Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

The role of non-receptor type Protein Tyrosine Phosphatase (PTPases) in controlling pathways related to diabetes and Hepatocellular Carcinoma (HCC) is significant. The insulin signal transduction pathway is regulated by the steady-state phosphorylation of tyrosyl residues of the insulin receptor and post-receptor substrates. PTPase has been shown to have a physiological role in the regulation of reversible tyrosine phosphorylation. There are several non-receptor type PTPases. PTPase containing the SH-2 domain (SHP-2) and the non-receptor type PTPase (PTP1B; encoded by the PTPN1 gene) are involved in negative regulation of the insulin signaling pathway, thereby indicating that the pathway can be made more efficient by the reduction in the activity of specific PTPases. Reduction in insulin resistance may be achieved by drugs targeting these specific enzymes. The modifications in the receptor and post-receptor events of insulin signal transduction give rise to insulin resistance, and a link between insulin-resistant states and HCC has been established. The cancer cells thrive on higher levels of energy and their growth gets encouraged since insulin-resistant states lead to greater glucose levels. Cancer, hyperglycemia, and hypoglycemia are highly linked through various pathways hence, clarifying the molecular mechanisms through which non-receptor type PTPase regulates the insulin signal transduction is necessary to find an effective target for cancer. Targeting the pathways related to PTPases; both receptor and non-receptor types, may lead to an effective candidate to fight against diabetes and HCC.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010288624240213072415
2025-04-01
2025-10-14
Loading full text...

Full text loading...

References

  1. LizcanoJ.M. AlessiD.R. The insulin signalling pathway.Curr. Biol.2002127R236R23810.1016/S0960‑9822(02)00777‑7 11937037
    [Google Scholar]
  2. VecchioI. TornaliC. BragazziN.L. MartiniM. The discovery of insulin: An important milestone in the history of medicine.Front. Endocrinol.2018961310.3389/fendo.2018.00613 30405529
    [Google Scholar]
  3. BjörnholmM. ZierathJ.R. Insulin signal transduction in human skeletal muscle: identifying the defects in Type II diabetes.Biochem. Soc. Trans.200533235435710.1042/BST0330354 15787605
    [Google Scholar]
  4. ClemmonsD.R. Metabolic actions of insulin-like growth factor-I in normal physiology and diabetes.Endocrinol. Metab. Clin. North Am.2012412425443vii-viii.10.1016/j.ecl.2012.04.017 22682639
    [Google Scholar]
  5. VigneriP. FrascaF. SciaccaL. PandiniG. VigneriR. Diabetes and cancer.Endocr. Relat. Cancer20091641103112310.1677/ERC‑09‑0087 19620249
    [Google Scholar]
  6. LetoD. SaltielA.R. Regulation of glucose transport by insulin: Traffic control of GLUT4.Nat. Rev. Mol. Cell Biol.201213638339610.1038/nrm3351 22617471
    [Google Scholar]
  7. Solomon-ZemlerR. Basel-VanagaiteL. SteierD. YakarS. MelE. PhillipM. BazakL. BercovichD. WernerH. de VriesL. A novel heterozygous IGF-1 receptor mutation associated with hypoglycemia.Endocr. Connect.20176639540310.1530/EC‑17‑0038 28649085
