Current Pharmaceutical Biotechnology - Volume 26, Issue 5, 2025
Volume 26, Issue 5, 2025
-
-
Nanodelivery Approaches of Phytoactives for Skin Cancers: Current and Future Perspectives
In recent years, there has been an increase in skin cancers due to external factors, especially environmental factors, and studies on treatment alternatives have gained importance. Nanomaterials are common, from sunscreen formulas to formulations designed to treat skin cancers at various stages. Using bioactives has multiple effects in treating skin cancers, which provides many advantages. In this regard, many phytochemicals gain importance with their antioxidant, anti-proliferative, anti-inflammatory, antiangiogenic, and analgesic effects. Their delivery with nanocarriers is on the agenda for phytochemicals to gain the targeted stability, effectiveness, and toxicity/safety properties. This review presents types of skin cancers, phytochemicals effective in skin cancers, and their nanocarrier-loaded studies from an up-to-date perspective.
-
-
-
Non-receptor Type PTPases and their Role in Controlling Pathways Related to Diabetes and Liver Cancer Signalling
Authors: Nidhee Chaudhary and Bellam KiranmayeeThe role of non-receptor type Protein Tyrosine Phosphatase (PTPases) in controlling pathways related to diabetes and Hepatocellular Carcinoma (HCC) is significant. The insulin signal transduction pathway is regulated by the steady-state phosphorylation of tyrosyl residues of the insulin receptor and post-receptor substrates. PTPase has been shown to have a physiological role in the regulation of reversible tyrosine phosphorylation. There are several non-receptor type PTPases. PTPase containing the SH-2 domain (SHP-2) and the non-receptor type PTPase (PTP1B; encoded by the PTPN1 gene) are involved in negative regulation of the insulin signaling pathway, thereby indicating that the pathway can be made more efficient by the reduction in the activity of specific PTPases. Reduction in insulin resistance may be achieved by drugs targeting these specific enzymes. The modifications in the receptor and post-receptor events of insulin signal transduction give rise to insulin resistance, and a link between insulin-resistant states and HCC has been established. The cancer cells thrive on higher levels of energy and their growth gets encouraged since insulin-resistant states lead to greater glucose levels. Cancer, hyperglycemia, and hypoglycemia are highly linked through various pathways hence, clarifying the molecular mechanisms through which non-receptor type PTPase regulates the insulin signal transduction is necessary to find an effective target for cancer. Targeting the pathways related to PTPases; both receptor and non-receptor types, may lead to an effective candidate to fight against diabetes and HCC.
-
-
-
Role of Medicinal Plants in the Management of Multiple Sclerosis
Authors: Aaryan Gupta, Arpita Roy, Amit Roy, Vaseem Raja, Kuldeep Sharma and Rajan VermaThere is a rapid spread of Multiple Sclerosis disorder across the globe, around 2.8 million cases of Multiple Sclerosis in the world. Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by demyelination, neuroinflammation, and a wide spectrum of clinical manifestations. Many drugs have been tested on MS patients but there is no effective treatment for MS till now. So to inhibit the symptoms caused by MS we performed a study in which we identified various naturally occurring materials with neuroprotective effects on the body that can treat Multiple Sclerosis. The therapeutic strategies portion of the paper reviews the array of disease-modifying therapies currently available for MS management. This paper evaluated their mechanisms of action, efficacy, and safety profiles. It also addressed emerging treatment paradigms by using different naturally occurring materials, including personalized medicine approaches and novel therapies in development. This paper provides a comprehensive overview of the current state of knowledge regarding MS, focusing on its pathogenesis, diagnostic approaches, and therapeutic strategies.
-
-
-
Therapeutic Modulation of the Microbiome in Oncology: Current Trends and Future Directions
Authors: Istuti Saraswat and Anjana GoelCancer is a predominant cause of mortality worldwide, necessitating the development of innovative therapeutic techniques. The human microbiome, particularly the gut microbiota, has become a significant element in cancer research owing to its essential role in sustaining health and influencing disease progression. This review examines the microbiome's makeup and essential functions, including immunological modulation and metabolic regulation, which may be evaluated using sophisticated methodologies such as metagenomics and 16S rRNA sequencing. The microbiome influences cancer development by promoting inflammation, modulating the immune system, and producing carcinogenic compounds. Dysbiosis, or microbial imbalance, can undermine the epithelial barrier and facilitate cancer. The microbiome influences chemotherapy and radiation results by modifying drug metabolism, either enhancing or reducing therapeutic efficacy and contributing to side effects and toxicity. Comprehending these intricate relationships emphasises the microbiome's significance in oncology and accentuates the possibility for microbiome-targeted therapeutics. Contemporary therapeutic approaches encompass the utilisation of probiotics and dietary components to regulate the microbiome, enhance treatment efficacy, and minimise unwanted effects. Advancements in research indicate that personalised microbiome-based interventions, have the potential to transform cancer therapy, by providing more effective and customised treatment alternatives. This study aims to provide a comprehensive analysis of the microbiome's influence on the onset and treatment of cancer, while emphasising current trends and future possibilities for therapeutic intervention.
