC.K. AdamH.J. GoldenA. HinkR. BerryL. SchweizerF. ZhanelM.A. BayD. Lagacé-WiensP.R.S. WalktyA.J. LynchJ.P.III KarlowskyJ.A. Omadacycline: A novel oral and intravenous aminomethylcycline antibiotic agent.Drugs202080328531310.1007/s40265‑020‑01257‑431970713
    [Google Scholar]
  13. Commissioner, O. of the. FDA approves new antibacterial drug to treat complicated urinary tract infections as part of ongoing efforts to address antimicrobial resistance.Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-new-antibacterial-drug-treat-complicated-urinary-tract-infections-part-ongoing-efforts (Accessed Jan 21, 2024).
  14. AlharbiN.S. Novel bioactive molecules from marine actinomycetes.Biosci. Biotechnol. Res. Asia2016131905192710.13005/bbra/2346
    [Google Scholar]
  15. ManamR.R. TeisanS. WhiteD.J. NicholsonB. GrodbergJ. NeuteboomS.T.C. LamK.S. MoscaD.A. LloydG.K. PottsB.C.M. Lajollamycin, a nitro-tetraene spiro-beta-lactone-gamma-lactam antibiotic from the marine actinomycete Streptomyces nodosus. J. Nat. Prod.200568224024310.1021/np049725x15730252
    [Google Scholar]
  16. HasteN.M. HughesC.C. TranD.N. FenicalW. JensenP.R. NizetV. HenslerM.E. Pharmacological properties of the marine natural product marinopyrrole A against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother.20115573305331210.1128/AAC.01211‑1021502631
    [Google Scholar]
  17. ZhangW. LiuZ. LiS. YangT. ZhangQ. MaL. TianX. ZhangH. HuangC. ZhangS. JuJ. ShenY. ZhangC. Spiroindimicins A-D: New bisindole alkaloids from a deep-sea-derived actinomycete.Org. Lett.201214133364336710.1021/ol301343n22694269
    [Google Scholar]
  18. FiedlerH.P. Abyssomicins—A 20-year retrospective view.Mar. Drugs202119629910.3390/md1906029934073764
    [Google Scholar]
  19. GrassoL.L. MartinoD.C. AlduinaR. GrassoL.L. MartinoD.C. AlduinaR. Production of antibacterial compounds from actinomycetes.Actinobacteria Basics and Biotechnological ApplicationsIntechOpen201610.5772/61525
    [Google Scholar]
  20. MathurS. HoskinsC. Drug development: Lessons from nature.Biomed. Rep.20176661261410.3892/br.2017.90928584631
    [Google Scholar]
  21. SilverL.L. Challenges of antibacterial discovery.Clin. Microbiol. Rev.20112417110910.1128/CMR.00030‑1021233508
    [Google Scholar]
  22. Antimicrobial resistance.Available from: https://www.who.int/health-topics/antimicrobial-resistance (Accessed Feb 27, 2022).
  23. AslamB. WangW. ArshadM.I. KhurshidM. MuzammilS. RasoolM.H. NisarM.A. AlviR.F. AslamM.A. QamarM.U. SalamatM.K.F. BalochZ. Antibiotic resistance: A rundown of a global crisis.Infect. Drug Resist.2018111645165810.2147/IDR.S17386730349322
    [Google Scholar]
  24. Global research on antimicrobial resistance (GRAM) Project.Available from: https://www.healthdata.org/gram (Accessed Feb 27, 2022).
  25. Antimicrobial resistance multi-partner trust fund annual report 2021.2021Available from: https://www.who.int/publications/i/item/9789240051362 (Accessed 31 May 2022).
