Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Non-fused pyrimidine scaffold is a significant component for designing new drugs. The review emphasizes the pharmacological importance of non-fused pyrimidine-containing moieties based on the broad spectrum of activities such as antiprotozoal, antibacterial, antimycobacterial, anticancer, anti-inflammatory activity, and CNS depressant. Pyrimidine derivatives are fascinating entities that display biological activities for the treatment of cancer. It also highlights the tendency of non-fused pyrimidine derivatives to suppress cell growth by obstructing the activity of VCP, CDK-2, EGFR, ATR, EphB4 & EphA2, PDGF as well as inhibitory action towards different cell lines such as MCF-7, HeLa, NCI/ADR-RES, NCI-H23, HOP-92, HCT-116, OV-3, MOLT-4, PC-3, MDA-MB-231, MALME-3M, K562 and Bcr-Abl. The review details the importance of morpholine, piperidine, and pyrrolidine ring substitutions on pyrimidine moiety as well as the role of H-bonding and amino linkage along with antibacterial activity due to the presence of pleuromutilin and tetrazole molecules. Researchers were motivated to develop and enhance the non-fused pyrimidine scaffold to uncover novel medicines by reading this review article.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266317088240924205745
2025-04-01
2025-10-29
Loading full text...

Full text loading...

References

  1. LamberthC. DingesJ. Bioactive heterocyclic compound classes: Pharmaceuticals.201210.1002/9783527664412
    [Google Scholar]
  2. RammohanA. VenkateshB.C. BashaN.M. ZyryanovG.V. NageswararaoM. Comprehensive review on natural pharmacophore tethered 1,2,3-triazoles as active pharmaceuticals.Chem. Biol. Drug Des.202310151181120310.1111/cbdd.1414836131364
    [Google Scholar]
  3. SainiM.S. KumarA. DwivediJ. SinghR. A review: biological significances of heterocyclic compounds.Int. J. Pharm. Sci. Res.2013436677
    [Google Scholar]
  4. KachaevaM.V. ObernikhinaN.V. VeliginaE.S. ZhuravlovaM.Y. ProstotaY.O. KachkovskyO.D. BrovaretsV.S. Estimation of biological affinity of nitrogen-containing conjugated heterocyclic pharmacophores.Chem. Heterocycl. Compd.2019554-544845410.1007/s10593‑019‑02478‑6
    [Google Scholar]
  5. ThomsonJ.M. LamontI.L. Nucleoside analogues as antibacterial agents.Front. Microbiol.20191095210.3389/fmicb.2019.0095231191461
    [Google Scholar]
  6. RivalY. GrassyG. MichelG. Synthesis and antibacterial activity of some imidazo[1,2-a]pyrimidine derivatives.Chem. Pharm. Bull. (Tokyo)19924051170117610.1248/cpb.40.11701394630
    [Google Scholar]
  7. RusuA. MogaI.M. UncuL. HancuG. The role of five-membered heterocycles in the molecular structure of antibacterial drugs used in therapy.Pharmaceutics20231511255410.3390/pharmaceutics1511255438004534
    [Google Scholar]
  8. MirzaA.Z. Advancement in the development of heterocyclic nucleosides for the treatment of cancer - A review.Nucleosides Nucleotides Nucleic Acids2019381183685710.1080/15257770.2019.161562331135268
    [Google Scholar]
  9. BhattacharyaS. PatelR. JoshiA. The Most Recent Discoveries in Heterocyclic Nanoformulations for Targeted Anticancer Therapy.Mini Rev. Med. Chem.202222131735175110.2174/13895575220322020216483935114919
    [Google Scholar]
  10. KimJ.Y. KimD. KangS.Y. ParkW.K. KimH.J. JungM.E. SonE.J. PaeA.N. KimJ. LeeJ. Arylpiperazine-containing pyrimidine 4-carboxamide derivatives targeting serotonin 5-HT2A, 5-HT2C, and the serotonin transporter as a potential antidepressant.Bioorg. Med. Chem. Lett.201020226439644210.1016/j.bmcl.2010.09.08120933409
    [Google Scholar]
  11. SinghK. PalR. KhanS.A. KumarB. AkhtarM.J. Insights into the structure activity relationship of nitrogen-containing heterocyclics for the development of antidepressant compounds: An updated review.J. Mol. Struct.2021123713036910.1016/j.molstruc.2021.130369
    [Google Scholar]
  12. TantrayM.A. KhanI. HamidH. AlamM.S. DhulapA. KalamA. Synthesis of benzimidazole-based 1,3,4-oxadiazole-1,2,3-triazole conjugates as glycogen synthase kinase-3β inhibitors with antidepressant activity in in vivo models.RSC Advances2016649433454335510.1039/C6RA07273A
    [Google Scholar]
  13. DasA. TrousdaleM.D. RenS. LienE.J. Inhibition of herpes simplex virus type 1 and adenovirus type 5 by heterocyclic Schiff bases of aminohydroxyguanidine tosylate.Antiviral Res.199944320120810.1016/S0166‑3542(99)00070‑410651071
    [Google Scholar]
  14. NegiM. ChawlaP.A. FarukA. ChawlaV. Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic.Bioorg. Chem.202010410431510.1016/j.bioorg.2020.10431533007742
    [Google Scholar]
  15. MermerA. KelesT. SirinY. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review.Bioorg. Chem.202111410507610.1016/j.bioorg.2021.10507634157555
    [Google Scholar]
  16. CastelliM.V. ButassiE. MonteiroM.C. SvetazL.A. VicenteF. ZacchinoS.A. Novel antifungal agents: a patent review (2011 – present).Expert Opin. Ther. Pat.201424332333810.1517/13543776.2014.87699324392809
    [Google Scholar]
  17. KorolN. Molnar-babilyaD. SlivkaM. OnyskoM. A brief review on heterocyclic compounds with promising antifungal activity against Candida species.Organic Commun.202215430432310.25135/acg.oc.141.2210.2609
    [Google Scholar]
  18. BolousM. ArumugamN. AlmansourA.I. Suresh KumarR. MaruokaK. AntharamV.C. ThangamaniS. Broad-spectrum antifungal activity of spirooxindolo-pyrrolidine tethered indole/imidazole hybrid heterocycles against fungal pathogens.Bioorg. Med. Chem. Lett.201929162059206310.1016/j.bmcl.2019.07.02231320146
    [Google Scholar]
  19. AngeliA. PaolettiN. SupuranC.T. Five-membered heterocyclic sulfonamides as carbonic anhydrase inhibitors.Molecules2023287322010.3390/molecules2807322037049983
    [Google Scholar]
  20. VulloD. FranchiM. GalloriE. AntelJ. ScozzafavaA. SupuranC.T. Carbonic anhydrase inhibitors. Inhibition of mitochondrial isozyme V with aromatic and heterocyclic sulfonamides.J. Med. Chem.20044751272127910.1021/jm031057+14971907
    [Google Scholar]
  21. HusainA. MadhesiaD. Heterocyclic compounds as carbonic anhydrase inhibitor.J. Enzyme Inhib. Med. Chem.201227677378310.3109/14756366.2011.61788221981003
    [Google Scholar]
  22. de LaszloS.E. ViscoD. AgarwalL. ChangL. ChinJ. CroftG. ForsythA. FletcherD. FrantzB. HackerC. HanlonW. HarperC. KosturaM. LiB. LuellS. MacCossM. MantloN. O’NeillE.A. OrevilloC. PangM. ParsonsJ. RolandoA. SahlyY. SidlerK. WidmerW.R. O’KeefeS.J. Pyrroles and other heterocycles as inhibitors of P38 kinase.Bioorg. Med. Chem. Lett.19988192689269410.1016/S0960‑894X(98)00495‑89873604
    [Google Scholar]
  23. AwasthiA. RajuM.B. RahmanM.A. Current insights of inhibitors of p38 mitogen-activated protein kinase in inflammation.Med. Chem.202117655557510.2174/18756638MTA0CODg7232106802
    [Google Scholar]
  24. HallerV. NahidinoP. ForsterM. LauferS.A. An updated patent review of p38 MAP kinase inhibitors (2014-2019).Expert Opin. Ther. Pat.202030645346610.1080/13543776.2020.174926332228113
    [Google Scholar]
  25. BoehmJ.C. AdamsJ.L. New inhibitors of p38 kinase.Expert Opin. Ther. Pat.2000101253710.1517/13543776.10.1.25
    [Google Scholar]
  26. CladerJ.W. BurnettD.A. CaplenM.A. DomalskiM.S. DugarS. VaccaroW. SherR. BrowneM.E. ZhaoH. BurrierR.E. SalisburyB. DavisH.R.Jr 2-Azetidinone cholesterol absorption inhibitors: structure-activity relationships on the heterocyclic nucleus.J. Med. Chem.199639193684369310.1021/jm960405n8809157
    [Google Scholar]
  27. RitterT. Cholesterol-absorption inhibitors.Thesis, Swiss Federal Institute of Technology2004
    [Google Scholar]
  28. KhedkarV.M. AryaN. CoutinhoE.C. ShishooC.J. JainK.S. Docking study of novel antihyperlipidemic thieno[2,3-d]pyrimidine; LM-1554, with some molecular targets related to hyperlipidemia - An investigation into its mechanism of action.Springerplus2014311210.1186/2193‑1801‑3‑628
    [Google Scholar]
  29. PanahiF. YousefiR. MehrabanM.H. Khalafi-NezhadA. Synthesis of new pyrimidine-fused derivatives as potent and selective antidiabetic α-glucosidase inhibitors.Carbohydr. Res.2013380819110.1016/j.carres.2013.07.00823978663
    [Google Scholar]
  30. PatelP. ShahD. BambharoliyaT. PatelV. PatelM. PatelD. BhavsarV. PadhiyarS. PatelB. MahavarA. PatelR. PatelA. A Review on the Development of Novel Heterocycles as α-Glucosidase Inhibitors for the Treatment of Type-2 Diabetes Mellitus.Med. Chem.202420550353610.2174/011573406426459123103106563938275074
    [Google Scholar]
  31. MushtaqA. AzamU. MehreenS. NaseerM.M. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges.Eur. J. Med. Chem.202324911511910.1016/j.ejmech.2023.11511936680985
    [Google Scholar]
  32. KalabaP. AherN.Y. IlićM. DragačevićV. WiederM. MiklosiA.G. ZehlM. WackerligJ. RollerA. BeryozkinaT. RadomanB. SarojaS.R. LindnerW. GonzalezE.P. BakulevV. LebanJ.J. SitteH.H. UrbanE. LangerT. LubecG. Heterocyclic analogues of modafinil as a novel, atypical dopamine transporter inhibitors.J. Med. Chem.201760229330934810.1021/acs.jmedchem.7b0131329091428
    [Google Scholar]
  33. KuT.C. CaoJ. WonS.J. GuoJ. Camacho-HernandezG.A. OkoromA.V. SalomonK.W. LeeK.H. LolandC.J. DuffH.J. ShiL. NewmanA.H. Series of (([1,1′-Biphenyl]-2-yl)methyl)sulfinylalkyl Alicyclic Amines as Novel and High Affinity Atypical Dopamine Transporter Inhibitors with Reduced hERG Activity.ACS Pharmacol. Transl. Sci.20247251553210.1021/acsptsci.3c0032238357284
    [Google Scholar]
  34. LawanaV. UmS.Y. RochetJ.C. TureskyR.J. ShannahanJ.H. CannonJ.R. Neuromelanin modulates heterocyclic aromatic amine-induced dopaminergic.Toxicol. Sci.2020173117118810.1093/toxsci/kfz21031562763
    [Google Scholar]
  35. ZhangX. CaiC. SuiZ. MacielagM. WangY. YanW. SuckowA. HuaH. BellA. HaugP. ClapperW. JenkinsonC. GunnetJ. LeonardJ. MurrayW.V. Discovery of an isothiazole-based phenylpropanoic acid GPR120 agonist as a development candidate for type 2 diabetes.ACS Med. Chem. Lett.20178994795210.1021/acsmedchemlett.7b0023328947942
    [Google Scholar]
  36. JansenM. RabeH. StrehleA. DielerS. DebusF. DannhardtG. AkabasM.H. LüddensH. Synthesis of GABAA receptor agonists and evaluation of their α-subunit selectivity and orientation in the GABA binding site.J. Med. Chem.200851154430444810.1021/jm701562x18651727
    [Google Scholar]
  37. WangL. HubertJ.A. LeeS.J. PanJ. QianS. ReitmanM.L. StrackA.M. WeingarthD.T. MacNeilD.J. WeberA.E. EdmondsonS.D. Discovery of pyrimidine carboxamides as potent and selective CCK1 receptor agonists.Bioorg. Med. Chem. Lett.201121102911291510.1016/j.bmcl.2011.03.06921493064
    [Google Scholar]
  38. SzewczykJ. LaudemanC. CCK1R agonists: a promising target for the pharmacological treatment of obesity.Curr. Top. Med. Chem.20033883785410.2174/156802603345225812678836
    [Google Scholar]
  39. (a MorrisonA.J. AdamJ.M. BakerJ.A. CampbellR.A. ClarkJ.K. CottneyJ.E. DeehanM. EassonA.M. FieldsR. FrancisS. JeremiahF. KeddieN. KiyoiT. McArthurD.R. MeyerK. RatcliffeP.D. SchulzJ. WishartG. YoshiizumiK. Design, synthesis, and structure–activity relationships of indole-3-heterocycles as agonists of the CB1 receptor.Bioorg. Med. Chem. Lett.201121150650910.1016/j.bmcl.2010.10.09321075630
    [Google Scholar]
  40. (b ZhangQ. ZhaoY. WuJ. ZhongW. HuangW. PanY. The progress of small molecules against cannabinoid 2 receptor (CB2R).Bioorg. Chem.202414410707510.1016/j.bioorg.2023.10707538218067
    [Google Scholar]
  41. LangeJ.H.M. van StuivenbergH.H. VeermanW. WalsH.C. StorkB. CoolenH.K.A.C. McCrearyA.C. AdolfsT.J.P. KruseC.G. Novel 3,4-diarylpyrazolines as potent cannabinoid CB1 receptor antagonists with lower lipophilicity.Bioorg. Med. Chem. Lett.200515214794479810.1016/j.bmcl.2005.07.05416140010
    [Google Scholar]