-
-
-
Synthetic and Natural Radioprotective Agents: Recent Status and their Underlying Mechanism of Action
Authors: Juhi Mishra, Neelam Poonia, Viney Lather, Dhruv Kumar Nishad and Deepti PanditaVarious substances possessing radiation scavenging properties, known as radioprotectors, play a crucial role in shielding organisms from the harmful effects of ionizing radiation (IR) by preventing cellular damage caused by free radicals. Initially, synthetic radioprotectors were developed using thiol synthetic compounds. However, among these, only amifostine (WR-2721) underwent clinical testing as a radioprotector. Various composites with different chemical structures other than thiol compounds were also investigated. However, synthetic radioprotectors are known to be associated with severe side effects, which lead to an inclination towards natural substances. Plants and natural products have emerged as promising sources of radioprotectors, renowned for their non-toxic nature across a broad range of doses and their cost-effectiveness. Radioprotectors are employed in diverse pharmaceutical approaches to mitigate the toxicities induced by radiation. The present review encompasses a detailed account of various synthetic and naturally occurring compounds possessing radioprotective properties, and different investigations related to their radioprotective action, ranging from free radicals scavenging to gene therapy, have also been precisely covered. Numerous radioprotectors have different mechanisms of action, and have proven benefits of naturally occurring compounds over chemically synthesized ones.
-
-
-
SiRNA-mediated Knockdown of ABCB1 Enhances the Efficacy of Doxorubicin and Vinorelbine in Breast Cancer Cells
BackgroundBreast cancer remains a leading cause of cancer-related deaths among women, primarily attributed to the formidable challenge of multidrug resistance, often driven by the overexpression of the ABCB1 gene.
ObjectiveThis study aimed to assess the synergistic effects of siRNA, doxorubicin, and vinorelbine on ABCB1 gene expression and cell viability in doxorubicin-resistant MCF-7/ADR breast cancer cells, with siRNA targeting ABCB1 to reduce its expression and doxorubicin/ vinorelbine to eradicate cancer cells.
MethodsOur methodology involved culturing MCF-7 and MCF-7/ADR cells in standard cell culture conditions. The synthesized siRNA sequences transfected cells with siRNA at final concentrations of 10, 20, and 30 nM and assessed cell viability using the MTT assay was performed. Real-time PCR was employed to quantify ABCB1 mRNA expression levels.
ResultsResults indicated that MCF-7/ADR cells exhibited substantial resistance to vinorelbine and doxorubicin compared to MCF-7 cells, displaying resistance at 12.50 μM and 25.00 μM for vinorelbine and 6.25 μM and 25.00 μM for doxorubicin. Remarkably, siRNA treatment effectively reversed drug resistance in MCF-7/ADR cells across all concentrations of vinorelbine and doxorubicin tested. When combined, siRNA, doxorubicin, and vinorelbine yielded a significantly greater reduction in cell viability compared to individual drug treatments, particularly at a 20 μM siRNA concentration. This combination therapy also significantly suppressed ABCB1 gene expression by a factor of 41.48 in MCF-7 cells relative to MCF-7/ADR cells.
Conclusionthese findings suggest that combining siRNA, doxorubicin, and vinorelbine holds promise as a therapeutic strategy to overcome ABCB1-mediated multidrug resistance in breast cancer. Further investigations and clinical trials are warranted to evaluate its clinical efficacy rigorously.
-
-
-
Phytochemical Composition of Urtica dioica Essential Oil with Antioxidant and Anti-inflammatory Properties: In Vitro and In Vivo Studies
BackgroundUrtica dioica (Urticaceae) has outstanding medicinal and pharmacological properties. This investigation was aimed to assess the chemical composition, the total polyphenol and flavonoid content, antioxidant, anti-proliferative, and anti-inflammatory effects of Urtica dioica essential oil (UDEO).
MethodsGC/MS analysis was performed to assess the chemical composition, standard antioxidative test, the DPPH assay, the reducing power assay, as well as the anti-proliferative capacities of UDEO against HeLa cell lines using the MTT test. In addition, the anti-inflammatory activities of UDEO were evaluated using paw thickness measurements in rats with carrageenan-induced paw edema and pathologic evaluation of inflammation in paw sections.
ResultsGC/MS analysis revealed benzene dicarboxylic acid (14.69%), β-linalool (9.79%), phytol (9.52%), menthol (6.65%), borneol (6.45%), 3-Eicosene (E) (6.10%), 1-8 cineole (5.60%) and camphor (5.36%) as the major components of UDEO.