  26. LarssonD.G.J. FlachC.F. Antibiotic resistance in the environment.Nat. Rev. Microbiol.202220525726910.1038/s41579‑021‑00649‑x34737424
    [Google Scholar]
  27. Manyi-LohC. MamphweliS. MeyerE. OkohA. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications.Molecules201823479510.3390/molecules2304079529601469
    [Google Scholar]
  28. de Lima ProcópioR.E. da SilvaI.R. MartinsM.K. de AzevedoJ.L. de AraújoJ.M. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis.201216546647110.1016/j.bjid.2012.08.01422975171
    [Google Scholar]
  29. DingT. YangL.J. ZhangW.D. ShenY.H. The secondary metabolites of rare actinomycetes: Chemistry and bioactivity.RSC Advances2019938219642198810.1039/C9RA03579F35518871
    [Google Scholar]
  30. NettM. IkedaH. MooreB.S. Genomic basis for natural product biosynthetic diversity in the actinomycetes.Nat. Prod. Rep.200926111362138410.1039/b817069j19844637
    [Google Scholar]
  31. SchöllerC.e.g. GürtlerH. PedersenR. MolinS. WilkinsK. Volatile metabolites from actinomycetes.J. Agric. Food Chem.20025092615262110.1021/jf011675411958631
    [Google Scholar]
  32. YarnoldJ.E. HamiltonB.R. WelshD.T. PoolG.F. VenterD.J. CarrollA.R. High resolution spatial mapping of brominated pyrrole-2-aminoimidazole alkaloids distributions in the marine sponge Stylissa flabellata via MALDI-mass spectrometry imaging.Mol. Biosyst.2012892249225910.1039/c2mb25152c22777271
    [Google Scholar]
  33. KarimM.R.U. HarunariE. SharmaA.R. OkuN. AkasakaK. UrabeD. SiberoM.T. IgarashiY. Nocarimidazoles C and D, antimicrobial alkanoylimidazoles from a coral-derived actinomycete Kocuria sp.: Application of 1 J C,H coupling constants for the unequivocal determination of substituted imidazoles and stereochemical diversity of anteisoalkyl chains in microbial metabolites.Beilstein J. Org. Chem.2020162719272710.3762/bjoc.16.22233214797
    [Google Scholar]
  34. DhanasekaranD. Antimicrobials | synthetic and natural compounds | dharumadurai dhanas.Available from: https://www.taylorfrancis.com/books/edit/10.1201/b19224/antimicrobials-dharumadurai-dhanasekaran-nooruddin-thajuddin-panneerselvam (Accessed Jan 21, 2024).
  35. GrobbelaarM. LouwG.E. SampsonS.L. van HeldenP.D. DonaldP.R. WarrenR.M. Evolution of rifampicin treatment for tuberculosis.Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis.20197410393731247337
    [Google Scholar]
  36. KatzL. BaltzR.H. Natural product discovery: Past, present, and future.J. Ind. Microbiol. Biotechnol.2016432-315517610.1007/s10295‑015‑1723‑526739136
    [Google Scholar]