  42. (a MarshallC.M. FedericeJ.G. BellC.N. CoxP.B. NjardarsonJ.T. An Update on the Nitrogen Heterocycle Compositions and Properties of U.S. FDA-Approved Pharmaceuticals (2013–2023).J. Med. Chem.20246714116221165510.1021/acs.jmedchem.4c0112238995264
    [Google Scholar]
  43. (b CostaE. MojaL. WirtzV. van den HamH. HuttnerB. MagriniN. LeufkensH. Uptake of orphan drugs in the WHO essential medicines lists.Bull. World Health Organ.20241021223110.2471/BLT.23.28973138164340
    [Google Scholar]
  44. LagojaI.M. Pyrimidine as constituent of natural biologically active compounds.Chem. Biodivers.20052115010.1002/cbdv.20049017317191918
    [Google Scholar]
  45. ZrennerR. StittM. SonnewaldU. BoldtR. Pyrimidine and purine biosynthesis and degradation in plants.Annu. Rev. Plant Biol.200657180583610.1146/annurev.arplant.57.032905.10542116669783
    [Google Scholar]
  46. XuJ. ChmelaV. GreenN.J. RussellD.A. JanickiM.J. GóraR.W. SzablaR. BondA.D. SutherlandJ.D. Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides.Nature20205827810606610.1038/s41586‑020‑2330‑932494078
    [Google Scholar]
  47. BaldevA.D. Studies on bioactive tetrahydro pyrimidine.PhD Thesis, Shri Jagdishprasad Jhabarmal Tibarewala University2013
    [Google Scholar]
  48. AnjirwalaS.N. ParmarP.S. PatelS.K. Synthetic protocols for non-fused pyrimidines.Synth. Commun.202252222079212110.1080/00397911.2022.2137682
    [Google Scholar]
  49. AnjirwalaS.N. PatelS.K. Efficient synthetic strategies for fused pyrimidine and pyridine derivatives: A review.J. Heterocycl. Chem.2024jhet.487110.1002/jhet.4871
    [Google Scholar]
  50. (a KulikowskiT. Structure-activity relationships and conformational features of antiherpetic pyrimidine and purine nucleoside analogues. A review.Pharm. World Sci.199416212713810.1007/BF018806638032338
    [Google Scholar]
  51. (b O’BrienD.E. BaiocchiF. RobinsR.K. ChengC.C. Pyrimidines. XI. Structural Variations of 2,4-Diamino-6-(halogenoanilino)-5-nitrosopyrimidines.J. Med. Chem.19636546747110.1021/jm00341a00114173563
    [Google Scholar]
  52. (a MahmoudianM. Quantitative structure-activity relationships (QSARs) of pyrimidine nucleosides as HIV-1 antiviral agents.Pharm. Res.199181434610.1023/A:10158221050222014207
    [Google Scholar]
  53. (b MahapatraA. PrasadT. SharmaT. Pyrimidine: a review on anticancer activity with key emphasis on SAR.Future J. Pharm. Sci.20217112310.1186/s43094‑021‑00274‑8
    [Google Scholar]
  54. NatarajanR. Anthoni SamyH.N. SivaperumanA. SubramaniA. Su bramani, A. Structure-activity relationships of pyrimidine derivatives and their biological activity-a review.Med. Chem.2023191103035579151
    [Google Scholar]
  55. SardH. GonzalezM.D. MahadevanA. McKewJ. Preparation of 4,5-disubstituted pyrimidines: ring substitution of 5-mesyloxymethylpyrimidines.J. Org. Chem.200065269261926410.1021/jo001316s11149885
    [Google Scholar]
  56. TaylorA.P. RobinsonR.P. FobianY.M. BlakemoreD.C. JonesL.H. FadeyiO. Modern advances in heterocyclic chemistry in drug discovery.Org. Biomol. Chem.201614286611663710.1039/C6OB00936K27282396
    [Google Scholar]
  57. FarghalyA.M. AboulWafaO.M. ElshaierY.A.M. BadawiW.A. HaridyH.H. MubarakH.A.E. Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores.Med. Chem. Res.201928336037910.1007/s00044‑019‑02289‑6
    [Google Scholar]
  58. IrshadN. KhanA. Alamgeer KhanS.U.D. IqbalM.S. Antihypertensive potential of selected pyrimidine derivatives: Explanation of underlying mechanistic pathways.Biomed. Pharmacother.202113911156710.1016/j.biopha.2021.11156733848773
    [Google Scholar]
  59. GrigoryanL.A. KaldrikyanM.A. Melik-OgandzhanyanR.G. ArsenyanF.G. Synthesis and antitumor activity of new 2-thioand 2-amino-substituted pyrimidines.Pharm. Chem. J.201145313714010.1007/s11094‑011‑0576‑0
    [Google Scholar]
  60. SakrA.R. AssyM.G. ELasaadY.S. Design and chemical behavior of novel pyrimidine derivatives and their evaluation of cytotoxicity.Synth. Commun.20205081232123810.1080/00397911.2020.1735444
    [Google Scholar]
  61. (a YoshimuraY. KanoF. MiyazakiS. AshidaN. SakataS. HaraguchiK. ItohY. TanakaH. MiyasakaT. Synthesis and biological evaluation of 1′-C-cyano-pyrimidine nucleosides.Nucleosides Nucleotides1996151-3305324, 305-32410.1080/07328319608002386
    [Google Scholar]
  62. (b RaniI. KaurN. GoyalA. SharmaM. An Appraisal on Synthetic and Medicinal Aspects of Fused Pyrimidines as Anti Neoplastic Agents.Anticancer Agents Med Chem202323552556110.2174/1871520622666220701113204
    [Google Scholar]
  63. AtwalK.S. RovnyakG.C. O’ReillyB.C. SchwartzJ. Substituted 1,4-dihydropyrimidines. 3. Synthesis of selectively functionalized 2-hetero-1,4-dihydropyrimidines.J. Org. Chem.198954255898590710.1021/jo00286a020
    [Google Scholar]
  64. ZimmermannJ. Pyrimidine derivatives and processes for the preparation.US patent US55211841996
  65. PatelN. PathanS. SoniH.I. 3, 4-dihydropyrimidin-2 (1H)-one analogues: Microwave irradiated synthesis with antimicrobial and antituberculosis study.Curr. Microw. Chem.201961617010.2174/2213335606666190724093305
    [Google Scholar]
  66. SharmaV. ChitranshiN. AgarwalA.K. Significance and biological importance of pyrimidine in the microbial world.Int. J. Med. Chem.20142014120278410.1155/2014/20278425383216
    [Google Scholar]
  67. AhmedK. ChoudharyM.I. SaleemR.S.Z. Heterocyclic pyrimidine derivatives as promising antibacterial agents.Eur. J. Med. Chem.202325911570110.1016/j.ejmech.2023.11570137591149
    [Google Scholar]
  68. PatelD.H. ChikhaliaK.H. ShahN.K. PatelD.P. KaswalaP.B. BuhaV.M. Design, synthesis and antimicrobial study of some pyrimidine derivatives.Pharm. Chem. J.2010442949810.1007/s11094‑010‑0406‑9
    [Google Scholar]
  69. KumarN. ChauhanA. DrabuS. Synthesis of cyanopyridine and pyrimidine analogues as new anti-inflammatory and antimicrobial agents.Biomed. Pharmacother.201165537538010.1016/j.biopha.2011.04.02321719247
    [Google Scholar]
  70. ShiJ.B. XuS. WangY.P. LiJ.J. YaoQ.Z. Synthesis of new pyrimidine nucleoside derivatives with nitric oxide donors for antiviral activity.Chin. Chem. Lett.201122889990210.1016/j.cclet.2011.01.010
    [Google Scholar]
  71. MatalonS. DavisI. Composition and methods relating to pyrimidine synthesis Inhibitors.US patent US20070219224A12007
  72. Jeelan BashaN. ChandanaT.L. Synthesis and Antiviral Efficacy of Pyrimidine Analogs Targeting Viral Pathways.ChemistrySelect2023819e20220500910.1002/slct.202205009
    [Google Scholar]
  73. El-SubbaghH.I. Abu-ZaidS.M. MahranM.A. BadriaF.A. Al-ObaidA.M. Synthesis and biological evaluation of certain α,β-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents.J. Med. Chem.200043152915292110.1021/jm000038m10956199
    [Google Scholar]
  74. CasseraM.B. ZhangY. HazletonK.Z. SchrammV.L. Purine and pyrimidine pathways as targets in Plasmodium falciparum.Curr. Top. Med. Chem.201111162103211510.2174/15680261179657594821619511
    [Google Scholar]
  75. KayambaF. MalimabeT. AdemolaI.K. PooeO.J. KushwahaN.D. MahlalelaM. van ZylR.L. GordonM. MudauP.T. ZiningaT. ShonhaiA. NyamoriV.O. KarpoormathR. Design and synthesis of quinoline-pyrimidine inspired hybrids as potential plasmodial inhibitors.Eur. J. Med. Chem.202121711333010.1016/j.ejmech.2021.11333033744688
    [Google Scholar]
  76. BialerM. Chemical properties of antiepileptic drugs (AEDs).Adv. Drug Deliv. Rev.2012641088789510.1016/j.addr.2011.11.00622210279
    [Google Scholar]
  77. MehtaP. MalikR. Discovery and identification of putative adenosine kinase inhibitors as potential anti-epileptic agents from structural insights.J. Biomol. Struct. Dyn.202038185320533710.1080/07391102.2019.169944731779529
    [Google Scholar]
  78. (a ChenP. XuY. LiX. YaoH. LinK. Development and strategies of CDK4/6 inhibitors.Future Med. Chem.202012212714510.4155/fmc‑2019‑006231718293
    [Google Scholar]
  79. (b ReddyM.V.R. AkulaB. CosenzaS.C. AthuluridivakarS. MallireddigariM.R. PallelaV.R. BillaV.K. SubbaiahD.R.C.V. BharathiE.V. Vasquez-Del CarpioR. PadgaonkarA. BakerS.J. ReddyE.P. Discovery of 8-Cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3- d ]pyrimidine-6-carbonitrile ( 7x ) as a Potent Inhibitor of Cyclin-Dependent Kinase 4 (CDK4) and AMPK-Related Kinase 5 (ARK5).J. Med. Chem.201457357859910.1021/jm401073p24417566
    [Google Scholar]
  80. ZiesselR. LehnJ.M. Synthesis and Metal‐Binding Properties of Polybipyridine Ligands Derived from Acyclic and Macrocyclic Polyamines.Helv. Chim. Acta19907351149116210.1002/hlca.19900730502
    [Google Scholar]
  81. Cortés-PercinoA. Vega-BáezJ.L. Romero-LópezA. PuertaA. Merino-MontielP. Meza-ReyesS. PadrónJ.M. Montiel-SmithS. Synthesis and evaluation of pyrimidine steroids as antiproliferative agents.Molecules20192420367610.3390/molecules2420367631614780
    [Google Scholar]
  82. HiraiK. IshibaT. KoikeH. WatanabeM. Pyrimidine derivatives as HMG-CoA reductase inhibitors.European patent EP 0521471B11993
  83. IrshadN. KhanA. ShahF.A. NadeemH. AshrafZ. TipuM.K. LiS. Antihyperlipidemic effect of selected pyrimidine derivatives mediated through multiple pathways.Fundam. Clin. Pharmacol.20213561119113210.1111/fcp.1268233872413
    [Google Scholar]
  84. AhmadG. SohailM. BilalM. RasoolN. QamarM.U. CiureaC. MarceanuL.G. MisarcaC. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview.Molecules20242910223210.3390/molecules2910223238792094
    [Google Scholar]
  85. MahgoubM.Y. ElmaghrabyA.M. HarbA.E.A. Ferreira da SilvaJ.L. JustinoG.C. MarquesM.M. Synthesis, crystal structure, and biological evaluation of fused thiazolo[3, 2-a] pyrimidines as new acetylcholinesterase inhibitors.Molecules20192412230610.3390/molecules2412230631234400
    [Google Scholar]
  86. VyasA. SahuB. PathaniaS. NandiN.K. ChauhanG. AsatiV. KumarB. An insight on medicinal attributes of pyrimidine scaffold: An updated review.J. Heterocycl. Chem.20236071081112110.1002/jhet.4593
    [Google Scholar]
  87. KumarR. Fused Pyrimidine-Based Drug Discovery.UKElsevier2022
    [Google Scholar]
  88. (a BhatnagarA. PemawatG. Functionalized Pyrimidines: Synthetic Approaches and Biological Activities. A Review.Org. Prep. Proced. Int.202456111810.1080/00304948.2023.2225385
    [Google Scholar]
  89. (b NammalwarB. BunceR.A. Recent Advances in Pyrimidine-Based Drugs.Pharmaceuticals (Basel)202417110410.3390/ph1701010438256937
    [Google Scholar]
  90. LimaL. BarreiroE. Bioisosterism: a useful strategy for molecular modification and drug design.Curr. Med. Chem.2005121234910.2174/092986705336354015638729
    [Google Scholar]
  91. EjehS. UzairuA. ShallangwaG.A. AbechiS.E. IbrahimM.T. Structure-based design, drug-likeness, and pharmacokinetic studies of novel substituted pyrimidine derivatives as potent HCV NS3/A4 protease inhibitors.Biocatal. Agric. Biotechnol.20224610253910.1016/j.bcab.2022.102539
    [Google Scholar]
  92. CrookeS.T. Molecular mechanisms of action of antisense drugs.Biochim. Biophys. Acta Gene Struct. Expr.199914891314310.1016/S0167‑4781(99)00148‑710806995
    [Google Scholar]
  93. NassarA.E.F. KamelA.M. ClarimontC. Improving the decision-making process in the structural modification of drug candidates: enhancing metabolic stability.Drug Discov. Today20049231020102810.1016/S1359‑6446(04)03280‑515574318
    [Google Scholar]
  94. NassarA.E.F. KamelA.M. ClarimontC. Improvingthe decision-making process in structural modification of drug candidates: reducing toxicity.Drug Discov. Today20049241055106410.1016/S1359‑6446(04)03297‑015582794
    [Google Scholar]
  95. GhoshS. ChanJ.M.W. LeaC.R. MeintsG.A. LewisJ.C. TovianZ.S. FlessnerR.M. LoftusT.C. BruchhausI. KendrickH. CroftS.L. KempR.G. KobayashiS. NozakiT. OldfieldE. Effects of bisphosphonates on the growth of Entamoeba histolytica and Plasmodium species in vitro and in vivo.J. Med. Chem.200447117518710.1021/jm030084x14695831
    [Google Scholar]