    [Google Scholar]
  8. DuanW ShenX LeiJ Hyperglycemia, a neglected factor during cancer progression.20141010.1155/2014/461917
    [Google Scholar]
  9. SamuelV.T. ShulmanG.I. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux.J. Clin. Invest.20161261122210.1172/JCI77812 26727229
    [Google Scholar]
  10. WernerH. WeinsteinD. BentovI. Similarities and differences between insulin and IGF-I: Structures, receptors, and signalling pathways.Arch. Physiol. Biochem.20081141172210.1080/13813450801900694 18465355
    [Google Scholar]
  11. DenduluriS.K. IdowuO. WangZ. LiaoZ. YanZ. MohammedM.K. YeJ. WeiQ. WangJ. ZhaoL. LuuH.H. Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance.Genes Dis.201521132510.1016/j.gendis.2014.10.004 25984556
    [Google Scholar]
  12. AlonsoA. SasinJ. BottiniN. PTPases in the human genome.Cell2004117669971110.1016/j.cell.2004.05.018 15186772
    [Google Scholar]
  13. JeongH. KohA. LeeJ. ParkD. LeeJ.O. LeeM.N. JoK.J. TranH.N.K. KimE. MinB.S. KimH.S. BerggrenP.O. RyuS.H. Inhibition of C1-Ten PTPase activity reduces insulin resistance through IRS-1 and AMPK pathways.Sci. Rep.2017711777710.1038/s41598‑017‑18081‑8 29259227
    [Google Scholar]
  14. YuenM.F. WuP.C. LaiV.C. Expression of c‐Myc, c‐Fos, and c‐Jun in HCC.Cancer200191110611210.1002/1097‑0142(20010101)91:1<106:AID‑CNCR14>3.0.CO;2‑2 11148566
    [Google Scholar]
  15. PatelJ.H. LobodaA.P. ShoweM.K. ShoweL.C. McMahonS.B. Analysis of genomic targets reveals complex functions of MYC.Nat. Rev. Cancer20044756256810.1038/nrc1393 15229481
    [Google Scholar]
  16. D’AndrilliG. KumarC. ScambiaG. GiordanoA. Cell cycle genes in ovarian cancer: Steps toward earlier diagnosis and novel therapies.Clin. Cancer Res.200410248132814110.1158/1078‑0432.CCR‑04‑0886 15623586
    [Google Scholar]
  17. FabregatI. Dysregulation of apoptosis in HCC cells.World J. Gastroenterol.200915551310.3748/wjg.15.513 19195051
    [Google Scholar]
  18. AnandP. KunnumakaraA.B. SundaramC. HarikumarK.B. TharakanS.T. LaiO.S. SungB. AggarwalB.B. Cancer is a preventable disease that requires major lifestyle changes.Pharm. Res.20082592097211610.1007/s11095‑008‑9661‑9 18626751
    [Google Scholar]
  19. GoldsteinB.J. AhmadF. DingW. LiP.M. ZhangW.R. Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases.Mol. Cell. Biochem.19981821/2919910.1023/A:1006812218502 9609118
    [Google Scholar]
  20. GoldsteinB.J. MahadevK. WuX. ZhuL. MotoshimaH. Role of insulin-induced reactive oxygen species in the insulin signaling pathway.Antioxid. Redox Signal.200577-81021103110.1089/ars.2005.7.1021 15998257
    [Google Scholar]
  21. KohA. LeeM.N. YangY.R.S.H. C1-Ten is a PTPase of insulin receptor substrate 1 (IRS-1), regulating IRS-1 stability and muscle atrophy.Mol. Cell. Biol.20133381608162010.1128/MCB.01447‑12 23401856
    [Google Scholar]
  22. WolfG. TrübT. OttingerE. GroningaL. LynchA. WhiteM.F. MiyazakiM. LeeJ. ShoelsonS.E. PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities.J. Biol. Chem.199527046274072741010.1074/jbc.270.46.27407 7499194
    [Google Scholar]