In vitro results showed that UDEO contained 191 ± 2.04 mg GAE/g of polyphenols and 83.59 ± 4.7 mg CE/g of flavonoids. In addition, the UDEO showed a radical scavenging activity with IC50=0.14 ± 0.003 mg/mL and a ferric reducing antioxidant power (FRAP) (optical density = 0.556). A side from the UDEO's antioxidant properties, our findings revealed a reduction in ROS generation in the HeLa cell line. Furthermore, the anti-proliferative activity of UDEO is accompanied by a cytotoxicity effect (IC50 at 3.20 µg ml-1).
Data from inflammation models revealed that UDEO has an anti-inflammatory effect. The pretreatment with UDEO or Indomethacin (Ind) reduced significantly the volume of edema induced by Carr, the level of C-reactive protein (CRP), the reactive thiobarbituric acid (TBARS), the conjugated dienes (CD), the carbonyl proteins (CP) and the advanced protein oxidation products (AOPP). Furthermore, it restored the hematology parameters such as white blood cells (WBC), lymphocytes (LYM), and platelets (PLT). In addition, it increased the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). In UDEO-treated rats, the histopathological examinations of the paws revealed little infiltration of inflammatory cells.
ConclusionThe decrease in paw edema and human cell lines HeLa cytotoxicity showed that UDEO possesses anti-inflammatory and antioxidant properties, which could be attributed to the high amount of phenolic and flavonoid contents.
-
-
-
cRGD-platelet@MnO/MSN@PPARα/LXRα Nanoparticles Improve Atherosclerosis in Rats by Inhibiting Inflammation and Reducing Blood Lipid
Authors: Zheng Lv, Yupeng Zhang, Mengke Lu, Ziyi Wang, Xiaoyue Nong, Guoliang Wen and Wei ZhangObjectiveAtherosclerosis (AS) is an inflammatory disease of arterial intima driven by lipids. Liver X receptor alpha (LXRα) and peroxisome proliferator-activated receptor alpha (PPARα) agonists are limited in the treatment of AS due to their off-target effects and serious side effects. Therefore, this study was designed to construct a novel nanoparticle (NP) and evaluate its mechanism of action on inflammation inhibition and lipid reduction in AS.
MethodsWe synthesized cRGD-platelet@MnO/MSN@PPARα/LXRα NPs (cRGD-platelet-NPs) and confirmed their size, safety, and targeting ability through various tests, including dynamic light scattering and immunofluorescence. In vivo and in vitro experiments assessed cell proliferation, apoptosis, inflammation, and plaque formation. Finally, the NF-κB signaling pathway expression in rat aorta was determined using a western blot.
ResultsThe synthesis of cRGD-platelet-NPs was successful; the particle size was approximately 150 nm, and the PDI was below 0.3. They could be successfully absorbed by cells, exhibiting high safety in vivo and in vitro. The cRGD-platelet-NPs successfully reduced plaque formation, improved lipid profiles by lowering LDL-cholesterol, total cholesterol, and triglycerides, and raised HDL-cholesterol levels. Additionally, they decreased inflammatory markers in the serum and aortic tissue, suggesting reduced inflammation. Immunohistochemistry and western blot analyses indicated that these NPs could not only promote M2 macrophage polarization but also suppress the NF-κB signaling pathway.
ConclusionThe newly developed cRGD-platelet-NPs with high safety are a promising approach to AS treatment, which can regulate ABCA1, reduce the formation of AS plaques, and enhance cholesterol efflux. The mechanism may involve the suppression of the NF-κB signaling pathway.
-
-
-
The Causal Role of Uterine Fibroid in Keloid and Hypertrophic Scar: A Bidirectional Mendelian Randomization Study on European Populations
Authors: Xiaobo Zhou, Jui-Ming Lin, Hui Wang, Yiyi Gong, Jinran Lin, Wenyu Wu and Jia HuangBackgroundThe relationship between uterine fibroids and keloid/hypertrophic scars has been contradictory. Our research employs a bidirectional Mendelian Randomization (MR) approach to establish a clearer understanding of this potential causal link.
ObjectiveThis study aimed to determine the effect of uterine fibroids on keloid/hypertrophic scars and the effect of keloid/hypertrophic scars on uterine fibroids.
PurposeWe aimed to demonstrate the relationship between uterine fibroids and keloid/hypertrophic scars.
MethodsOur bidirectional MR study utilized summarized data from genome-wide association studies (GWAS) focused on European populations. Our primary tool for establishing causality was the Inverse-Variance Weighted (IVW) method. To reinforce the IVW findings, we also applied four alternative MR methods: MR-Egger, Maximum Likelihood, Weighted Mode, and Weighted Median.