  96. ShirleyD.A. HungC.C. MoonahS. Entamoeba histolytica (Amebiasis).Hunter's Tropical Medicine and Emerging Infectious Diseases202069970610.1016/B978‑0‑323‑55512‑8.00094‑6
    [Google Scholar]
  97. AckersJ.P. MirelmanD. Progress in research on Entamoeba histolytica pathogenesis.Curr. Opin. Microbiol.20069436737310.1016/j.mib.2006.06.01416824782
    [Google Scholar]
  98. GuillénN. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis.Virulence2023141215865610.1080/21505594.2022.215865636519347
    [Google Scholar]
  99. ParveenH. HayatF. MukhtarS. SalahuddinA. KhanA. IslamF. AzamA. Synthesis, characterization and biological evaluation of novel 2,4,6-trisubstituted bis-pyrimidine derivatives.Eur. J. Med. Chem.20114694669467510.1016/j.ejmech.2011.05.05521683483
    [Google Scholar]
  100. ParveenH. HayatF. SalahuddinA. AzamA. Synthesis, characterization and biological evaluation of novel 6-ferrocenyl-4-aryl-2-substituted pyrimidine derivatives.Eur. J. Med. Chem.20104583497350310.1016/j.ejmech.2010.04.02320488588
    [Google Scholar]
  101. FoudaM.F.R. Abd-ElzaherM.M. AbdelsamaiaR.A. LabibA.A. On the medicinal chemistry of ferrocene.Appl. Organomet. Chem.200721861362510.1002/aoc.1202
    [Google Scholar]
  102. PolettoJ. da SilvaM.J.V. JacominiA.P. BidóiaD.L. VolpatoH. NakamuraC.V. RosaF.A. Antiparasitic activities of novel pyrimidine N ‐acylhydrazone hybrids.Drug Dev. Res.202182223024010.1002/ddr.2174532996619
    [Google Scholar]
  103. (a Yildiz-OrenI. YalcinI. Aki-SenerE. UcarturkN. Synthesis and structure–activity relationships of new antimicrobial active multisubstituted benzazole derivatives.Eur. J. Med. Chem.200439329129810.1016/j.ejmech.2003.11.01415051178
    [Google Scholar]
  104. (b KharbR. TyagiM. SharmaA.K. Status and future scenario of pyrimidine derivatives having antimicrobial potential.Der Pharma. Chem.201464298320
    [Google Scholar]
  105. (c GuptaY.K. GuptaV. SinghS. Synthesis, characterization and antimicrobial activity of pyrimidine based derivatives.J. Pharm. Res.20137649149510.1016/j.jopr.2013.05.020
    [Google Scholar]
  106. (a HollaB.S. MahalingaM. KarthikeyanM.S. AkberaliP.M. ShettyN.S. Synthesis of some novel pyrazolo[3,4-d]pyrimidine derivatives as potential antimicrobial agents.Bioorg. Med. Chem.20061462040204710.1016/j.bmc.2005.10.05316310361
    [Google Scholar]
  107. (b BreijyehZ. KaramanR. Design and synthesis of novel antimicrobial agents.Antibiotics (Basel)202312362810.3390/antibiotics1203062836978495
    [Google Scholar]
  108. TrivediH.D. JoshiV.B. PatelB.Y. Pyrazole bearing pyrimidine analogues as the privileged scaffolds in antimicrobial drug discovery: a review.Anal. Chem. Lett.202212214717310.1080/22297928.2021.1910565
    [Google Scholar]
  109. ChambhareR. KhadseB.G. BobdeA.S. BahekarR.H. Synthesis and preliminary evaluation of some N-[5-(2-furanyl)-2-methyl-4-oxo-4H-thieno[2,3-d]pyrimidin-3-yl]-carboxamide and 3-substituted-5-(2-furanyl)-2-methyl-3H-thieno[2,3-d]pyrimidin-4-ones as antimicrobial agents.Eur. J. Med. Chem.20033818910010.1016/S0223‑5234(02)01442‑312593919
    [Google Scholar]
  110. Lakshmi NarayanaB. Raghu Ram RaoA. Shanthan RaoP. Synthesis of new 2-substituted pyrido[2,3-d]pyrimidin-4(1H)-ones and their antibacterial activity.Eur. J. Med. Chem.20094431369137610.1016/j.ejmech.2008.05.02518603332
    [Google Scholar]
  111. (a ArigoniD. Structure of a new type of terpene.Gazz. Chim. Ital.196292884901
    [Google Scholar]
  112. (b TangY.Z. LiuY.H. ChenJ.X. Pleuromutilin and its derivatives-the lead compounds for novel antibiotics.Mini Rev. Med. Chem.2012121536110.2174/13895571279886896822070694
    [Google Scholar]
  113. EyalZ. MatzovD. KrupkinM. PauknerS. RiedlR. RozenbergH. ZimmermanE. BashanA. YonathA. A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism.Sci. Rep.2016613900410.1038/srep3900427958389
    [Google Scholar]
  114. EggerH. ReinshagenH. New pleuromutilin derivatives with enhanced antimicrobial activity. I. Synthesis.J. Antibiot. (Tokyo)197629991592210.7164/antibiotics.29.915993131
    [Google Scholar]
  115. YiY. XuX. LiuY. XuS. HuangX. LiangJ. ShangR. Synthesis and antibacterial activities of novel pleuromutilin derivatives with a substituted pyrimidine moiety.Eur. J. Med. Chem.201712668769510.1016/j.ejmech.2016.11.05427940400
    [Google Scholar]
  116. RostomS.A.F. BadrM.H. Abd El RazikH.A. AshourH.M.A. Abdel WahabA.E. Synthesis of some pyrazolines and pyrimidines derived from polymethoxy chalcones as anticancer and antimicrobial agents.Arch. Pharm. (Weinheim)2011344957258710.1002/ardp.20110007721755528
    [Google Scholar]
  117. BhogeN.D. MagareB.K. MohiteP.B. Synthesis, characterization and antimicrobial activity of novel tetrazoles clubbed with pyrimidine.Journal of Pharmaceutical and Biological Sciences20219211612210.18231/j.jpbs.2021.016
    [Google Scholar]
  118. AlNeyadiS.S. SalemA.A. GhattasM.A. AtatrehN. AbdouI.M. Antibacterial activity and mechanism of action of the benzazole acrylonitrile-based compounds: In vitro, spectroscopic, and docking studies.Eur. J. Med. Chem.201713627028210.1016/j.ejmech.2017.05.01028500995
    [Google Scholar]
  119. GhodasaraH.B. TrivediA.R. KatariaV.B. PatelB.G. ShahV.H. Synthesis and antimicrobial evaluation of novel substituted pyrimidine scaffold.Med. Chem. Res.201322126121612810.1007/s00044‑013‑0596‑2
    [Google Scholar]
  120. BasavarajaH.S. JayadevaiahK. HussainM.M. KumarV. BasavarajP. Synthesis of novel piperazine and morpholine linked substituted pyrimidine derivatives as antimicrobial agents.Journal of Pharmaceutical Sciences and Research201021512
    [Google Scholar]
  121. ArshadM. KhanM.S. NamiS.A.A. Synthesis, characterization, biological and molecular docking assessment of computationally bioactive 1,3-thiazolidin-4-one derivatives bearing indole and bi-pyrimidine moieties.J. Indian Chem. Soc.20211892397240610.1007/s13738‑021‑02200‑4
    [Google Scholar]
  122. HawserS. LociuroS. IslamK. Dihydrofolate reductase inhibitors as antibacterial agents.Biochem. Pharmacol.200671794194810.1016/j.bcp.2005.10.05216359642
    [Google Scholar]
  123. DeshmukhM.B. SalunkheS.M. PatilD.R. AnbhuleP.V. A novel and efficient one step synthesis of 2-amino-5-cyano-6-hydroxy-4-aryl pyrimidines and their anti-bacterial activity.Eur. J. Med. Chem.20094462651265410.1016/j.ejmech.2008.10.01819036478
    [Google Scholar]
  124. RussellD.G. Mycobacterium tuberculosis: here today, and here tomorrow.Nat. Rev. Mol. Cell Biol.20012856957810.1038/3508503411483990
    [Google Scholar]
  125. KochA. MizrahiV. Mycobacterium tuberculosis.Trends Microbiol.201826655555610.1016/j.tim.2018.02.01229580884
    [Google Scholar]
  126. MandalS. RoychowdhuryT. ChiromK. BhattacharyaA. Brojen SinghR.K. Complex multifractal nature in Mycobacterium tuberculosis genome.Sci. Rep.2017714639510.1038/srep4639528440326
    [Google Scholar]
  127. LohrasbiV. TalebiM. BialvaeiA.Z. FattoriniL. DrancourtM. HeidaryM. Darban-SarokhalilD. Trends in the discovery of new drugs for Mycobacterium tuberculosis therapy with a glance at resistance.Tuberculosis (Edinb.)2018109172710.1016/j.tube.2017.12.00229559117
    [Google Scholar]
  128. Global Tuberculosis reports.2014Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports
  129. BagcchiS. WHO’s global tuberculosis report 2022.Lancet Microbe202341e2010.1016/S2666‑5247(22)00359‑736521512
    [Google Scholar]
  130. TomiokaH. NambaK. Development of antituberculous drugs: Current status and future prospects.Kekkaku200681127537417240921
    [Google Scholar]
  131. FernandesG.F.S. ThompsonA.M. CastagnoloD. DennyW.A. Dos SantosJ.L. Tuberculosis drug discovery: challenges and new horizons.J. Med. Chem.202265117489753110.1021/acs.jmedchem.2c0022735612311
    [Google Scholar]
  132. InoyamaD. PagetS.D. RussoR. KandasamyS. KumarP. SingletonE. OcciJ. TuckmanM. ZimmermanM.D. HoH.P. PerrymanA.L. DartoisV. ConnellN. FreundlichJ.S. Novel pyrimidines as antitubercular agents.Antimicrob. Agents Chemother.2018623e02063-1710.1128/AAC.02063‑1729311070
    [Google Scholar]
  133. PatelR. B. DesaiP. S. DesaiK. R. ChikhaliaK. H. Synthesis of pyrimidine based thiazolidinones and azetidinones: antimicrobial and antitubercular agents.ChemInform20063710.1002/chin.200628143
    [Google Scholar]
  134. (a ColeS.T. BroschR. ParkhillJ. GarnierT. ChurcherC. HarrisD. GordonS.V. EiglmeierK. GasS. BarryC.E.III TekaiaF. BadcockK. BashamD. BrownD. ChillingworthT. ConnorR. DaviesR. DevlinK. FeltwellT. GentlesS. HamlinN. HolroydS. HornsbyT. JagelsK. KroghA. McLeanJ. MouleS. MurphyL. OliverK. OsborneJ. QuailM.A. RajandreamM.A. RogersJ. RutterS. SeegerK. SkeltonJ. SquaresR. SquaresS. SulstonJ.E. TaylorK. WhiteheadS. BarrellB.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence.Nature1998393668553754410.1038/311599634230
    [Google Scholar]
  135. (b SinghK. SinghK. WanB. FranzblauS. ChibaleK. BalzariniJ. Facile transformation of Biginelli pyrimidin-2(1H)-ones to pyrimidines. In vitro evaluation as inhibitors of Mycobacterium tuberculosis and modulators of cytostatic activity.Eur. J. Med. Chem.20114662290229410.1016/j.ejmech.2011.03.01021450375
    [Google Scholar]
  136. VerbitskiyE.V. CheprakovaE.M. SlepukhinP.A. KravchenkoM.A. SkornyakovS.N. RusinovG.L. ChupakhinO.N. CharushinV.N. Synthesis, and structure–activity relationship for C(4) and/or C(5) thienyl substituted pyrimidines, as a new family of antimycobacterial compounds.Eur. J. Med. Chem.20159722523410.1016/j.ejmech.2015.05.00725982331
    [Google Scholar]
  137. AlexandrovaL.A. KhandazhinskayaA.L. MatyuginaE.S. MakarovD.A. KochetkovS.N. Analogues of Pyrimidine Nucleosides as Mycobacteria Growth Inhibitors.Microorganisms2022107129910.3390/microorganisms1007129935889017
    [Google Scholar]
  138. VerbitskiyE.V. BaskakovaS.A. KravchenkoM.A. SkornyakovS.N. RusinovG.L. ChupakhinO.N. CharushinV.N. Synthesis and evaluation of antitubercular activity of fluorinated 5-aryl-4-(hetero)aryl substituted pyrimidines.Bioorg. Med. Chem.201624163771378010.1016/j.bmc.2016.06.02027338658
    [Google Scholar]
  139. SharmaM. ChaturvediV. ManjuY.K. BhatnagarS. SrivastavaK. PuriS.K. ChauhanP.M.S. Substituted quinolinyl chalcones and quinolinyl pyrimidines as a new class of anti-infective agents.Eur. J. Med. Chem.20094452081209110.1016/j.ejmech.2008.10.01119028410
    [Google Scholar]
  140. DesaiN.C. KotadiyaG.M. TrivediA.R. Studies on molecular properties prediction, antitubercular and antimicrobial activities of novel quinoline based pyrimidine motifs.Bioorg. Med. Chem. Lett.201424143126313010.1016/j.bmcl.2014.05.00224856067
    [Google Scholar]
  141. AgarwalA. SrivastavaK. PuriS.K. SinhaS. ChauhanP.M.S. A small library of trisubstituted pyrimidines as antimalarial and antitubercular agents.Bioorg. Med. Chem. Lett.200515235218522110.1016/j.bmcl.2005.08.05316171994
    [Google Scholar]
  142. SilvaR.E. A brief history of inflammation.Inflammation.Berlin, HeidelbergSpringer197862510.1007/978‑3‑642‑66888‑3_2
    [Google Scholar]
  143. Abd HafidS.R. IranN. The Anti-inflammatory Effects of Tocotrienol in Macrophages.Palm Oil Dev.2019703640
    [Google Scholar]
  144. BjarnasonI. HayllarJ. MacphersonA.N.J. RussellA.N.S. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans.Gastroenterology199310461832184710.1016/0016‑5085(93)90667‑28500743
    [Google Scholar]
  145. LanasA. Cyclo-oxygenase-1/cyclo-oxygenase-2 non-selective non-steroidal anti-inflammatory drugs: epidemiology of gastrointestinal events.Dig. Liver Dis.200133S29S3410.1016/S1590‑8658(01)80156‑011827360
    [Google Scholar]
  146. BrooksP. Use and benefits of nonsteroidal anti-inflammatory drugs.Am. J. Med.199810439S13S10.1016/S0002‑9343(97)00204‑09572315
    [Google Scholar]