  23. HajF.G. VerveerP.J. SquireA. NeelB.G. BastiaensP.I.H. Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum.Science200229555601708171110.1126/science.1067566 11872838
    [Google Scholar]
  24. ZhangS. ZhangZ. PTP1B as a drug target: Recent developments in PTP1B inhibitor discovery.Drug Discov. Today2007129-1037338110.1016/j.drudis.2007.03.011 17467573
    [Google Scholar]
  25. ShimizuS. TakeharaT. HikitaH. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human HCC.J. Hepatol.201052569870410.1016/j.jhep.2009.12.024 20347499
    [Google Scholar]
  26. IvanovaS.A. SemkeV.Y. VetluginaT.P. RakitinaN.M. KudyakovaT.A. SimutkinG.G. Signs of apoptosis of immunocompetent cells in patients with depression.Neurosci. Behav. Physiol.200737552753010.1007/s11055‑007‑0047‑y 17505807
    [Google Scholar]
  27. El‐SeragH.B. Epidemiology of HCC. The Liver.Biol Path.202012758772
    [Google Scholar]
  28. HungC.H. WangJ.H. HuT.H. Insulin resistance is associated with HCC in chronic hepatitis C infection.World J. Gastroenterol.20101618226510.3748/wjg.v16.i18.2265 20458764
    [Google Scholar]
  29. KumarR. GohB.B. KamJ.W. Comparisons between non-alcoholic steatohepatitis and alcohol-related HCC.Clin. Mol. Hepatol.202026219610.3350/cmh.2019.0012 31914720
    [Google Scholar]
  30. BreuhahnK. LongerichT. SchirmacherP. Dysregulation of growth factor signaling in human HCC.Oncogene200625273787380010.1038/sj.onc.1209556 16799620
    [Google Scholar]
  31. LiX. WangX. GaoP. Diabetes mellitus and risk of HCC.BioMed Res. Int.20175202684 29379799
    [Google Scholar]
  32. RegimbeauJ.M. ColombatM. MognolP. Obesity and diabetes as a risk factor for HCC.Liver Transpl.200410S2S69S7310.1002/lt.20033 14762843
    [Google Scholar]
  33. HansenL. DieckmannN.F. KolbeckK.J. Symptom distress in patients with HCC toward the end of life.Oncol Nurs Forum2017655673
    [Google Scholar]
  34. RawlaP. SunkaraT. MuralidharanP. Update in global trends and aetiology of HCC.Contemp. Oncol.2018223141
    [Google Scholar]
  35. NaganoH. NoguchiT. InagakiK. Downregulation of stomach cancer-associated PTPase-1 (SAP-1) in advanced human HCC.Oncogene200322304656466310.1038/sj.onc.1206588 12879010
    [Google Scholar]
  36. SilverB. RamaiyaK. AndrewS.B. FredrickO. BajajS. KalraS. CharlotteB.M. ClaudineK. MakhobaA. EADSG guidelines: Insulin therapy in diabetes.Diabetes Ther.20189244949210.1007/s13300‑018‑0384‑6 29508275
    [Google Scholar]
  37. MacdonaldI.A. A review of recent evidence relating to sugars, insulin resistance and diabetes.Eur. J. Nutr.201655S2172310.1007/s00394‑016‑1340‑8 27882410
    [Google Scholar]
  38. KhanS. ZakiH. Crosstalk between NLRP12 and JNK during HCC.Int. J. Mol. Sci.202021249610.3390/ijms21020496 31941025
    [Google Scholar]
  39. LiuP. TerradillosO. RenardC.A. FeldmannG. BuendiaM.A. BernuauD. Hepatocarcinogenesis in woodchuck hepatitis virus/c-myc mice: Sustained cell proliferation and biphasic activation of insulin-like growth factor II.Hepatology199725487488310.1002/hep.510250415 9096591
    [Google Scholar]
  40. KaneR.C. FarrellA.T. MadabushiR. Sorafenib for the treatment of unresectable HCC.Oncologist20091419510010.1634/theoncologist.2008‑0185 19144678