  37. WatersM. TadiP. Streptomycin.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  38. QuanD. NagalingamG. PayneR. TriccasJ.A. New tuberculosis drug leads from naturally occurring compounds.Int. J. Infect. Dis.20175621222010.1016/j.ijid.2016.12.02428062229
    [Google Scholar]
  39. BattS.M. BurkeC.E. MooreyA.R. BesraG.S. Antibiotics and resistance: The two-sided coin of the mycobacterial cell wall.Cell Surf.2020610004410.1016/j.tcsw.2020.10004432995684
    [Google Scholar]
  40. ZhangY. DegenD. HoM.X. SinevaE. EbrightK.Y. EbrightY.W. MeklerV. Vahedian-MovahedH. FengY. YinR. TuskeS. IrschikH. JansenR. MaffioliS. DonadioS. ArnoldE. EbrightR.H. GE23077 binds to the RNA polymerase ‘i’ and ‘i+1’ sites and prevents the binding of initiating nucleotides.eLife20143e0245010.7554/eLife.0245024755292
    [Google Scholar]
  41. EohH. BrennanP.J. CrickD.C. The Mycobacterium tuberculosis MEP (2C-methyl-d-erythritol 4-phosphate) pathway as a new drug target.Tuberculosis200989111110.1016/j.tube.2008.07.00418793870
    [Google Scholar]
  42. MukaiA. FukaiT. HoshinoY. YazawaK. HaradaK. MikamiY. Nocardithiocin, a novel thiopeptide antibiotic, produced by pathogenic Nocardia pseudobrasiliensis IFM 0757.J. Antibiot.2009621161361910.1038/ja.2009.9019745839
    [Google Scholar]
  43. EvidenteA. Bioactive lipodepsipeptides produced by bacteria and fungi.Int. J. Mol. Sci.202223201234210.3390/ijms23201234236293201
    [Google Scholar]
  44. TakehanaY. MuramatsuH. UmekitaM. HayashiC. KimuraT. SawaR. IgarashiM. Saccharobipyrimicin, a new antibiotic from the leaf-litter actinomycete Saccharothrix sp. MM696L-181F4.J. Antibiot.202174747047310.1038/s41429‑021‑00418‑133758372
    [Google Scholar]
  45. AH. MaR. ZsB. AM. in vitro evaluation of dinactin, a potent microbial metabolite against.Mycobacterium tuberculosis. Int. J. Antimicrob. Agents20195314953
    [Google Scholar]
  46. AmeriA. Marine microbial natural products.Jundishapur J. Nat. Pharm. Prod.201494e2471610.17795/jjnpp‑2471625625055
    [Google Scholar]
  47. WangH. ZhangH. ZhuY. WuZ. CuiC. CaiF. Anticancer mechanisms of salinomycin in breast cancer and its clinical applications.Front. Oncol.20211165442810.3389/fonc.2021.65442834381705
    [Google Scholar]
  48. IncH.B. Hillstream biopharma granted orphan drug designation for HSB-1216 (QUATRAMER Salinomycin) for treatment of small cell lung cancer.Available from: https://www.globenewswire.com/news-release/2020/01/06/1966413/0/en/Hillstream-BioPharma-Granted-Orphan-Drug-Designation-for-HSB-1216-QUATRAMER-Salinomycin-for-Treatment-of-Small-Cell-Lung-Cancer-SCLC.html (Accessed Jan 18, 2024).