  147. PeuraD.A. Prevention of nonsteroidal anti-inflammatory drug-associated gastrointestinal symptoms and ulcer complications.Am J Med200411763S71S10.1016/j.amjmed.2004.07.010
    [Google Scholar]
  148. ButtgereitF. BurmesterG.R. SimonL.S. Gastrointestinal toxic side effects of nonsteroidal anti-inflammatory drugs and cyclooxygenase-2–specific inhibitors.Am. J. Med.20011103131910.1016/S0002‑9343(00)00728‑211173045
    [Google Scholar]
  149. McCarthyD. Nonsteroidal anti-inflammatory drug-related gastrointestinal toxicity: definitions and epidemiology.Am. J. Med.199810553S9S10.1016/S0002‑9343(98)00274‑59855169
    [Google Scholar]
  150. PitchfordS.C. Novel uses for anti‐platelet agents as anti‐inflammatory drugs.Br. J. Pharmacol.20071527987100210.1038/sj.bjp.070736417603547
    [Google Scholar]
  151. LacerdaR.B. de LimaC.K.F. da SilvaL.L. RomeiroN.C. MirandaA.L.P. BarreiroE.J. FragaC.A.M. Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo[1,2-a]pyridine symbiotic prototypes.Bioorg. Med. Chem.2009171748410.1016/j.bmc.2008.11.01819059783
    [Google Scholar]
  152. GilesD. RoopaK. SheebaF.R. GurubasavarajaswamyP.M. DivakarG. VidhyaT. Synthesis pharmacological evaluation and docking studies of pyrimidine derivatives.Eur. J. Med. Chem.20125847848410.1016/j.ejmech.2012.09.05023159805
    [Google Scholar]
  153. KecheA.P. HatnapureG.D. TaleR.H. RodgeA.H. BirajdarS.S. KambleV.M. A novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: Synthesis, anti-inflammatory and antimicrobial evaluation.Bioorg. Med. Chem. Lett.201222103445344810.1016/j.bmcl.2012.03.09222520258
    [Google Scholar]
  154. DinakaranV.S. JacobD. MathewJ.E. Synthesis and biological evaluation of novel pyrimidine-2(1H)-ones/thiones as potent anti-inflammatory and anticancer agents.Med. Chem. Res.201221113598360610.1007/s00044‑011‑9909‑5
    [Google Scholar]
  155. O’HareE. ScopesD.I.C. TreherneJ.M. MonaghanJ. PalmerP.M. AmijeeH. KimE.M. Novel anti-inflammatory compound SEN1176 alleviates behavioral deficits induced following bilateral intrahippocampal injection of aggregated amyloid-β₁₋₄₂.J. Alzheimers Dis.201125221922910.3233/JAD‑2011‑10004421654060
    [Google Scholar]
  156. (a YejellaR.P. AtlaS.R. A study of anti-inflammatory and analgesic activity of new 2,4,6-trisubstituted pyrimidines.Chem. Pharm. Bull. (Tokyo)20115991079108210.1248/cpb.59.107921881248
    [Google Scholar]
  157. (b DivekarK. SR. VedigounderM. HS. Synthesis, Characterization and Evaluation of some newer Pyrimidine derivatives as Anti-inflammatory Agents.Research Journal of Pharmacy and Technology20211452529253410.52711/0974‑360X.2021.00445
    [Google Scholar]
  158. RashidH. MartinesM.A.U. DuarteA.P. JorgeJ. RasoolS. MuhammadR. AhmadN. UmarM.N. Research developments in the syntheses, anti-inflammatory activities and structure–activity relationships of pyrimidines.RSC Advances202111116060609810.1039/D0RA10657G35423143
    [Google Scholar]
  159. ZeizA. KawtharaniR. ElmasriM. KhawajaG. HamadeE. HabibA. AyoubA.J. AbarbriM. El-DakdoukiM.H. Molecular properties prediction, anticancer and anti-inflammatory activities of some pyrimido[1,2-b]pyridazin-2-one derivatives.Bioimpacts20231422768810.34172/bi.2023.2768838505674
    [Google Scholar]
  160. AbbasS.E. AwadallahF.M. IbrahinN.A. SaidE.G. KamelG.M. New quinazolinone–pyrimidine hybrids: Synthesis, anti-inflammatory, and ulcerogenicity studies.Eur. J. Med. Chem.20125314114910.1016/j.ejmech.2012.03.05022551678
    [Google Scholar]
  161. SondhiS.M. JainS. DinodiaM. ShuklaR. RaghubirR. One pot synthesis of pyrimidine and bispyrimidine derivatives and their evaluation for anti-inflammatory and analgesic activities.Bioorg. Med. Chem.200715103334334410.1016/j.bmc.2007.03.02817383186
    [Google Scholar]
  162. UnnisaA. AbouziedA.S. Anupama Baratam Chenchu LakshmiK.N.V. HussainT. KunduruR.D. BanuH. Bushra FatimaS. HussianA. SelvarajanK.K. Design, synthesis, characterization, computational study and in-vitro antioxidant and anti-inflammatory activities of few novel 6-aryl substituted pyrimidine azo dyes.Arab. J. Chem.202013128638864910.1016/j.arabjc.2020.09.050
    [Google Scholar]
  163. DunkelP. ChaiC.L.L. SperlághB. HuleattP.B. MátyusP. Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer’s, Parkinson’s and Huntington’s diseases, and amyotrophic lateral sclerosis.Expert Opin. Investig. Drugs20122191267130810.1517/13543784.2012.70317822741814
    [Google Scholar]
  164. SalibaE. HenrotA. Inflammatory mediators and neonatal brain damage.Neonatology2001793-422422710.1159/00004709611275656
    [Google Scholar]
  165. GowdaV.K. Recent advances in cerebral palsy.Karnataka Pediatric Journal202035141810.25259/KPJ_1_2020
    [Google Scholar]
  166. (a CunyG. Kinase inhibitors as potential therapeutics for acute and chronic neurodegenerative conditions.Curr. Pharm. Des.200915343919393910.2174/13816120978964933019751204
    [Google Scholar]
  167. (b Cristina CamposH. Divino da RochaM. Pereira Dias ViegasF. Carolina NicastroP. Calve FossaluzzaP. Alberto Manssour FragaC. BarreiroJ. The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders I: Parkinson's disease.CNS Neurol Disord Drug Targets20111022395010.2174/187152711794480483
    [Google Scholar]
  168. KrahnA.I. WellsC. DrewryD.H. BeitelL.K. DurcanT.M. AxtmanA.D. Defining the neural kinome: strategies and opportunities for small molecule drug discovery to target neurodegenerative diseases.ACS Chem. Neurosci.202011131871188610.1021/acschemneuro.0c0017632464049
    [Google Scholar]
  169. DworkinR.H. O’ConnorA.B. BackonjaM. FarrarJ.T. FinnerupN.B. JensenT.S. KalsoE.A. LoeserJ.D. MiaskowskiC. NurmikkoT.J. PortenoyR.K. RiceA.S.C. StaceyB.R. TreedeR.D. TurkD.C. WallaceM.S. Pharmacologic management of neuropathic pain: Evidence-based recommendations.Pain2007132323725110.1016/j.pain.2007.08.03317920770
    [Google Scholar]
  170. (a MukherjeeP. CinelliM.A. KangS. SilvermanR.B. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain.Chem. Soc. Rev.201443196814683810.1039/C3CS60467E24549364
    [Google Scholar]
  171. (b LanY. ChenY. CaoX. ZhangJ. WangJ. XuX. QiuY. ZhangT. LiuX. LiuB.F. ZhangG. Synthesis and biological evaluation of novel sigma-1 receptor antagonists based on pyrimidine scaffold as agents for treating neuropathic pain.J. Med. Chem.20145724104041042310.1021/jm501207r25420090
    [Google Scholar]
  172. (c Bravo-CaparrósI. PerazzoliG. YesteS. CikesD. BaeyensJ.M. CobosE.J. NietoF.R. Sigma-1 Receptor Inhibition Reduces Neuropathic Pain Induced by Partial Sciatic Nerve Transection in Mice by Opioid-Dependent and -Independent Mechanisms.Front. Pharmacol.20191061310.3389/fphar.2019.0061331263413
    [Google Scholar]
  173. (a HellewellS.B. BowenW.D. A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain.Brain Res.1990527224425310.1016/0006‑8993(90)91143‑52174717
    [Google Scholar]
  174. (b QuirionR. BowenW.D. ItzhakY. JunienJ.L. MusacchioJ.M. RothmanR.B. SuT.P. TamS.W. TaylorD.P. Classification of sigma binding sites: a proposal.Trends Pharmacol. Sci.199213858610.1016/0165‑6147(92)90030‑A1315463
    [Google Scholar]
  175. (c GuitartX. CodonyX. MonroyX. Sigma receptors: biology and therapeutic potential.Psychopharmacology (Berl.)2004174330131910.1007/s00213‑004‑1920‑915197533
    [Google Scholar]
  176. (a WangT. JiaH. The sigma receptors in Alzheimer’s disease: New potential targets for diagnosis and therapy.Int. J. Mol. Sci.202324151202510.3390/ijms24151202537569401
    [Google Scholar]
  177. (b LizamaB.N. KahleJ. CatalanoS.M. CaggianoA.O. GrundmanM. HambyM.E. Sigma-2 receptors—From basic biology to therapeutic target: A focus on age-related degenerative diseases.Int. J. Mol. Sci.2023247625110.3390/ijms2407625137047224
    [Google Scholar]
  178. (a CobosE. EntrenaJ. NietoF. CendánC. PozoE. Pharmacology and therapeutic potential of sigma(1) receptor ligands.Curr. Neuropharmacol.20086434436610.2174/15701590878738611319587856
    [Google Scholar]
  179. (b VoroninM.V. VakhitovaY.V. SeredeninS.B. Chaperone Sigma1R and antidepressant effect.Int. J. Mol. Sci.20202119708810.3390/ijms2119708832992988
    [Google Scholar]
  180. (a ChengZ.X. LanD.M. WuP.Y. ZhuY.H. DongY. MaL. ZhengP. Neurosteroid dehydroepiandrosterone sulphate inhibits persistent sodium currents in rat medial prefrontal cortex via activation of sigma-1 receptors.Exp. Neurol.2008210112813610.1016/j.expneurol.2007.10.00418035354
    [Google Scholar]
  181. (b DavletshinA.I. MatveevaA.A. PoletaevaI.I. Evgen’evM.B. GarbuzD.G. The role of molecular chaperones in the mechanisms of epileptogenesis.Cell Stress Chaperones202328659961910.1007/s12192‑023‑01378‑137755620
    [Google Scholar]
  182. AydarE. PalmerC.P. KlyachkoV.A. JacksonM.B. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit.Neuron200234339941010.1016/S0896‑6273(02)00677‑311988171
    [Google Scholar]
  183. (a HayashiT. MauriceT. SuT.P. Ca(2+) signaling via ς(1)-receptors: novel regulatory mechanism affecting intracellular Ca(2+) concentration.J. Pharmacol. Exp. Ther.2000293378879810869377
    [Google Scholar]
  184. (b MonyL. PaolettiP. Mechanisms of NMDA receptor regulation.Curr. Opin. Neurobiol.20238310281510.1016/j.conb.2023.10281537988826
    [Google Scholar]
  185. KappeS.H.I. VaughanA.M. BoddeyJ.A. CowmanA.F. That was then but this is now: malaria research in the time of an eradication agenda.Science2010328598086286610.1126/science.118478520466924
    [Google Scholar]
  186. GuptaP. SinghL. SinghK. The hybrid antimalarial approach.Annual Reports in Medicinal Chemistry20197310510.1016/bs.armc.2019.05.002
    [Google Scholar]
  187. (a ThakurA. KhanS.I. RawatD.S. Synthesis of piperazine tethered 4-aminoquinoline-pyrimidine hybrids as potent antimalarial agents.RSC Advances2014440207292073610.1039/C4RA02276A
    [Google Scholar]
  188. (b SinghK. KaurT. Pyrimidine-based antimalarials: design strategies and antiplasmodial effects.MedChemComm20167574976810.1039/C6MD00084C
    [Google Scholar]
  189. KumarD. KhanS.I. PonnanP. RawatD.S. Triazine–pyrimidine based molecular hybrids: synthesis, docking studies and evaluation of antimalarial activity.New J. Chem.201438105087509510.1039/C4NJ00978A
    [Google Scholar]
  190. (a MauryaS.S. KhanS.I. BahugunaA. KumarD. RawatD.S. Synthesis, antimalarial activity, heme binding and docking studies of N -substituted 4-aminoquinoline-pyrimidine molecular hybrids.Eur. J. Med. Chem.201712917518510.1016/j.ejmech.2017.02.02428222317
    [Google Scholar]
  191. (b WiserM.F. The digestive vacuole of the malaria parasite: a specialized lysosome.Pathogens202413318210.3390/pathogens1303018238535526
    [Google Scholar]
  192. EganT.J. MarquesH.M. The role of haem in the activity of chloroquine and related antimalarial drugs.Coord. Chem. Rev.1999190-19249351710.1016/S0010‑8545(99)00112‑5
    [Google Scholar]
  193. KholiyaR. KhanS.I. BahugunaA. TripathiM. RawatD.S. N -Piperonyl substitution on aminoquinoline-pyrimidine hybrids: Effect on the antiplasmodial potency.Eur. J. Med. Chem.201713112614010.1016/j.ejmech.2017.03.00728315598
    [Google Scholar]
  194. BharateS.B. YadavR.R. KhanS.I. TekwaniB.L. JacobM.R. KhanI.A. VishwakarmaR.A. Meridianin G and its analogs as antimalarial agents.MedChemComm201346104210.1039/c3md00097d
    [Google Scholar]
  195. (a AgarwalA. SrivastavaK. PuriS.K. ChauhanP.M.S. Synthesis of 4-pyrido-6-aryl-2-substituted amino pyrimidines as a new class of antimalarial agents.Bioorg. Med. Chem.200513226226623210.1016/j.bmc.2005.06.05216054819
    [Google Scholar]
  196. (b AgarwalA. SrivastavaK. PuriS.K. ChauhanP.M.S. Synthesis of substituted indole derivatives as a new class of antimalarial agents.Bioorg. Med. Chem. Lett.200515123133313610.1016/j.bmcl.2005.04.01115925306
    [Google Scholar]