    [Google Scholar]
  41. LiF. FernandezP.P. RajendranP. Diosgenin, a steroidal saponin, inhibits STAT3 signaling pathway leading to suppression of proliferation and chemosensitization of human HCC cells.Cancer Lett.2010292219720710.1016/j.canlet.2009.12.003 20053498
    [Google Scholar]
  42. PawsonT. Specificity in signal transduction: From phosphotyrosine-SH2 domain interactions to complex cellular systems.Cell2004116219120310.1016/S0092‑8674(03)01077‑8 14744431
    [Google Scholar]
  43. RosenM.K. YamazakiT. GishG.D. KayC.M. PawsonT. KayL.E. Direct demonstration of an intramolecular SH2—phosphotyrosine interaction in the Crk protein.Nature1995374652147747910.1038/374477a0 7700361
    [Google Scholar]
  44. YipS.C. SahaS. ChernoffJ. PTP1B: A double agent in metabolism and oncogenesis.Trends Biochem. Sci.201035844244910.1016/j.tibs.2010.03.004 20381358
    [Google Scholar]
  45. LessardL. StuibleM. TremblayM.L. The two faces of PTP1B in cancer.Biochim. Biophys. Acta. Proteins Proteomics20101804361361910.1016/j.bbapap.2009.09.018
    [Google Scholar]
  46. FanL.C. ShiauC.W. TaiW.T. SHP-1 is a negative regulator of epithelial–mesenchymal transition in HCC.Oncogene201534415252526310.1038/onc.2014.445 25619838
    [Google Scholar]
  47. HanT. XiangD.M. SunW. LiuN. SunH.L. WenW. ShenW.F. WangR.Y. ChenC. WangX. ChengZ. LiH.Y. WuM.C. CongW.M. FengG.S. DingJ. WangH.Y. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients.J. Hepatol.201563365166010.1016/j.jhep.2015.03.036 25865556
    [Google Scholar]
  48. ZhanH. JiangJ. LuoC. Tumour-suppressive role of PTPN13 in HCC and its clinical significance.Tumour Biol.20163779691969810.1007/s13277‑016‑4843‑2 26801674
    [Google Scholar]
  49. LuoR.Z. CaiP.Q. LiM. Decreased expression of PTPN12 correlates with tumor recurrence and poor survival of patients with HCC.PLoS One201491e8559210.1371/journal.pone.0085592 24475046
    [Google Scholar]
  50. HuB. YanX. LiuF. Downregulated expression of PTPN9 contributes to human HCC growth and progression.Pathol. Oncol. Res.201622355556510.1007/s12253‑015‑0038‑1 26715439
    [Google Scholar]
  51. ZabolotnyJ.M. Bence-HanulecK.K. Stricker-KrongradA. HajF. WangY. MinokoshiY. KimY.B. ElmquistJ.K. TartagliaL.A. KahnB.B. NeelB.G. PTP1B regulates leptin signal transduction in vivo.Dev. Cell20022448949510.1016/S1534‑5807(02)00148‑X 11970898
    [Google Scholar]
  52. ChenD. LiZ. ChengQ. Genetic alterations and expression of PTEN and its relationship with cancer stem cell markers to investigate pathogenesis and to evaluate prognosis in HCC.J. Clin. Pathol.201972958859610.1136/jclinpath‑2019‑205769 31126975
    [Google Scholar]
  53. MaheshwariN. KarthikeyanC. TrivediP. Recent advances in PTPase 1B targeted drug discovery for type II diabetes and obesity.Curr. Drug Targets201819555157510.2174/1389450118666170222143739 28228082
    [Google Scholar]
  54. CoxA.D. FesikS.W. KimmelmanA.C. LuoJ. DerC.J. Drugging the undruggable RAS: Mission possible?Nat. Rev. Drug Discov.2014131182885110.1038/nrd4389 25323927
    [Google Scholar]