  49. HussainA. DarM.S. BanoN. HossainM.M. BasitR. BhatA.Q. AgaM.A. AliS. HassanQ.P. DarM.J. Identification of dinactin, a macrolide antibiotic, as a natural product-based small molecule targeting Wnt/β-catenin signaling pathway in cancer cells.Cancer Chemother. Pharmacol.201984355155910.1007/s00280‑019‑03870‑x31129716
    [Google Scholar]
  50. MaL. DiaoA. Marizomib, a potent second generation proteasome inhibitor from natural origin.Anticancer. Agents Med. Chem.201515329830610.2174/187152061466614111420260625403165
    [Google Scholar]
  51. RothP. ReijneveldJ. Gorlia T. P14.124 EORTC 1709/CCTG CE.8: A phase III trial of marizomib in combination with standard temozolomide-based radiochemotherapy versus standard temozolomide-based radiochemotherapy alone in patients with newly diagnosed glioblastoma.Neuro-Oncology202321398
    [Google Scholar]
  52. PatelG. KhobragadeT.P. AvaghadeS.R. PatilM.D. NileS.H. KaiG. BanerjeeU.C. Optimization of media and culture conditions for the production of tacrolimus by Streptomyces tsukubaensis in shake flask and fermenter level.Biocatal. Agric. Biotechnol.20202910180310.1016/j.bcab.2020.101803
    [Google Scholar]
  53. GohainA. ManpoongC. SaikiaR. De MandalS. Actinobacteria: Diversity and biotechnological applications.Recent Advancements in Microbial Diversity.Chapter 9 De MandalS. BhattP. Academic Press202021723110.1016/B978‑0‑12‑821265‑3.00009‑8
    [Google Scholar]
  54. PoshekhontsevaV.Y. FokinaV.V. TarlachkovS.V. MachulinA.V. ShutovA.A. DonovaM.V. Streptomyces tsukubensis VKM Aс-2618D—an effective producer of tacrolimus.Appl. Biochem. Microbiol.202157993994810.1134/S000368382109006434924587
    [Google Scholar]
  55. ArayaA.A. TasnifY. Tacrolimus.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  56. DubéJ.Y. McIntoshF. ZarrukJ.G. DavidS. NigouJ. BehrM.A. Synthetic mycobacterial molecular patterns partially complete Freund’s adjuvant.Sci. Rep.2020101587410.1038/s41598‑020‑62543‑532246076
    [Google Scholar]
  57. HudaM.N. LewisZ. KalanetraK.M. RashidM. AhmadS.M. RaqibR. QadriF. UnderwoodM.A. MillsD.A. StephensenC.B. Stool microbiota and vaccine responses of infants.Pediatrics20141342e362e37210.1542/peds.2013‑393725002669
    [Google Scholar]
  58. VlasovaA.N. TakanashiS. MiyazakiA. RajashekaraG. SaifL.J. How the gut microbiome regulates host immune responses to viral vaccines.Curr. Opin. Virol.201937162510.1016/j.coviro.2019.05.00131163292
    [Google Scholar]
  59. AkshathaV.J. NaliniM.S. D’SouzaC. PrakashH.S. Streptomycete endophytes from anti-diabetic medicinal plants of the Western Ghats inhibit alpha-amylase and promote glucose uptake.Lett. Appl. Microbiol.201458543343910.1111/lam.1220924330131
    [Google Scholar]
  60. Kulkarni-AlmeidaA.A. BrahmaM.K. PadmanabhanP. MishraP.D. ParabR.R. GaikwadN.V. ThakkarC.S. TokdarP. RanadiveP.V. NairA.S. DamreA.A. BahiratU.A. DeshmukhN.J. DoshiL.S. DixitA.V. GeorgeS.D. VishwakarmaR.A. NemmaniK.V.S. MahajanG.B. Fermentation, isolation, structure, and antidiabetic activity of NFAT-133 produced by Streptomyces strain PM0324667.AMB Express2011114210.1186/2191‑0855‑1‑4222104600
    [Google Scholar]
  61. FenicalW. JensenP.R. Developing a new resource for drug discovery: marine actinomycete bacteria.Nat. Chem. Biol.200621266667310.1038/nchembio84117108984
    [Google Scholar]
  62. WangC. LuY. CaoS. Antimicrobial compounds from marine actinomycetes.Arch. Pharm. Res.202043767770410.1007/s12272‑020‑01251‑032691395
    [Google Scholar]
  63. KhalilZ.G. RajuR. PiggottA.M. SalimA.A. BlumenthalA. CaponR.J. Aranciamycins I and J, antimycobacterial anthracyclines from an australian marine-derived streptomyces sp.J. Nat. Prod.201578494995210.1021/acs.jnatprod.5b0009525789410
    [Google Scholar]
  64. SunC. YangZ. ZhangC. LiuZ. HeJ. LiuQ. ZhangT. JuJ. MaJ. Genome mining of streptomyces atratus SCSIO ZH16: Discovery of atratumycin and identification of its biosynthetic gene cluster.Org. Lett.20192151453145710.1021/acs.orglett.9b0020830746943
    [Google Scholar]
  65. SunW. LiuC. ZhangF. ZhaoM. LiZ. Comparative genomics provides insights into the marine adaptation in sponge-derived kocuriaflava S43.Front. Microbiol.20189125710.3389/fmicb.2018.0125729937765
    [Google Scholar]
  66. LiuX. AshforthE. RenB. SongF. DaiH. LiuM. WangJ. XieQ. ZhangL. Bioprospecting microbial natural product libraries from the marine environment for drug discovery.J. Antibiot.201063841542210.1038/ja.2010.5620606699
    [Google Scholar]
  67. (a NgamcharungchitC. ChaimusikN. PanbangredW. EuanorasetrJ. IntraB. Bioactive metabolites from terrestrial and marine actinomycetes.Molecules20232815591510.3390/molecules2815591537570885
    [Google Scholar]
  68. (bYang T, Yamada K, Zhou T, Harunari E, Igarashi Y, Terahara T, Kobayashi T, Imada C. Akazamicin, a cytotoxic aromatic polyketide from marine-derived Nonomuraea sp.J Antibiot (Tokyo)2019Apr;724202209doi: 10.1038/s41429-018-0139-7. Epub 2019 Jan 10. PMID: 30631113.