  197. MundraS. ThakurV. BelloA.M. RathoreS. AsadM. WeiL. YangJ. ChakkaS.K. MaheshR. MalhotraP. MohmmedA. KotraL.P. A novel class of Plasmodial ClpP protease inhibitors as potential antimalarial agents.Bioorg. Med. Chem.201725205662567710.1016/j.bmc.2017.08.04928917450
    [Google Scholar]
  198. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.2010721296855
    [Google Scholar]
  199. FerlayJ. ColombetM. SoerjomataramI. ParkinD.M. PiñerosM. ZnaorA. BrayF. Cancer statistics for the year 2020: An overview.Int. J. Cancer2021149477878910.1002/ijc.3358833818764
    [Google Scholar]
  200. SiegelR. DeSantisC. VirgoK. SteinK. MariottoA. SmithT. CooperD. GanslerT. LerroC. FedewaS. LinC. LeachC. CannadyR.S. ChoH. ScoppaS. HacheyM. KirchR. JemalA. WardE. Cancer treatment and survivorship statistics, 2012.CA Cancer J. Clin.201262422024110.3322/caac.2114922700443
    [Google Scholar]
  201. VarmusH. The new era in cancer research.Science200631257771162116510.1126/science.112675816728627
    [Google Scholar]
  202. TraxlerP. Tyrosine kinases as targets in cancer therapy – successes and failures.Expert Opin. Ther. Targets20037221523410.1517/14728222.7.2.21512667099
    [Google Scholar]
  203. LabrieM. BruggeJ.S. MillsG.B. ZervantonakisI.K. Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer.Nat. Rev. Cancer202222632333910.1038/s41568‑022‑00454‑535264777
    [Google Scholar]
  204. ChikhaleR. ThoratS. ChoudharyR.K. GadewalN. KhedekarP. Design, synthesis and anticancer studies of novel aminobenzazolyl pyrimidines as tyrosine kinase inhibitors.Bioorg. Chem.2018778410010.1016/j.bioorg.2018.01.00829342447
    [Google Scholar]
  205. (a GhataliaP. MorganC.J. JeY. NguyenP.L. TrinhQ.D. ChoueiriT.K. SonpavdeG. Congestive heart failure with vascular endothelial growth factor receptor tyrosine kinase inhibitors.Crit. Rev. Oncol. Hematol.201594222823710.1016/j.critrevonc.2014.12.00825577572
    [Google Scholar]
  206. (b QiW.X. ShenZ. TangL.N. YaoY. Congestive heart failure risk in cancer patients treated with vascular endothelial growth factor tyrosine kinase inhibitors: a systematic review and meta‐analysis of 36 clinical trials.Br. J. Clin. Pharmacol.201478474876210.1111/bcp.1238724661224
    [Google Scholar]
  207. MoslehiJ.J. Cardiovascular Toxic Effects of Targeted Cancer Therapies.N. Engl. J. Med.2016375151457146710.1056/NEJMra110026527732808
    [Google Scholar]
  208. GronichN. LaviI. Barnett-GrinessO. SalibaW. AbernethyD.R. RennertG. Tyrosine kinase-targeting drugs-associated heart failure.Br. J. Cancer2017116101366137310.1038/bjc.2017.8828399109
    [Google Scholar]
  209. WhitmarshA.J. DavisR.J. A central control for cell growth.Nature2000403676725525610.1038/3500222010659830
    [Google Scholar]
  210. Alberts, B.; Bray, D.; Hopkin, K.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P., Eds.; Essential Cell Biology.Garland Science2015
    [Google Scholar]
  211. RadiM. SchenoneS. BottaM. Recent highlights in the synthesis of highly functionalized pyrimidines.Org. Biomol. Chem.20097142841284710.1039/b906445a19582291
    [Google Scholar]
  212. (a FabbroD. RuetzS. BuchdungerE. Cowan-JacobS.W. FendrichG. LiebetanzJ. MestanJ. O’ReillyT. TraxlerP. ChaudhuriB. FretzH. ZimmermannJ. MeyerT. CaravattiG. FuretP. ManleyP.W. Protein kinases as targets for anticancer agents: from inhibitors to useful drugs.Pharmacol. Ther.2002932-3799810.1016/S0163‑7258(02)00179‑112191602
    [Google Scholar]
  213. (b TavaresF.X. BoucheronJ.A. DickersonS.H. GriffinR.J. PreugschatF. ThomsonS.A. WangT.Y. ZhouH.Q. N-Phenyl-4-pyrazolo[1,5-b]pyridazin-3-ylpyrimidin-2-amines as potent and selective inhibitors of glycogen synthase kinase 3 with good cellular efficacy.J. Med. Chem.200447194716473010.1021/jm040063i15341487
    [Google Scholar]
  214. (c SelvamT.P. JamesC.R. DniandevP.V. ValzitaS.K. A mini review of pyrimidine and fused pyrimidine marketed drugs.Res. Pharm.20122419
    [Google Scholar]
  215. ChoY.H. KimD.Y. KimJ.H. KimY.M. KimY.T. NamJ.H. Laparoscopic management of early uterine cancer: 10-Year experience in Asan Medical Center.Gynecol. Oncol.2007106358559010.1016/j.ygyno.2007.05.01117583776
    [Google Scholar]
  216. BoggessJ.F. KilgoreJ.E. TranA.Q. Uterine Cancer.Abeloff's Clinical Oncology202015081524.e410.1016/B978‑0‑323‑47674‑4.00085‑2
    [Google Scholar]
  217. (a FelixA.S. BrintonL.A. Cancer progress and priorities: uterine cancer.Cancer Epidemiol. Biomarkers Prev.201827998599410.1158/1055‑9965.EPI‑18‑026430181320
    [Google Scholar]
  218. (b SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.2155130620402
    [Google Scholar]
  219. NeesL.K. HeubleinS. SteinmacherS. Juhasz-BössI. BruckerS. TempferC.B. WallwienerM. Endometrial hyperplasia as a risk factor of endometrial cancer.Arch. Gynecol. Obstet.2022306240742110.1007/s00404‑021‑06380‑535001185
    [Google Scholar]
  220. WiseL.A. PalmerJ.R. ReichD. CozierY.C. RosenbergL. Hair relaxer use and risk of uterine leiomyomata in African-American women.Am. J. Epidemiol.2012175543244010.1093/aje/kwr35122234483
    [Google Scholar]
  221. HelmJ.S. NishiokaM. BrodyJ.G. RudelR.A. DodsonR.E. Measurement of endocrine disrupting and asthma-associated chemicals in hair products used by Black women.Environ. Res.201816544845810.1016/j.envres.2018.03.03029705122
    [Google Scholar]
  222. EmotoM. IwasakiH. IshiguroM. KikuchiM. HoriuchiS. SaitoT. TsukamotoN. KawarabayashiT. Angiogenesis in carcinosarcomas of the uterus: Differences in the microvessel density and expression of vascular endothelial growth factor between the epithelial and mesenchymal elements.Hum. Pathol.199930101232124110.1016/S0046‑8177(99)90043‑610534173
    [Google Scholar]
  223. (a NaganumaY. ChoijamtsB. ShirotaK. NakajimaK. OgataS. MiyamotoS. KawarabayashiT. EmotoM. Metronomic doxifluridine chemotherapy combined with the anti‐angiogenic agent TNP‐470 inhibits the growth of human uterine carcinosarcoma xenografts.Cancer Sci.201110281545155210.1111/j.1349‑7006.2011.01998.x21631643
    [Google Scholar]
  224. (b Abd elhameidM.K. RyadN. MyA-S. mohammedM.R. IsmailM.M. El MeligieS. Abd elhameid, M.K.; Ryad, N.; MY, A.S.; Mohammed, M.R.; Ismail, M.M.; El Meligie, S. Design, synthesis and screening of 4, 6-diaryl pyridine and pyrimidine derivatives as potential cytotoxic molecules.Chem. Pharm. Bull. (Tokyo)2018661093995210.1248/cpb.c18‑0026930111667
    [Google Scholar]
  225. BoschiD. ToscoP. ChandraN. ChaurasiaS. FrutteroR. GriffinR. WangL.Z. GascoA. 6-Cyclohexylmethoxy-5-(cyano-NNO-azoxy)pyrimidine-4-amine: A new scaffold endowed with potent CDK2 inhibitory activity.Eur. J. Med. Chem.20136833333810.1016/j.ejmech.2013.07.03123994326
    [Google Scholar]
  226. RahmanL. VoellerD. RahmanM. LipkowitzS. AllegraC. BarrettJ.C. KayeF.J. Zajac-KayeM. Thymidylate synthase as an oncogene.Cancer Cell20045434135110.1016/S1535‑6108(04)00080‑715093541
    [Google Scholar]
  227. LladóV. TerésS. HigueraM. ÁlvarezR. Noguera-SalvaM.A. HalverJ.E. EscribáP.V. BusquetsX. Pivotal role of dihydrofolate reductase knockdown in the anticancer activity of 2-hydroxyoleic acid.Proc. Natl. Acad. Sci. USA200910633137541375810.1073/pnas.090730010619666584
    [Google Scholar]
  228. AcklandS.P. ClarkeS.J. BealeP. PetersG.J. Thymidylate synthase inhibitors.Update Cancer Ther.20061440342710.1016/j.uct.2006.09.001
    [Google Scholar]
  229. KompisI.M. IslamK. ThenR.L. DNA and RNA Synthesis: Antifolates.Chem. Rev.2005105259362010.1021/cr030114415700958
    [Google Scholar]
  230. FargualyA.M. HabibN.S. IsmailK.A. HassanA.M.M. SargM.T.M. Synthesis, biological evaluation and molecular docking studies of some pyrimidine derivatives.Eur. J. Med. Chem.20136627629510.1016/j.ejmech.2013.05.02823811090
    [Google Scholar]
  231. FahmyH. KhalifaN. IsmailM. El-SahrawyH. NossierE. Biological validation of novel polysubstituted pyrazole candidates with in vitro anticancer activities.Molecules201621327110.3390/molecules2103027126927048
    [Google Scholar]
  232. KamalA. DastagiriD. Janaki RamaiahM. Surendranadha ReddyJ. Vijaya BharathiE. Kashi ReddyM. Victor Prem SagarM. Lakshminarayan ReddyT. PushpavalliS.N.C.V.L. Pal-BhadraM. Synthesis and apoptosis inducing ability of new anilino substituted pyrimidine sulfonamides as potential anticancer agents.Eur. J. Med. Chem.201146125817582410.1016/j.ejmech.2011.09.03922000207
    [Google Scholar]
  233. (a El-SayedI.W.A. ZeidF. MorsiE.M. TawfekN. YousifN.M. YahiaS. Abdel-RahmanA.A.H. Synthesis and anticancer activity of new substituted pyrimidines, Their bicyclic and thioglycoside derivatives.Life Sci. J.20151266370
    [Google Scholar]
  234. (b El-SayedW. A. MohamedA. M. KhalafH. S. Synthesis and Anticancer Activity of New Substituted Pyrimidine and Triazolopyrimidine Glycosides.J App Pharm Sci20177900101110.7324/JAPS.2017.70901.
    [Google Scholar]
  235. LefebvreC.A. ForcelliniE. BoutinS. CôtéM.F. C-GaudreaultR. MathieuP. LagüeP. PaquinJ.F. Synthesis of novel substituted pyrimidine derivatives bearing a sulfamide group and their in vitro cancer growth inhibition activity.Bioorg. Med. Chem. Lett.201727229930210.1016/j.bmcl.2016.11.05227903409
    [Google Scholar]
  236. AwadallahF.M. PiazzaG.A. GaryB.D. KeetonA.B. CanzoneriJ.C. Synthesis of some dihydropyrimidine-based compounds bearing pyrazoline moiety and evaluation of their antiproliferative activity.Eur. J. Med. Chem.20137027327910.1016/j.ejmech.2013.10.00324161704
    [Google Scholar]
  237. SaidM.M. TaherA.T. El-NassanH.B. El-KhoulyE.A. Synthesis of novel S-acyl and S-alkylpyrimidinone derivatives as potential cytotoxic agents.Res. Chem. Intermed.20164286643666210.1007/s11164‑016‑2487‑x
    [Google Scholar]
  238. MaL.Y. PangL.P. WangB. ZhangM. HuB. XueD.Q. ShaoK.P. ZhangB.L. LiuY. ZhangE. LiuH.M. Design and synthesis of novel 1,2,3-triazole-pyrimidine hybrids as potential anticancer agents.Eur. J. Med. Chem.20148636838010.1016/j.ejmech.2014.08.01025180925
    [Google Scholar]
  239. NúñezM. Díaz-GavilánM. Conejo-GarcíaA. Cruz-LópezO. GalloM. EspinosaA. CamposJ. Design, synthesis and anticancer activity against the MCF-7 cell line of benzo-fused 1,4-dihetero seven- and six-membered tethered pyrimidines and purines.Curr. Med. Chem.200815252614263110.2174/09298670878590902118855682
    [Google Scholar]
  240. ShaikhS.B. TambeP. MujahidY. SantraM.K. BiersackB. AhmedK. Targeting growth of breast cancer cell line (MCF-7) with curcumin-pyrimidine analogs.J. Chem. Sci.2022134412310.1007/s12039‑022‑02115‑4
    [Google Scholar]
  241. TongS. ZhangM. WangS. YinR. YuR. WanS. JiangT. ZhangL. Isothiouronium modification empowers pyrimidine-substituted curcumin analogs potent cytotoxicity and Golgi localization.Eur. J. Med. Chem.201612384985710.1016/j.ejmech.2016.07.07127543879
    [Google Scholar]
  242. HeidelbergerC. ChaudhuriN.K. DannebergP. MoorenD. GriesbachL. DuschinskyR. SchnitzerR.J. PlevenE. ScheinerJ. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds.Nature1957179456166366610.1038/179663a013418758
    [Google Scholar]
  243. GaoJ. FangC. XiaoZ. HuangL. ChenC.H. WangL.T. LeeK.H. Discovery of novel 5-fluoro- N 2, N 4 -diphenylpyrimidine-2,4-diamines as potent inhibitors against CDK2 and CDK9.MedChemComm20156344445410.1039/C4MD00412D25914804
    [Google Scholar]
  244. MunikrishnappaC.S. PuranikS.B. KumarG.V.S. PrasadY.R. Part-1: Design, synthesis and biological evaluation of novel bromo-pyrimidine analogs as tyrosine kinase inhibitors.Eur. J. Med. Chem.2016119708210.1016/j.ejmech.2016.04.05627155464
    [Google Scholar]
  245. AshokN. MadhukarJ. SridharG. Design, synthesis and biological evaluation of 1,2,4-oxadiazole linked 1,2,4-thiadiazole-pyrimidines as anticancer agents.Chemical Data Collections20213210065310.1016/j.cdc.2021.100653
    [Google Scholar]