  55. WuD. HuD. ChenH. ShiG. FetahuI.S. WuF. RabidouK. FangR. TanL. XuS. LiuH. ArguetaC. ZhangL. MaoF. YanG. ChenJ. DongZ. LvR. XuY. WangM. YeY. ZhangS. DuquetteD. GengS. YinC. LianC.G. MurphyG.F. AdlerG.K. GargR. LynchL. YangP. LiY. LanF. FanJ. ShiY. ShiY.G. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer.Nature2018559771563764110.1038/s41586‑018‑0350‑5 30022161
    [Google Scholar]
  56. KhanS. BjijI. SolimanM.E.S. Selective covalent inhibition of “allosteric cys121” distort the binding of ptp1b enzyme: A novel therapeutic approach for cancer treatment.Cell Biochem. Biophys.201977320321110.1007/s12013‑019‑00882‑5 31446553
    [Google Scholar]
  57. CuiW. ChengY.H. GengL.L. LiangD.S. HouT.J. JiM.J. Unraveling the allosteric inhibition mechanism of PTP1B by free energy calculation based on umbrella sampling.J. Chem. Inf. Model.20135351157116710.1021/ci300526u 23621621
    [Google Scholar]
  58. EleftheriouP. GeronikakiA. PetrouA. PTP1B inhibition, a promising approach for the treatment of diabetes type II.Curr. Top. Med. Chem.201919424626310.2174/1568026619666190201152153 30714526
    [Google Scholar]
  59. LiuY.F. PazK. HerschkovitzA. AltA. TennenbaumT. SampsonS.R. OhbaM. KurokiT. LeRoithD. ZickY. Insulin stimulates PKCzeta -mediated phosphorylation of insulin receptor substrate-1 (IRS-1). A self-attenuated mechanism to negatively regulate the function of IRS proteins.J. Biol. Chem.200127617144591446510.1074/jbc.M007281200 11278339
    [Google Scholar]
  60. PearsonG. RobinsonF. Beers GibsonT. XuB.E. KarandikarM. BermanK. CobbM.H. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions.Endocr. Rev.2001222153183 11294822
    [Google Scholar]
  61. MendozaM.C. ErE.E. BlenisJ. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation.Trends Biochem. Sci.201136632032810.1016/j.tibs.2011.03.006 21531565
    [Google Scholar]
  62. FengZ. RongP. WangW. HCC risk in patients with NASH cirrhosis and diabetes: Insufficient for individual management.Hepatology202072110.1002/hep.31100 31903611
    [Google Scholar]
  63. El-seragH.B. TranT. EverhartJ.E. Diabetes increases the risk of chronic liver disease and HCC.Gastroenterology2004126246046810.1053/j.gastro.2003.10.065 14762783
    [Google Scholar]
  64. CaldwellS.H. CrespoD.M. KangH.S. Obesity and HCC.Gastroenterology20041275S97S10310.1053/j.gastro.2004.09.021 15508109
    [Google Scholar]
  65. LagergrenJ. MattssonF. El-SeragH. Increased risk of HCC after cholecystectomy.Br. J. Cancer2011105115415610.1038/bjc.2011.181 21610710
    [Google Scholar]
  66. CascónA. RobledoM. MAX and MYC: A heritable breakup.Cancer Res.201272133119312410.1158/0008‑5472.CAN‑11‑3891 22706201
    [Google Scholar]
  67. MoghaddamS.J. HaghighiE.N. SamieeS. Immunohistochemical analysis of p53, cyclinD1, RB1, c-fos and N-ras gene expression in HCC in Iran.World J. Gastroenterol.200713458810.3748/wjg.v13.i4.588 17278226
    [Google Scholar]
  68. NevinsJ.R. The Rb/E2F pathway and cancer.Hum. Mol. Genet.200110769970310.1093/hmg/10.7.699 11257102
    [Google Scholar]