    [Google Scholar]
  69. HuY. ChenJ. HuG. YuJ. ZhuX. LinY. ChenS. YuanJ. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012.Mar. Drugs201513120222110.3390/md1301020225574736
    [Google Scholar]
  70. KamjamM. SivalingamP. DengZ. HongK. Deep sea actinomycetes and their secondary metabolites.Front. Microbiol.2017876010.3389/fmicb.2017.0076028507537
    [Google Scholar]
  71. BaltzR.H. Genome mining for drug discovery: Progress at the front end.J. Ind. Microbiol. Biotechnol.2021489-10kuab04410.1093/jimb/kuab04434279640
    [Google Scholar]
  72. AlbaranoL. EspositoR. RuoccoN. CostantiniM. Genome mining as new challenge in natural products discovery.Mar. Drugs202018419910.3390/md1804019932283638
    [Google Scholar]
  73. MitousisL. ThomaY. Musiol-KrollE.M. An update on molecular tools for genetic engineering of actinomycetes—the source of important antibiotics and other valuable compounds.Antibiotics20209849410.3390/antibiotics908049432784409
    [Google Scholar]
  74. WangJ. NielsenJ. LiuZ. Synthetic biology advanced natural product discovery.Metabolites2021111178510.3390/metabo1111078534822443
    [Google Scholar]
  75. TsukadaK. ShinkiS. KanekoA. MurakamiK. IrieK. MuraiM. MiyoshiH. DanS. KawajiK. HayashiH. KodamaE.N. HoriA. SalimE. KuraishiT. HirataN. KandaY. AsaiT. Synthetic biology based construction of biological activity-related library of fungal decalin-containing diterpenoid pyrones.Nat. Commun.2020111183010.1038/s41467‑020‑15664‑432286350
    [Google Scholar]
  76. WohllebenW. MastY. MuthG. RöttgenM. StegmannE. WeberT. Synthetic Biology of secondary metabolite biosynthesis in actinomycetes: Engineering precursor supply as a way to optimize antibiotic production.FEBS Lett.2012586152171217610.1016/j.febslet.2012.04.02522710162
    [Google Scholar]
  77. WenskiS.L. ThiengmagS. HelfrichE.J.N. Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering.Synth. Syst. Biotechnol.20227163164710.1016/j.synbio.2022.01.00735224231
    [Google Scholar]
  78. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. International Natural Product Sciences Taskforce Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  79. Avignone-RossaC. KierzekA.M. BushellM.E. Secondary metabolite production in streptomyces.Encyclopedia of Systems Biology. DubitzkyW. WolkenhauerO. ChoK-H. YokotaH. New York, NYSpringer20131903191310.1007/978‑1‑4419‑9863‑7_1164
    [Google Scholar]
  80. FanW. GeG. LiuY. WangW. LiuL. JiaY. Proteomics integrated with metabolomics: analysis of the internal causes of nutrient changes in alfalfa at different growth stages.BMC Plant Biol.20181817810.1186/s12870‑018‑1291‑829728056
    [Google Scholar]
  81. JiangW. ZhaoX. GabrieliT. LouC. EbensteinY. ZhuT.F. Cas9-assisted targeting of chromosome segments catch enables one-step targeted cloning of large gene clusters.Nat. Commun.201561810110.1038/ncomms910126323354
    [Google Scholar]
  82. LiL. ZhengG. ChenJ. GeM. JiangW. LuY. Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes.Metab. Eng.201740809210.1016/j.ymben.2017.01.00428088540
    [Google Scholar]
  83. LiL. LiuX. JiangW. LuY. Recent advances in synthetic biology approaches to optimize production of bioactive natural products in actinobacteria.Front. Microbiol.201910246710.3389/fmicb.2019.0246731749778
    [Google Scholar]
  84. ThakerM.N. WangW. SpanogiannopoulosP. WaglechnerN. KingA.M. MedinaR. WrightG.D. Identifying producers of antibacterial compounds by screening for antibiotic resistance.Nat. Biotechnol.2013311092292710.1038/nbt.268524056948
    [Google Scholar]
  85. NiuG. Genomics-driven natural product discovery in actinomycetes.Trends Biotechnol.201836323824110.1016/j.tibtech.2017.10.00929126570
    [Google Scholar]
  86. IqbalH.A. Low-BeinartL. ObiajuluJ.U. BradyS.F. Natural product discovery through improved functional metagenomics in streptomyces.J. Am. Chem. Soc.2016138309341934410.1021/jacs.6b0292127447056
    [Google Scholar]
  87. TsolisK.C. HamedM.B. SimoensK. KoepffJ. BuscheT. RückertC. OldigesM. KalinowskiJ. AnnéJ. KormanecJ. BernaertsK. KaramanouS. EconomouA. Secretome dynamics in a gram-positive bacterial model.Mol. Cell. Proteomics201918342343610.1074/mcp.RA118.00089930498012