  246. RashidM. HusainA. ShaharyarM. MishraR. HussainA. AfzalO. Design and synthesis of pyrimidine molecules endowed with thiazolidin-4-one as new anticancer agents.Eur. J. Med. Chem.20148363064510.1016/j.ejmech.2014.06.03325010935
    [Google Scholar]
  247. AbdelazemA.Z. Al-SaneaM.M. ParkH.M. LeeS.H. Synthesis of new diarylamides with pyrimidinyl pyridine scaffold and evaluation of their anti-proliferative effect on cancer cell lines.Bioorg. Med. Chem. Lett.20162641301130410.1016/j.bmcl.2016.01.01426786696
    [Google Scholar]
  248. AbdelrehimE.S.M. El-SayedD.S. Synthesis, screening as potential antitumor of new poly heterocyclic compounds based on pyrimidine-2-thiones.BMC Chem.20221611610.1186/s13065‑022‑00810‑435313953
    [Google Scholar]
  249. AbbassE.M. KhalilA.K. El-NaggarA.M. Eco‐friendly synthesis of novel pyrimidine derivatives as potential anticancer agents.J. Heterocycl. Chem.20205731154116410.1002/jhet.3852
    [Google Scholar]
  250. YousifM.N. El-SayedW.A. AbbasH.A.S. AwadH.M. YousifN.M. Anticancer Activity of New Substituted Pyrimidines, Their Thioglycosides and Thiazolopyrimidine Derivatives.J App Pharm Sci201771102103210.7324/JAPS.2017.71104
    [Google Scholar]
  251. Ranjan DwivediA. KumarV. KaurH. KumarN. Prakash YadavR. PoduriR. BaranwalS. KumarV. Anti-proliferative potential of triphenyl substituted pyrimidines against MDA-MB-231, HCT-116 and HT-29 cancer cell lines.Bioorg. Med. Chem. Lett.2020302012746810.1016/j.bmcl.2020.12746832768647
    [Google Scholar]
  252. XuY. HaoS.Y. ZhangX.J. LiW.B. QiaoX.P. WangZ.X. ChenS.W. Discovery of novel 2,4-disubstituted pyrimidines as Aurora kinase inhibitors.Bioorg. Med. Chem. Lett.202030312688510.1016/j.bmcl.2019.12688531862411
    [Google Scholar]
  253. KhazirJ. MirB.A. ChashooG. MaqboolT. RileyD. PilcherL. Design, synthesis, and anticancer evaluation of acetamide and hydrazine analogues of pyrimidine.J. Heterocycl. Chem.20205731306131810.1002/jhet.3867
    [Google Scholar]
  254. LeonardB. Leukemia: A research report.DIANE Publishing1998
    [Google Scholar]
  255. RosmarinA. Leukemia, lymphoma, and myeloma.Cancer: Prevention, Early Detection, Treatment and Recovery SteinG.S. LuebbersK.P. 201910.1002/9781119645214.ch16
    [Google Scholar]
  256. JiaY. ZhangJ. FengJ. XuF. PanH. XuW. Design, synthesis and biological evaluation of pazopanib derivatives as antitumor agents.Chem. Biol. Drug Des.201483330631610.1111/cbdd.1224324119291
    [Google Scholar]
  257. HelwaA.A. GedawyE.M. TaherA.T. ED El-AnsaryA.K. Abou-SeriS.M. Synthesis and biological evaluation of novel pyrimidine-5-carbonitriles featuring morpholine moiety as antitumor agents.Future Med. Chem.202012540342110.4155/fmc‑2019‑014632027179
    [Google Scholar]
  258. HaoranW. AkhtarW. NainwalL.M. KaushikS.K. AkhterM. ShaquiquzzamanM. AlamM.M. Synthesis and biological evaluation of benzimidazole pendant cyanopyrimidine derivatives as anticancer agents.J. Heterocycl. Chem.20205793350336010.1002/jhet.4052
    [Google Scholar]
  259. NainwalL.M. ShaququzzamanM. AkhterM. HusainA. ParvezS. KhanF. NaematullahM. AlamM.M. Synthesis, ADMET prediction and reverse screening study of 3,4,5-trimethoxy phenyl ring pendant sulfur‐containing cyanopyrimidine derivatives as promising apoptosis inducing anticancer agents.Bioorg. Chem.202010410428210.1016/j.bioorg.2020.10428233010624
    [Google Scholar]
  260. AkhtarW. NainwalL.M. KaushikS.K. AkhtarM. ShaquiquzzamanM. AlmalkiF. SaifullahK. MarellaA. AlamM.M. Methylene‐bearing sulfur‐containing cyanopyrimidine derivatives for treatment of cancer: Part‐II.Arch. Pharm. (Weinheim)20203535e190033310.1002/ardp.20190033332115728
    [Google Scholar]
  261. SongX. HeY. KoenigM. ShinY. NoelR. ChenW. LingY.Y. FeursteinD. LinL. RuizC.H. CameronM.D. DuckettD.R. KameneckaT.M. Synthesis and SAR of 2,4-diaminopyrimidines as potent c-jun N-terminal kinase inhibitors.MedChemComm20123223824310.1039/C1MD00219H
    [Google Scholar]
  262. KochP. Inhibitors of c-Jun N-Terminal Kinase 3.Topics in Medicinal Chemistry20203620322410.1007/7355_2020_98
    [Google Scholar]
  263. KochP. GehringerM. LauferS.A. Inhibitors of c-Jun N-terminal kinases: an update.J. Med. Chem.2015581729510.1021/jm501212r25415535
    [Google Scholar]
  264. WityakJ. McGeeK.F. ConlonM.P. SongR.H. DuffyB.C. ClaytonB. LynchM. WangG. FreemanE. HaberJ. KitchenD.B. ManningD.D. IsmailJ. KhmelnitskyY. MichelsP. WebsterJ. IrigoyenM. LucheM. HultmanM. BaiM. KuokI.D. NewellR. LamersM. LeonardP. YatesD. MatthewsK. OngeriL. CliftonS. MeadT. DeupreeS. WheelanP. LyonsK. WilsonC. KiselyovA. Toledo-ShermanL. BeconiM. Muñoz-SanjuanI. BardJ. DominguezC. Lead optimization toward proof-of-concept tools for Huntington’s disease within a 4-(1H-pyrazol-4-yl)pyrimidine class of pan-JNK inhibitors.J. Med. Chem.20155872967298710.1021/jm501359825760409
    [Google Scholar]
  265. FerraraN. GerberH.P. LeCouterJ. The biology of VEGF and its receptors.Nat. Med.20039666967610.1038/nm0603‑66912778165
    [Google Scholar]
  266. SunW. HuS. FangS. YanH. Design, synthesis and biological evaluation of pyrimidine-based derivatives as VEGFR-2 tyrosine kinase inhibitors.Bioorg. Chem.20187839340510.1016/j.bioorg.2018.04.00529677483
    [Google Scholar]
  267. GerberH.P. FerraraN. The role of VEGF in normal and neoplastic hematopoiesis.J. Mol. Med. (Berl.)2003811203110.1007/s00109‑002‑0397‑412545246
    [Google Scholar]
  268. (a StuttfeldE. Ballmer-HoferK. Structure and function of VEGF receptors.IUBMB Life200961991592210.1002/iub.23419658168
    [Google Scholar]
  269. (b MusumeciF. RadiM. BrulloC. SchenoneS. Vascular endothelial growth factor (VEGF) receptors: drugs and new inhibitors.J. Med. Chem.20125524107971082210.1021/jm301085w23098265
    [Google Scholar]
  270. PizzoliniF. Synthesis of new anilino substituted pyrimidine fused derivatives as potential inhibitors of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2).Thesis, University of Pisa2013
    [Google Scholar]
  271. LvY. LiM. CaoS. TongL. PengT. WeiL. XieH. DingJ. DuanW. Discovery of anilinopyrimidine-based naphthamide derivatives as potent VEGFR-2 inhibitors.MedChemComm2015671375138010.1039/C5MD00191A
    [Google Scholar]
  272. ElsayedN.M.Y. Abou El EllaD.A. SeryaR.A.T. TolbaM.F. ShalabyR. AbouzidK.A.M. Design, synthesis and biological evaluation of indazole–pyrimidine based derivatives as anticancer agents with anti-angiogenic and antiproliferative activities.MedChemComm20167588189910.1039/C5MD00602C
    [Google Scholar]
  273. SanaS. ReddyV.G. BhandariS. ReddyT.S. TokalaR. SaklaA.P. BhargavaS.K. ShankaraiahN. Exploration of carbamide derived pyrimidine-thioindole conjugates as potential VEGFR-2 inhibitors with anti-angiogenesis effect.Eur. J. Med. Chem.202020011245710.1016/j.ejmech.2020.11245732422489
    [Google Scholar]
  274. Abdel-MohsenH.T. OmarM.A. El KerdawyA.M. MahmoudA.E.E. AliM.M. El DiwaniH.I. Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors.Eur. J. Med. Chem.201917970772210.1016/j.ejmech.2019.06.06331284081
    [Google Scholar]
  275. (a BessonA. DowdyS.F. RobertsJ.M. CDK inhibitors: cell cycle regulators and beyond.Dev. Cell200814215916910.1016/j.devcel.2008.01.01318267085
    [Google Scholar]
  276. (b Nilmani D’costaM. BotheA. DasS. Udhaya KumarS. GnanasambandanR. George Priya DossC. CDK regulators—Cell cycle progression or apoptosis—Scenarios in normal cells and cancerous cells.Adv. Protein Chem. Struct. Biol.202313512517710.1016/bs.apcsb.2022.11.00837061330
    [Google Scholar]
  277. MalumbresM. BarbacidM. Mammalian cyclin-dependent kinases.Trends Biochem. Sci.2005301163064110.1016/j.tibs.2005.09.00516236519
    [Google Scholar]
  278. TakakiT. FukasawaK. Suzuki-TakahashiI. HiraiH. Cdk-mediated phosphorylation of pRB regulates HDAC binding in vitro.Biochem. Biophys. Res. Commun.2004316125225510.1016/j.bbrc.2004.02.04415003538
    [Google Scholar]
  279. WangS. GriffithsG. MidgleyC.A. BarnettA.L. CooperM. GrabarekJ. IngramL. JacksonW. KontopidisG. McClueS.J. McInnesC. McLachlanJ. MeadesC. MeznaM. StuartI. ThomasM.P. ZhelevaD.I. LaneD.P. JacksonR.C. GloverD.M. BlakeD.G. FischerP.M. Discovery and characterization of 2-anilino-4- (thiazol-5-yl)pyrimidine transcriptional CDK inhibitors as anticancer agents.Chem. Biol.201017101111112110.1016/j.chembiol.2010.07.01621035734
    [Google Scholar]
  280. LiA. BlowJ.J. The origin of CDK regulation.Nat. Cell Biol.200138E182E18410.1038/3508711911483974
    [Google Scholar]
  281. SuryadinataR. SadowskiM. SteelR. SarcevicB. Cyclin-dependent kinase-mediated phosphorylation of RBP1 and pRb promotes their dissociation to mediate release of the SAP30·mSin3·HDAC transcriptional repressor complex.J. Biol. Chem.201128675108511810.1074/jbc.M110.19847321148318
    [Google Scholar]
  282. CheremnykhK.P. SavelyevV.A. PokrovskiiM.A. BaevD.S. TolstikovaT.G. PokrovskiiA.G. ShultsE.E. Design, synthesis, cytotoxicity, and molecular modeling study of 2,4,6-trisubstituted pyrimidines with anthranilate ester moiety.Med. Chem. Res.201928454555810.1007/s00044‑019‑02314‑8
    [Google Scholar]
  283. ShapiroG.I. Cyclin-dependent kinase pathways as targets for cancer treatment.J. Clin. Oncol.200624111770178310.1200/JCO.2005.03.768916603719
    [Google Scholar]
  284. WangY. ChenY. ChengX. ZhangK. WangH. LiuB. WangJ. Design, synthesis and biological evaluation of pyrimidine derivatives as novel CDK2 inhibitors that induce apoptosis and cell cycle arrest in breast cancer cells.Bioorg. Med. Chem.201826123491350110.1016/j.bmc.2018.05.02429853338
    [Google Scholar]
  285. XieF. ZhaoH. LiD. ChenH. QuanH. ShiX. LouL. HuY. Synthesis and biological evaluation of 2,4,5-substituted pyrimidines as a new class of tubulin polymerization inhibitors.J. Med. Chem.20115493200320510.1021/jm101388d21480626
    [Google Scholar]
  286. (a CarlsonB.A. DubayM.M. SausvilleE.A. BrizuelaL. WorlandP.J. Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells.Cancer Res.19965613297329788674031
    [Google Scholar]
  287. (b HuangX. XuS. DuanL. XuS. ZhuW. A patent review of small molecule CDK4/6 inhibitors in the treatment of cancer: 2020-present.Expert Opin Ther Pat202434982584210.1080/13543776.2024.2379926
    [Google Scholar]
  288. ChohanT. QianH. PanY. ChenJ.Z. Cyclin-dependent kinase-2 as a target for cancer therapy: progress in the development of CDK2 inhibitors as anti-cancer agents.Curr. Med. Chem.201422223726310.2174/092986732166614110611363325386824
    [Google Scholar]
  289. RyeC.S. ChessumN.E.A. LamontS. PikeK.G. FaulderP. DemerittJ. KemmittP. TuckerJ. ZaniL. CheesemanM.D. IsaacR. GoodwinL. BorosJ. RaynaudF. HayesA. HenleyA.T. de BillyE. LynchC.J. SharpS.Y. te PoeleR. FeeL.O. FooteK.M. GreenS. WorkmanP. JonesK. Discovery of 4,6-disubstituted pyrimidines as potent inhibitors of the heat shock factor 1 (HSF1) stress pathway and CDK9.MedChemComm2016781580158610.1039/C6MD00159A27746890
    [Google Scholar]
  290. JonesC.D. AndrewsD.M. BarkerA.J. BladesK. DauntP. EastS. GehC. GrahamM.A. JohnsonK.M. LoddickS.A. McFarlandH.M. McGregorA. MossL. RudgeD.A. SimpsonP.B. SwainM.L. TamK.Y. TuckerJ.A. WalkerM. The discovery of AZD5597, a potent imidazole pyrimidine amide CDK inhibitor suitable for intravenous dosing.Bioorg. Med. Chem. Lett.200818246369637310.1016/j.bmcl.2008.10.10218996007
    [Google Scholar]
  291. JingL. TangY. GotoM. LeeK.H. XiaoZ. SAR study on N 2, N 4 -disubstituted pyrimidine-2,4-diamines as effective CDK2/CDK9 inhibitors and antiproliferative agents.RSC Advances2018822118711188510.1039/C8RA01440J29682280
    [Google Scholar]
  292. CostantiniS. CaponeF. PoloA. BagnaraP. BudillonA. Valosin-Containing Protein (VCP)/p97: A Prognostic Biomarker and Therapeutic Target in Cancer.Int. J. Mol. Sci.202122181017710.3390/ijms22181017734576340
    [Google Scholar]