  69. Garcia-GarciaA. Rodriguez-RochaH. TsengM.T. Montes de Oca-LunaR. ZhouH.S. McMastersK.M. Gomez-GutierrezJ.G. E2F-1 lacking the transcriptional activity domain induces autophagy.Cancer Biol. Ther.201213111091110110.4161/cbt.21143 22825328
    [Google Scholar]
  70. DimovaD.K. StevauxO. FrolovM.V. DysonN.J. Cell cycle-dependent and cell cycle-independent control of transcription by the Drosophila E2F/RB pathway.Genes Dev.200317182308232010.1101/gad.1116703 12975318
    [Google Scholar]
  71. DaldorffS. MathiesenR.M.R. YriO.E. ØdegårdH.P. GeislerJ. Cotargeting of CYP-19 (aromatase) and emerging, pivotal signalling pathways in metastatic breast cancer.Br. J. Cancer20171161102010.1038/bjc.2016.405 27923036
    [Google Scholar]
  72. TakK.Y. NamH.C. ChoiJ.Y. Effectiveness of sorafenib dose modifications on treatment outcome of HCC: Analysis in real‐life settings.Int. J. Cancer202014771970197810.1002/ijc.32964 32167170
    [Google Scholar]
  73. YangJ. CaiX. LuW. Evodiamine inhibits STAT3 signaling by inducing phosphatase shatterproof 1 in HCC cells.Cancer Lett.2013328224325110.1016/j.canlet.2012.09.019 23032719
    [Google Scholar]
  74. LinY.W. ChenC.H. HuangG.T. Infrequent mutations and no methylation of CDKN2A (P16/MTS1) and CDKN2B (p15/MTS2) in HCC in Taiwan.Eur. J. Cancer199834111789179510.1016/S0959‑8049(98)00189‑0 9893670
    [Google Scholar]
  75. BaekM.J. PiaoZ. KimN.G. p16 is a major inactivation target in HCC.Cancer2000891606810.1002/1097‑0142(20000701)89:1<60:AID‑CNCR9>3.0.CO;2‑3 10897001
    [Google Scholar]
  76. HsuL.S. LeeH.C. ChauG.Y. Aberrant methylation of EDNRB and p16 genes in HCC (HCC) in Taiwan.Oncol. Rep.200615250751110.3892/or.15.2.507 16391877
    [Google Scholar]
  77. DangC.V. MYC on the path to cancer.Cell20121491223510.1016/j.cell.2012.03.003 22464321
    [Google Scholar]
  78. DhanasekaranR. Gabay-RyanM. BaylotV. Anti-miR-17 therapy delays tumorigenesis in MYC-driven HCC (HCC).Oncotarget201895551710.18632/oncotarget.22342 29464015
    [Google Scholar]
  79. BeraR. ChiouC.Y. YuM.C. Functional genomics identified a novel PTPase receptor type f‐mediated growth inhibition in hepatocarcinogenesis.Hepatology20145962238225010.1002/hep.27030 24470239
    [Google Scholar]
  80. ZhangD. QiJ. LiuR. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human HCC cells.Am. J. Cancer Res.2015531076 26045987
    [Google Scholar]
  81. JinS. WangK. XuK. Oncogenic function and prognostic significance of PTPase PRL-1 in HCC.Oncotarget2014511368510.18632/oncotarget.1986 25003523
    [Google Scholar]
  82. HuangJ.M. NagatomoI. SuzukiE. YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type PTPase 14.Oncogene201332172220222910.1038/onc.2012.231 22689061
    [Google Scholar]
  83. BalsamoJ. ArreguiC. LeungT. The nonreceptor PTPase PTP1B binds to the cytoplasmic domain of N-cadherin and regulates the cadherin–actin linkage.J. Cell Biol.1998143252353210.1083/jcb.143.2.523 9786960
    [Google Scholar]
  84. GazonH. BarbeauB. MesnardJ.M. PeloponeseJ.M.Jr Hijacking of the AP-1 signaling pathway during development of ATL.Front. Microbiol.20188268610.3389/fmicb.2017.02686 29379481
    [Google Scholar]