    [Google Scholar]
  88. AslamB. BasitM. NisarM.A. KhurshidM. RasoolM.H. Proteomics: Technologies and their applications.J. Chromatogr. Sci.201755218219610.1093/chromsci/bmw16728087761
    [Google Scholar]
  89. KomeilD. Padilla-ReynaudR. LeratS. Simao-BeaunoirA.M. BeaulieuC. Comparative secretome analysis of Streptomyces scabiei during growth in the presence or absence of potato suberin.Proteome Sci.20141213510.1186/1477‑5956‑12‑3525028574
    [Google Scholar]
  90. WeiW. RileyN.M. YangA.C. KimJ.T. TerrellS.M. LiV.L. Garcia-ContrerasM. BertozziC.R. LongJ.Z. Cell type-selective secretome profiling in vivo .Nat. Chem. Biol.202117332633410.1038/s41589‑020‑00698‑y33199915
    [Google Scholar]
  91. VartoukianS.R. PalmerR.M. WadeW.G. Strategies for culture of ‘unculturable’ bacteria.FEMS Microbiol. Lett.201030911720487025
    [Google Scholar]
  92. LiuS. YuZ. ZhongH. ZhengN. HuwsS. WangJ. ZhaoS. Functional gene-guided enrichment plus in situ microsphere cultivation enables isolation of new crucial ureolytic bacteria from the rumen of cattle.Microbiome20231117610.1186/s40168‑023‑01510‑437060083
    [Google Scholar]
  93. ChenR. WongH.L. KindlerG.S. MacLeodF.I. BenaudN. FerrariB.C. BurnsB.P. Discovery of an abundance of biosynthetic gene clusters in shark bay microbial mats.Front. Microbiol.202011195010.3389/fmicb.2020.0195032973707
    [Google Scholar]
  94. AmaraA. FrainayC. JourdanF. NaakeT. NeumannS. Novoa-del-ToroE.M. SalekR.M. SalzerL. ScharfenbergS. WittingM. Networks and graphs discovery in metabolomics data analysis and interpretation.Front. Mol. Biosci.2022984137310.3389/fmolb.2022.84137335350714
    [Google Scholar]
  95. Costa-GutierrezS.B. AparicioJ.D. DelgadoO.D. BenimeliC.S. PoltiM.A. Use of glycerol for the production of actinobacteria with well-known bioremediation abilities.3 Biotech20211157
    [Google Scholar]
  96. SinghV. HaqueS. NiwasR. SrivastavaA. PasupuletiM. TripathiC.K.M. Strategies for fermentation medium optimization: An in-depth review.Front. Microbiol.20177208710.3389/fmicb.2016.0208728111566
    [Google Scholar]
  97. SinghV. KhanM. KhanS. TripathiC.K.M. Optimization of actinomycin V production by Streptomyces triostinicus using artificial neural network and genetic algorithm.Appl. Microbiol. Biotechnol.200982237938510.1007/s00253‑008‑1828‑019137288
    [Google Scholar]
  98. (a VijayakumarR. PanneerselvamK. MuthukumarC. ThajuddinN. PanneerselvamA. SaravanamuthuR. Optimization of antimicrobial production by a marine actinomycete streptomyces afghaniensis VPTS3-1 isolated from palk strait, east coast of India.Indian J. Microbiol.201252223023910.1007/s12088‑011‑0138‑x23729887
    [Google Scholar]
  99. (b Usha KiranmayiM. SudhakarP. SreenivasuluK. Vijayalakshmi M. Optimization of culturing conditions for improved production of bioactive metabolites by Pseudonocardia sp. VUK-10.Mycobiology201139317481doi: 10.5941/MYCO.2011.39.3.174. Epub 2011 Sep 27. PMID: 22783100; PMCID: PMC3385111.
    [Google Scholar]
  100. TrakunjaeC. BoondaengA. ApiwatanapiwatW. KosugiA. AraiT. SudeshK. VaithanomsatP. Enhanced polyhydroxybutyrate (PHB) production by newly isolated rare actinomycetes Rhodococcus sp. strain BSRT1-1 using response surface methodology.Sci. Rep.2021111189610.1038/s41598‑021‑81386‑233479335
    [Google Scholar]
  101. ValliS. SuvathiS.S. AyshaO.S. NirmalaP. VinothK.P. ReenaA. Antimicrobial potential of Actinomycetes species isolated from marine environment.Asian Pac. J. Trop. Biomed.20122646947310.1016/S2221‑1691(12)60078‑123569952
    [Google Scholar]
  102. JomoriT. HaraY. SasaokaM. HaradaK. SetiawanA. HirataK. KimishimaA. AraiM. Mycobacterium smegmatis alters the production of secondary metabolites by marine-derived Aspergillus niger.J. Nat. Med.2020741768210.1007/s11418‑019‑01345‑031321600
    [Google Scholar]
  103. KatoM. AsamizuS. OnakaH. Intimate relationships among actinomycetes and mycolic acid-containing bacteria.Sci. Rep.2022121722210.1038/s41598‑022‑11406‑235508597
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266282919240224130345
Loading
/content/journals/ctmc/10.2174/0115680266282919240224130345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test