  293. PolucciP. MagnaghiP. AngioliniM. AsaD. AvanziN. BadariA. BertrandJ. CasaleE. CauteruccioS. CirlaA. CozziL. GalvaniA. JacksonP.K. LiuY. MagnusonS. MalgesiniB. NuvoloniS. OrreniusC. SirtoriF.R. RiceputiL. RizziS. TrucchiB. O’BrienT. IsacchiA. DonatiD. D’AlessioR. Alkylsulfanyl-1,2,4-triazoles, a new class of allosteric valosine containing protein inhibitors. Synthesis and structure-activity relationships.J. Med. Chem.201356243745010.1021/jm301321323245311
    [Google Scholar]
  294. JuJ.S. FuentealbaR.A. MillerS.E. JacksonE. Piwnica-WormsD. BalohR.H. WeihlC.C. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease.J. Cell Biol.2009187687588810.1083/jcb.20090811520008565
    [Google Scholar]
  295. YamamotoS. TomitaY. NakamoriS. HoshidaY. NaganoH. DonoK. UmeshitaK. SakonM. MondenM. AozasaK. Elevated expression of valosin-containing protein (p97) in hepatocellular carcinoma is correlated with increased incidence of tumor recurrence.J. Clin. Oncol.200321344745210.1200/JCO.2003.06.06812560433
    [Google Scholar]
  296. TsujimotoY. TomitaY. HoshidaY. KonoT. OkaT. YamamotoS. NonomuraN. OkuyamaA. AozasaK. Elevated expression of valosin-containing protein (p97) is associated with poor prognosis of prostate cancer.Clin. Cancer Res.20041093007301210.1158/1078‑0432.CCR‑03‑019115131036
    [Google Scholar]
  297. YamamotoS. TomitaY. HoshidaY. TakiguchiS. FujiwaraY. YasudaT. YanoM. NakamoriS. SakonM. MondenM. AozasaK. Expression level of valosin-containing protein is strongly associated with progression and prognosis of gastric carcinoma.J. Clin. Oncol.200321132537254410.1200/JCO.2003.12.10212829673
    [Google Scholar]
  298. YamamotoS. TomitaY. HoshidaY. NaganoH. DonoK. UmeshitaK. SakonM. IshikawaO. OhigashiH. NakamoriS. MondenM. AozasaK. Increased expression of valosin-containing protein (p97) is associated with lymph node metastasis and prognosis of pancreatic ductal adenocarcinoma.Ann. Surg. Oncol.200411216517210.1245/ASO.2004.05.01214761919
    [Google Scholar]
  299. GridelliC. RossiA. CarboneD.P. GuarizeJ. KarachaliouN. MokT. PetrellaF. SpaggiariL. RosellR. Non-small-cell lung cancer.Nat. Rev. Dis. Primers2015111500910.1038/nrdp.2015.927188576
    [Google Scholar]
  300. CerviG. MagnaghiP. AsaD. AvanziN. BadariA. BorghiD. CarusoM. CirlaA. CozziL. FelderE. GalvaniA. GasparriF. LomolinoA. MagnusonS. MalgesiniB. MottoI. PasiM. RizziS. SalomB. SorrentinoG. TroianiS. ValsasinaB. O’BrienT. IsacchiA. DonatiD. D’AlessioR. Discovery of 2-(cyclohexylmethylamino)pyrimidines as a new class of reversible valosine containing protein inhibitors.J. Med. Chem.20145724104431045410.1021/jm501313x25474526
    [Google Scholar]
  301. BursavichM.G. ParkerD.P. WillardsenJ.A. GaoZ.H. DavisT. OstaninK. RobinsonR. PetersonA. CimboraD.M. ZhuJ.F. RichardsB. 2-Anilino-4-aryl-1,3-thiazole inhibitors of valosin-containing protein (VCP or p97).Bioorg. Med. Chem. Lett.20102051677167910.1016/j.bmcl.2010.01.05820137940
    [Google Scholar]
  302. ZhangY. XieX. WangX. WenT. ZhaoC. LiuH. ZhaoB. ZhuY. Discovery of novel pyrimidine molecules containing boronic acid as VCP/p97 Inhibitors.Bioorg. Med. Chem.20213811611410.1016/j.bmc.2021.11611433831696
    [Google Scholar]
  303. ZhangJ.Q. LuoY.J. XiongY.S. YuY. TuZ.C. LongZ.J. LaiX.J. ChenH.X. LuoY. WengJ. LuG. Design, Synthesis, and Biological Evaluation of Substituted Pyrimidines as Potential Phosphatidylinositol 3-Kinase (PI3K) Inhibitors.J. Med. Chem.201659157268727410.1021/acs.jmedchem.6b0023527427973
    [Google Scholar]
  304. FosterF.M. TraerC.J. AbrahamS.M. FryM.J. The phosphoinositide (PI) 3-kinase family.J. Cell Sci.2003116153037304010.1242/jcs.0060912829733
    [Google Scholar]
  305. DownesC.P. BennettD. McConnachieG. LeslieN.R. PassI. MacPheeC. PatelL. GrayA. Antagonism of PI 3-kinase-dependent signalling pathways by the tumour suppressor protein, PTEN.Biochem. Soc. Trans.200129684685110.1042/bst029084611709086
    [Google Scholar]
  306. WelkerM.E. KulikG. Recent syntheses of PI3K/Akt/mTOR signaling pathway inhibitors.Bioorg. Med. Chem.201321144063409110.1016/j.bmc.2013.04.08323735831
    [Google Scholar]
  307. El-DydamonyN.M. AbdelnabyR.M. AbdelhadyR. AliO. FahmyM.I. R Fakhr EldeenR. HelwaA.A. Pyrimidine-5-carbonitrile based potential anticancer agents as apoptosis inducers through PI3K/AKT axis inhibition in leukaemia K562.J. Enzyme Inhib. Med. Chem.202237189591110.1080/14756366.2022.205102235345960
    [Google Scholar]
  308. WangX.M. XinM.H. XuJ. KangB.R. LiY. LuS.M. ZhangS.Q. Synthesis and antitumor activities evaluation of m-(4-morpholinoquinazolin-2-yl)benzamides in vitro and in vivo.Eur. J. Med. Chem.20159638239510.1016/j.ejmech.2015.04.03725911625
    [Google Scholar]
  309. ElmenierF.M. LasheenD.S. AbouzidK.A.M. Phosphatidylinositol 3 kinase (PI3K) inhibitors as new weapon to combat cancer.Eur. J. Med. Chem.201918311171810.1016/j.ejmech.2019.11171831581005
    [Google Scholar]
  310. BerrieC.P. Phosphoinositide 3-kinase inhibition in cancer treatment.Expert Opin. Investig. Drugs20011061085109810.1517/13543784.10.6.108511772237
    [Google Scholar]
  311. WalkerE.H. PacoldM.E. PerisicO. StephensL. HawkinsP.T. WymannM.P. WilliamsR.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine.Mol. Cell20006490991910.1016/S1097‑2765(05)00089‑411090628
    [Google Scholar]
  312. FoukasL.C. ClaretM. PearceW. OkkenhaugK. MeekS. PeskettE. SanchoS. SmithA.J.H. WithersD.J. VanhaesebroeckB. Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation.Nature2006441709136637010.1038/nature0469416625210
    [Google Scholar]
  313. DboukH.A. BackerJ.M. A beta version of life: p110β takes center stage.Oncotarget20101872973310.18632/oncotarget.20721321382
    [Google Scholar]
  314. JacksonS.P. SchoenwaelderS.M. GoncalvesI. NesbittW.S. YapC.L. WrightC.E. KencheV. AndersonK.E. DopheideS.M. YuanY. SturgeonS.A. PrabaharanH. ThompsonP.E. SmithG.D. ShepherdP.R. DanieleN. KulkarniS. AbbottB. SaylikD. JonesC. LuL. GiulianoS. HughanS.C. AngusJ.A. RobertsonA.D. SalemH.H. PI 3-kinase p110β: a new target for antithrombotic therapy.Nat. Med.200511550751410.1038/nm123215834429
    [Google Scholar]
  315. CostaC. Martin-ConteE.L. HirschE. Phosphoinositide 3-kinase p110γ in immunity.IUBMB Life2011639n/a10.1002/iub.51621800408
    [Google Scholar]
  316. RewcastleG.W. ShepherdP.R. ChaussadeC. DennyW.A. GamageS.A. Substituted pyrimidines and triazines and their use in cancer therapy.US Patent WO 2009/120094A22009
  317. (a PassM. 2,4,6-trisubstituted pyrimidines as phosphotidylinositol (PI) 3-kinase inhibitors and their use in the treatment of cancer.US patent, US 20090143384A12009
  318. (b GarcesA.E. StocksM.J. Class 1 PI3K clinical candidates and recent inhibitor design strategies: a medicinal chemistry perspective.J. Med. Chem.201962104815485010.1021/acs.jmedchem.8b0149230582807
    [Google Scholar]
  319. ShuttleworthS.J. SilvaF.A. CecilA.R.L. TomassiC.D. HillT.J. RaynaudF.I. ClarkeP.A. WorkmanP. Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (PI3K) inhibitors.Curr. Med. Chem.201118182686271410.2174/09298671179601122921649578
    [Google Scholar]
  320. NormanP. Selective PI3Kδ inhibitors, a review of the patent literature.Expert Opin. Ther. Pat.201121111773179010.1517/13543776.2011.62960622017414
    [Google Scholar]
  321. PrasadS. PerrinoC. RockmanH.A. Role of phosphoinositide 3-kinase in cardiac function and heart failure.Trends Cardiovasc. Med.200313520621210.1016/S1050‑1738(03)00080‑X12837584
    [Google Scholar]
  322. BorsariC. RageotD. BeaufilsF. BohnackerT. KelesE. BuslovI. MeloneA. SeleA.M. HebeisenP. FabbroD. HillmannP. WymannM.P. Preclinical development of PQR514, a highly potent PI3K inhibitor bearing a difluoromethyl–pyrimidine moiety.ACS Med. Chem. Lett.201910101473147910.1021/acsmedchemlett.9b0033331620236
    [Google Scholar]
  323. ShenS. HeX. YangZ. ZhangL. LiuY. ZhangZ. WangW. LiuW. LiY. HuangD. SunK. NiX. YangX. ChuX. CuiY. LvQ. LanJ. ZhouF. Discovery of an orally bioavailable dual PI3K/mTOR inhibitor based on sulfonyl-substituted morpholinopyrimidines.ACS Med. Chem. Lett.20189771972410.1021/acsmedchemlett.8b0016730034607
    [Google Scholar]
  324. PecchiS. RenhoweP.A. TaylorC. KaufmanS. MerrittH. WiesmannM. ShoemakerK.R. KnappM.S. OrnelasE. HendricksonT.F. FantlW. VolivaC.F. Identification and structure–activity relationship of 2-morpholino 6-(3-hydroxyphenyl) pyrimidines, a class of potent and selective PI3 kinase inhibitors.Bioorg. Med. Chem. Lett.201020236895689810.1016/j.bmcl.2010.10.02121035331
    [Google Scholar]
  325. PasqualeE.B. Eph receptors and ephrins in cancer: bidirectional signalling and beyond.Nat. Rev. Cancer201010316518010.1038/nrc280620179713
    [Google Scholar]
  326. VaughtD. Brantley-SiedersD.M. ChenJ. Eph receptors in breast cancer: roles in tumor promotion and tumor suppression.Breast Cancer Res.200810621710.1186/bcr220719144211
    [Google Scholar]
  327. AndertonM. van der MeulenE. BlumenthalM.J. SchäferG. The role of the Eph receptor family in tumorigenesis.Cancers (Basel)202113220610.3390/cancers1302020633430066
    [Google Scholar]
  328. SalgiaR. KulkarniP. GillP.S. EphB4: A promising target for upper aerodigestive malignancies.Biochim. Biophys. Acta Rev. Cancer20181869212813710.1016/j.bbcan.2018.01.00329369779
    [Google Scholar]
  329. KullanderK. KleinR. Mechanisms and functions of eph and ephrin signalling.Nat. Rev. Mol. Cell Biol.20023747548610.1038/nrm85612094214
    [Google Scholar]
  330. NoberiniR. LambertoI. PasqualeE.B. Targeting Eph receptors with peptides and small molecules: Progress and challenges.Semin. Cell Dev. Biol.2012231515710.1016/j.semcdb.2011.10.02322044885
    [Google Scholar]
  331. BarlaamB.C. DucrayR. KettleJ.G. Pyrimidine derivatives.US patent WO 2009/010789A22009
  332. BarlaamB. DucrayR. BremptC.L. PléP. BardelleC. BrooksN. ColemanT. CrossD. KettleJ.G. ReadJ. Inhibitors of the tyrosine kinase EphB4. Part 4: Discovery and optimization of a benzylic alcohol series.Bioorg. Med. Chem. Lett.20112182207221110.1016/j.bmcl.2011.03.00921441027
    [Google Scholar]
  333. BardelleC. BarlaamB. BrooksN. ColemanT. CrossD. DucrayR. GreenI. BremptC.L. OlivierA. ReadJ. Inhibitors of the tyrosine kinase EphB4. Part 3: Identification of non-benzodioxole-based kinase inhibitors.Bioorg. Med. Chem. Lett.201020216242624510.1016/j.bmcl.2010.08.10020850301
    [Google Scholar]
  334. ChenY. ZhangH. ZhangY. Targeting receptor tyrosine kinase EphB4 in cancer therapy.Semin. Cancer Biol.201956374610.1016/j.semcancer.2017.10.00228993206
    [Google Scholar]
  335. DemoulinJ.B. EssaghirA. PDGF receptor signaling networks in normal and cancer cells.Cytokine Growth Factor Rev.201425327328310.1016/j.cytogfr.2014.03.00324703957
    [Google Scholar]
  336. PetersonJ.E. ZurakowskiD. ItalianoJ.E.Jr MichelL.V. ConnorsS. OenickM. D’AmatoR.J. KlementG.L. FolkmanJ. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients.Angiogenesis201215226527310.1007/s10456‑012‑9259‑z22402885
    [Google Scholar]
  337. WelterM. RiegerH. Interstitial fluid flow and drug delivery in vascularized tumors: a computational model.PLoS One201388e7039510.1371/journal.pone.007039523940570
    [Google Scholar]
  338. UeharaH. KimS.J. KarashimaT. ShepherdD.L. FanD. TsanR. KillionJ.J. LogothetisC. MathewP. FidlerI.J. Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases.J. Natl. Cancer Inst.200395645847010.1093/jnci/95.6.45812644539
    [Google Scholar]
  339. PandeyP. KhanF. UpadhyayT.K. SeungjoonM. ParkM.N. KimB. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies.Biomed. Pharmacother.202316111449110.1016/j.biopha.2023.11449137002577
    [Google Scholar]