ResultsThe IVW method indicated a significant causal link, with uterine fibroids greatly raising the likelihood of developing keloids (Odds Ratio [OR] = 1.202, 95% Confidence Interval [CI]: 1.045-1.381; P=0.010) and hypertrophic scars (OR = 1.256, 95% CI: 1.039-1.519; P=0.018). Parallel results were observed with the MR-Egger, Maximum Likelihood, Weighted Mode, and Weighted Median methods. Sensitivity analyses indicated robustness in these findings, with no evidence of heterogeneity or horizontal pleiotropy. Conversely, the reverse MR analysis did not demonstrate an increased risk of uterine fibroids due to keloids or hypertrophic scars.
ConclusionThis study elucidates a significant causal effect of uterine fibroids on the development of keloid and hypertrophic scars, offering valuable insights into their pathogenesis and potential therapeutic targets.
-
-
-
Gossypetin Alleviates DSS-induced Colitis by Regulating COX2 and ROS-JNK Signaling
BackgroundInflammatory Bowel Disease (IBD) represents a chronic and recurrent inflammatory condition affecting the gastrointestinal tract, with a rising global incidence. Current treatment approaches include surgery and drugs. However, surgeries are invasive procedures, while drug treatments often present with various side effects. Gossypetin, a flavonoid found abundantly in plants such as hibiscus, exhibits anti-oxidant and anti-cancer properties. However, its potential impact on IBD remains unexplored.
ObjectiveThis study aimed to investigate the therapeutic potential of gossypetin on colitis.
MethodsWe employed the DSS-induced colitis model to evaluate the therapeutic potential of gossypetin on colitis. The efficacy of gossypetin was assessed within this model using the Disease Activity Index (DAI) score and histological analysis. Additionally, we utilized qRT-PCR to measure the levels of inflammatory cytokines and Superoxide Dismutase (SOD). Immunohistochemistry confirmed the expression of tight junction markers, COX-2, and phosphorylated JNK protein, normally associated with disease progression. Furthermore, Western blot analysis was conducted to examine the SOD levels and anti-apoptotic effects of gossypetin.
ResultsIn DSS-induced colitis mice, gossypetin treatment ameliorated weight loss and reduced colon length caused by DSS treatment. Additionally, gossypetin-treated groups exhibited DAI scores and reduced histological damage. Moreover, gossypetin treatment increased tight junction expression, decreased inflammatory responses, reduced ROS levels, attenuated JNK signaling, and decreased apoptosis.
ConclusionGossypetin shows therapeutic potential for mitigating the symptoms and progression of colitis by targeting ROS–JNK signaling involved in inflammation and tissue damage. This highlights the potential of natural compounds such as gossypetin for targeted therapies with reduced side effects and improved efficacy.
-
-
-
Assessment of the Anti-adipogenic Effect of Crateva religiosa Bark Extract for Molecular Regulation of Adipogenesis: In Silico and In Vitro Approaches for Management of Hyperlipidemia Through the 3T3-L1 Cell Line
Authors: Monika Singh, Monika Sachdeva and Nitin KumarAimsThis study aimed to determine the phytoconstituents of Crateva religiosa bark (CRB) and evaluate the hypolipidemic effect of bioactive CRB extract by preventing adipocyte differentiation and lipogenesis.
BackgroundAfter performing the preliminary phytochemicals screening, the antioxidant activity of CRB extracts was determined through a DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay. Ethyl acetate extract (CREAE) and ethanol extract (CRETE) of CRB were selected for chromatographic evaluation.
MethodsThe antihyperlipidemic potential was analyzed by molecular docking through the PKCMS software platform. Further, a 3T3-L1 cell line study via in vitro sulforhodamine B assay and western blotting was performed to confirm the prevention of adipocyte differentiation and lipogenesis
ResultsThe total phenolic contents in CREAE and CRETE were estimated as 29.47 and 81.19 μg/mg equivalent to gallic acid, respectively. The total flavonoid content was found to be 8.78 and 49.08 μg/mg, equivalent to quercetin in CREAE and CRETE, respectively. CRETE exhibited greater scavenging activity with the IC50 value of 61.05 µg/ mL. GC-MS analysis confirmed the presence of three bioactive molecules, stigmasterol, gamma sitosterol, and lupeol, in CRETE. Molecular docking studies predicted that the bioactive molecules interact with HMG-CoA reductase, PPARγ, and CCAAT/EBP, which are responsible for lipid metabolism. In vitro, Sulforhodamine B assays revealed that CRETE dose-dependently reduced cell differentiation and viability. Cellular staining using ‘Oil Red O’ revealed a decreased lipid content in the CRETE-treated cell lines. CRETE significantly inhibited the induction of PPARγ and CCAAT/EBP expression, as determined through protein expression via western blotting.
ConclusionThe influence of CRETE on lipid metabolism in 3T3-L1 cells is potentially suggesting a new approach to managing hyperlipidemia.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