  340. ChaM.Y. LeeK.O. KangS.J. JungY.H. SongJ.Y. ChoiK.J. ByunJ.Y. LeeH.J. LeeG.S. ParkS.B. KimM.S. Synthesis and biological evaluation of pyrimidine-based dual inhibitors of human epidermal growth factor receptor 1 (HER-1) and HER-2 tyrosine kinases.J. Med. Chem.20125562846285710.1021/jm201758g22372864
    [Google Scholar]
  341. XuH. YuY. MarciniakD. RishiA.K. SarkarF.H. KucukO. MajumdarA.P.N. Epidermal growth factor receptor (EGFR)–related protein inhibits multiple members of the EGFR family in colon and breast cancer cells.Mol. Cancer Ther.20054343544210.1158/1535‑7163.MCT‑04‑028015767552
    [Google Scholar]
  342. KitadaiY. SasakiT. KuwaiT. NakamuraT. BucanaC.D. FidlerI.J. Targeting the expression of platelet-derived growth factor receptor by reactive stroma inhibits growth and metastasis of human colon carcinoma.Am. J. Pathol.200616962054206510.2353/ajpath.2006.06065317148668
    [Google Scholar]
  343. RanieriG. MammìM. Donato Di PaolaE. RussoE. GallelliL. CitraroR. GadaletaC.D. MarechI. AmmendolaM. De SarroG. Pazopanib a tyrosine kinase inhibitor with strong anti-angiogenetic activity: A new treatment for metastatic soft tissue sarcoma.Crit. Rev. Oncol. Hematol.201489232232910.1016/j.critrevonc.2013.08.01224041629
    [Google Scholar]
  344. ÖstmanA. HeldinC.H. PDGF receptors as targets in tumor treatment.Adv. Cancer Res.20079724727410.1016/S0065‑230X(06)97011‑017419949
    [Google Scholar]
  345. SmithR. DumasJ. WangG. LeeW. MirandaK. Substituted pyrimidine dervatives useful in the treatment of cancer and other disorders.US patent, US 2010/0081812A12010
  346. ZimmermannJ. BuchdungerE. MettH. MeyerT. LydonN.B. TraxlerP. Phenylamino-pyrimidine (PAP) — derivatives: a new class of potent and highly selective PDGF-receptor autophosphorylation inhibitors.Bioorg. Med. Chem. Lett.19966111221122610.1016/0960‑894X(96)00197‑7
    [Google Scholar]
  347. BuchdungerE. ZimmermannJ. MettH. MeyerT. MüllerM. DrukerB.J. LydonN.B. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative.Cancer Res.19965611001048548747
    [Google Scholar]
  348. PrevoR. FokasE. ReaperP.M. CharltonP.A. PollardJ.R. McKennaW.G. MuschelR.J. BrunnerT.B. The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy.Cancer Biol. Ther.201213111072108110.4161/cbt.2109322825331
    [Google Scholar]
  349. (a RundleS. BradburyA. DrewY. CurtinN. Targeting the ATR-CHK1 axis in cancer therapy.Cancers (Basel)2017954110.3390/cancers905004128448462
    [Google Scholar]
  350. (b QiuZ. OleinickN.L. ZhangJ. ATR/CHK1 inhibitors and cancer therapy.Radiother. Oncol.2018126345046410.1016/j.radonc.2017.09.04329054375
    [Google Scholar]
  351. WilsonZ. OdedraR. WallezY. WijnhovenP.W.G. HughesA.M. GerrardJ. JonesG.N. Bargh-DawsonH. BrownE. YoungL.A. O’ConnorM.J. LauA. ATR inhibitor AZD6738 (ceralasertib) exerts antitumor activity as a monotherapy and in combination with chemotherapy and the PARP inhibitor Olaparib.Cancer Res.20228261140115210.1158/0008‑5472.CAN‑21‑299735078817
    [Google Scholar]
  352. YapT.A. KrebsM.G. Postel-VinayS. El-KhouieryA. SoriaJ.C. LopezJ. BergesA. CheungS.Y.A. Irurzun-AranaI. GoldwinA. FelicettiB. JonesG.N. LauA. FrewerP. PierceA.J. ClackG. StephensC. SmithS.A. DeanE. HollingsworthS.J. Ceralasertib (AZD6738), an oral ATR kinase inhibitor, in combination with carboplatin in patients with advanced solid tumors: a phase I study.Clin. Cancer Res.202127195213522410.1158/1078‑0432.CCR‑21‑103234301752
    [Google Scholar]
  353. FooteK.M. NissinkJ.W.M. Pyrimidine indole derivatives for treating cancer.US Patent, WO 2010/073034 Al2010
  354. FooteK.M. BladesK. CroninA. FilleryS. GuichardS.S. HassallL. HicksonI. JacqX. JewsburyP.J. McGuireT.M. NissinkJ.W.M. OdedraR. PageK. PerkinsP. SulemanA. TamK. ThommesP. BroadhurstR. WoodC. Discovery of 4-{4-[(3 R)-3-Methylmorpholin-4-yl]-6-[1-(methylsulfonyl) cyclopropyl] pyrimidin-2-yl}-1 H-indole (AZ20): A potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity.J. Med. Chem.20135652125213810.1021/jm301859s23394205
    [Google Scholar]
  355. FooteK.M. LauA. M NissinkJ.W. Drugging ATR: progress in the development of specific inhibitors for the treatment of cancer.Future Med. Chem.20157787389110.4155/fmc.15.3326061106
    [Google Scholar]
  356. GoundryW.R.F. DaiK. GonzalezM. LeggD. O’Kearney-McMullanA. MorrisonJ. StarkA. SiedleckiP. TomlinP. YangJ. Development and Scale-up of a Route to ATR Inhibitor AZD6738.Org. Process Res. Dev.20192371333134210.1021/acs.oprd.9b00075
    [Google Scholar]
  357. GrahamM.A. AskeyH. CampbellA.D. ChanL. CooperK.G. CuiZ. DalgleishA. DaveD. EnsorG. Galan EspinosaM.R. HamiltonP. HeffernanC. JacksonL.V. JingD. JonesM.F. LiuP. MulhollandK.R. PervezM. PopadynecM. RandlesE. TomasiS. WangS. Development and scale-up of an improved manufacturing route to the ATR Inhibitor ceralasertib.Org. Process Res. Dev.2021251435610.1021/acs.oprd.0c00482
    [Google Scholar]
  358. (a DasD. HongJ. Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry.Eur. J. Med. Chem.2019170557210.1016/j.ejmech.2019.03.00430878832
    [Google Scholar]
  359. (b MountziosG. Making progress in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer by surpassing resistance: third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs).Ann. Transl. Med.20186814010.21037/atm.2017.10.0429862229
    [Google Scholar]
  360. PatelR. LeungH.Y. Targeting the EGFR-family for therapy: biological challenges and clinical perspective.Curr. Pharm. Des.201218192672267910.2174/13816121280062614822390755
    [Google Scholar]
  361. (a RyanP.D. ChabnerB.A. On receptor inhibitors and chemotherapy.Clin. Cancer Res.20006124607460911156209
    [Google Scholar]
  362. (b TortoraG. GelardiT. CiardielloF. BiancoR. The rationale for the combination of selective EGFR inhibitors with cytotoxic drugs and radiotherapy.Int. J. Biol. Markers2007224475210.5301/JBM.2008.379428207114
    [Google Scholar]
  363. GirardN. Optimizing outcomes and treatment sequences in EGFR mutation-positive non-small-cell lung cancer: recent updates.Future Oncol.201915252983299710.2217/fon‑2019‑040031452384
    [Google Scholar]
  364. SkoulidisF. PapadimitrakopoulouV.A. Targeting the Gatekeeper: Osimertinib in EGFR T790M Mutation–Positive Non–Small Cell Lung Cancer.Clin. Cancer Res.201723361862210.1158/1078‑0432.CCR‑15‑281527821604
    [Google Scholar]
  365. SantarpiaM. LiguoriA. KarachaliouN. Gonzalez-CaoM. DaffinàM.G. D’AveniA. MarabelloG. AltavillaG. RosellR. Osimertinib in the treatment of non-small-cell lung cancer: design, development and place in therapy.Lung Cancer (Auckl.)2017810912510.2147/LCTT.S11964428860885
    [Google Scholar]
  366. WuK.D. ChenG.S. LiuJ.R. HsiehC.E. ChernJ.W. Acrylamide Functional Group Incorporation Improves Drug-like Properties: An Example with EGFR Inhibitors.ACS Med. Chem. Lett.2019101222610.1021/acsmedchemlett.8b0027030655941
    [Google Scholar]
  367. CiardielloF. Epidermal growth factor receptor tyrosine kinase inhibitors as anticancer agents.Drugs200060253210.2165/00003495‑200060001‑0000311129169
    [Google Scholar]
  368. (a AyatiA. MoghimiS. ToolabiM. ForoumadiA. Pyrimidine-based EGFR TK inhibitors in targeted cancer therapy.Eur. J. Med. Chem.202122111352310.1016/j.ejmech.2021.11352333992931
    [Google Scholar]
  369. (b AyatiA. MoghimiS. SalarinejadS. SafaviM. PouramiriB. ForoumadiA. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy.Bioorg. Chem.20209910381110.1016/j.bioorg.2020.10381132278207
    [Google Scholar]
  370. YunC.H. BoggonT.J. LiY. WooM.S. GreulichH. MeyersonM. EckM.J. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity.Cancer Cell200711321722710.1016/j.ccr.2006.12.01717349580
    [Google Scholar]
  371. KuwaiT. NakamuraT. SasakiT. KitadaiY. KimJ.S. LangleyR.R. FanD. WangX. DoK.A. KimS.J. FidlerI.J. Targeting the EGFR, VEGFR, and PDGFR on colon cancer cells and stromal cells is required for therapy.Clin. Exp. Metastasis200825447748910.1007/s10585‑008‑9153‑718324358
    [Google Scholar]
  372. NasserA.A. EissaI.H. OunM.R. El-ZahabiM.A. TaghourM.S. BelalA. SalehA.M. MehanyA.B.M. LueschH. MostafaA.E. AfifiW.M. RoccaJ.R. MahdyH.A. Discovery of new pyrimidine-5-carbonitrile derivatives as anticancer agents targeting EGFR WT and EGFR T790M.Org. Biomol. Chem.202018387608763410.1039/D0OB01557A32959865
    [Google Scholar]
  373. SatoM. FuchidaH. ShindoN. KuwataK. TokunagaK. Xiao-LinG. InamoriR. HosokawaK. WatariK. ShibataT. MatsunagaN. KoyanagiS. OhdoS. OnoM. OjidaA. Selective Covalent Targeting of Mutated EGFR(T790M) with Chlorofluoroacetamide-Pyrimidines.ACS Med. Chem. Lett.20201161137114410.1021/acsmedchemlett.9b0057432550993
    [Google Scholar]
  374. OthmanI.M.M. AlamshanyZ.M. TashkandiN.Y. Gad-ElkareemM.A.M. AnwarM.M. NossierE.S. New pyrimidine and pyrazole-based compounds as potential EGFR inhibitors: Synthesis, anticancer, antimicrobial evaluation and computational studies.Bioorg. Chem.202111410507810.1016/j.bioorg.2021.10507834161878
    [Google Scholar]
  375. WatersonA.G. StevensK.L. RenoM.J. ZhangY.M. BorosE.E. BouvierF. RastagarA. UehlingD.E. DickersonS.H. ReepB. McDonaldO.B. WoodE.R. RusnakD.W. AlligoodK.J. RudolphS.K. Alkynyl pyrimidines as dual EGFR/ErbB2 kinase inhibitors.Bioorg. Med. Chem. Lett.20061692419242210.1016/j.bmcl.2006.01.11116483772
    [Google Scholar]
  376. ZhangQ. LiuY. GaoF. DingQ. ChoC. HurW. JinY. UnoT. JoazeiroC.A.P. GrayN. Discovery of EGFR selective 4,6-disubstituted pyrimidines from a combinatorial kinase-directed heterocycle library.J. Am. Chem. Soc.200612872182218310.1021/ja056748516478150
    [Google Scholar]
  377. LiangX. WuP. YangQ. XieY. HeC. YinL. YinZ. YueG. ZouY. LiL. SongX. LvC. ZhangW. JingB. An update of new small-molecule anticancer drugs approved from 2015 to 2020.Eur. J. Med. Chem.202122011347310.1016/j.ejmech.2021.11347333906047
    [Google Scholar]
  378. RoseT.L. WeirW.H. MayhewG.M. ShibataY. EulittP. UronisJ.M. ZhouM. NielsenM. SmithA.B. WoodsM. HaywardM.C. SalazarA.H. MilowskyM.I. WobkerS.E. McGintyK. MillburnM.V. EisnerJ.R. KimW.Y. Correction to: Fibroblast growth factor receptor 3 alterations and response to immune checkpoint inhibition in metastatic urothelial cancer: a real world experience.Br. J. Cancer202212681237123710.1038/s41416‑022‑01781‑y35277660
    [Google Scholar]
  379. KuriwakiI. KamedaM. IikuboK. HisamichiH. KawamotoY. KikuchiS. MoritomoH. KondohY. TerasakaT. AmanoY. TateishiY. EchizenY. IwaiY. NodaA. TomiyamaH. NakazawaT. HiranoM. Synthesis and structure-activity relationships of pyrimidine derivatives as potent and orally active FGFR3 inhibitors with both increased systemic exposure and enhanced in vitro potency.Bioorg. Med. Chem.20213311601910.1016/j.bmc.2021.11601933486159
    [Google Scholar]
  380. LiuL. WangZ. GaoC. DaiH. SiX. ZhangY. MengY. ZhengJ. KeY. LiuH. ZhangQ. Design, synthesis and antitumor activity evaluation of trifluoromethyl-substituted pyrimidine derivatives.Bioorg. Med. Chem. Lett.20215112826810.1016/j.bmcl.2021.12826834302974
    [Google Scholar]
  381. FilhoE.V. PinheiroE.M.C. PinheiroS. GrecoS.J. Aminopyrimidines: Recent synthetic procedures and anticancer activities.Tetrahedron20219213225610.1016/j.tet.2021.132256
    [Google Scholar]
  382. SanaS. ReddyV.G. Srinivasa ReddyT. TokalaR. KumarR. BhargavaS.K. ShankaraiahN. Cinnamide derived pyrimidine-benzimidazole hybrids as tubulin inhibitors: Synthesis, in silico and cell growth inhibition studies.Bioorg. Chem.202111010476510.1016/j.bioorg.2021.10476533677248
    [Google Scholar]
  383. AbbasN. SwamyP.M.G. DhiwarP. PatelS. GilesD. Development of fused and substituted pyrimidine derivatives as potent anticancer agents (a review).Pharm. Chem. J.202154121215122610.1007/s11094‑021‑02346‑8
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266317088240924205745
Loading
/content/journals/ctmc/10.2174/0115680266317088240924205745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test