  85. KooJ.H. PlouffeS.W. MengZ. LeeD.H. YangD. LimD.S. WangC.Y. GuanK.L. Induction of AP-1 by YAP/TAZ contributes to cell proliferation and organ growth.Genes Dev.2020341-2728610.1101/gad.331546.119 31831627
    [Google Scholar]
  86. WangZ.Q. LiangJ. SchellanderK. WagnerE.F. GrigoriadisA.E. c-fos-induced osteosarcoma formation in transgenic mice: Cooperativity with c-jun and the role of endogenous c-fos.Cancer Res.1995552462446251 8521421
    [Google Scholar]
  87. AhnS. KwonA. OhY. RheeS. SongW.K. Microtubule acetylation-specific inhibitors induce cell death and mitotic arrest via JNK/AP-1 activation in triple-negative breast cancer cells.Mol. Cells2023466387398
    [Google Scholar]
  88. DavidM. ChenH.E. GoelzS. LarnerA.C. NeelB.G. Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1.Mol. Cell. Biol.199515127050705810.1128/MCB.15.12.7050 8524272
    [Google Scholar]
  89. TartagliaM. MehlerE.L. GoldbergR. Mutations in PTPN11, encoding the PTPase SHP-2, cause Noonan syndrome.Nat. Genet.200129446546810.1038/ng772 11704759
    [Google Scholar]
  90. LinL. AminR. GallicanoG.I. GlasgowE. JogunooriW. JessupJ.M. ZasloffM. MarshallJ.L. ShettyK. JohnsonL. MishraL. HeA.R. The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-β signaling.Oncogene200928796197210.1038/onc.2008.448 19137011
    [Google Scholar]
  91. HeG. KarinM. NF-κB and STAT3 – key players in liver inflammation and cancer.Cell Res.201121115916810.1038/cr.2010.183 21187858
    [Google Scholar]
  92. SanchezA. NagyP. Thorgeirsson, S.S. STAT-3 activity in chemically induced HCC.Eur. J. Cancer200339142093209810.1016/S0959‑8049(03)00393‑9 12957465
    [Google Scholar]
  93. YangB. GuoM. HermanJ.G. Aberrant promoter methylation profiles of tumor suppressor genes in HCC.Am. J. Pathol.200316331101110710.1016/S0002‑9440(10)63469‑4 12937151
    [Google Scholar]
  94. ZhuZ. HeX. JohnsonC. StoopsJ. EakerA.E. StofferD.S. BellA. ZarnegarR. DeFrancesM.C. PI3K is negatively regulated by PIK3IP1, a novel p110 interacting protein.Biochem. Biophys. Res. Commun.20073581667210.1016/j.bbrc.2007.04.096 17475214
    [Google Scholar]
  95. ZhengL.Y. ZhouD.X. LuJ. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in HCC.Biochem. Biophys. Res. Commun.2012420368068410.1016/j.bbrc.2012.03.066 22450318
    [Google Scholar]
  96. ChenC.K. YangC.Y. HuaK.T. Leukocyte cell‐derived chemotaxin 2 antagonizes MET receptor activation to suppress HCC vascular invasion by PTPase 1B recruitment.Hepatology201459397498510.1002/hep.26738 24114941
    [Google Scholar]
  97. HuangY. ZhangY. GeL. LinY. KwokH. The roles of protein tyrosine phosphatases in hepatocellular carcinoma.Cancers 20181038210.3390/cancers10030082 29558404
    [Google Scholar]
  98. RanG. FengX. XieY. ZhengQ. GuoP. YangM. FengY. LingC. ZhuL. ZhongC. The use of miR122 and its target sequence in adeno-associated virus-mediated trichosanthin gene therapy.J. Integr. Med.202119651552510.1016/j.joim.2021.09.004 34538767
    [Google Scholar]
  99. FanF.T. ShenC.S. TaoL. TianC. LiuZ.G. ZhuZ.J. LiuY.P. PeiC.S. WuH.Y. ZhangL. WangA.Y. ZhengS.Z. HuangS.L. LuY. PKM2 regulates hepatocellular carcinoma cell epithelial-mesenchymal transition and migration upon EGFR activation.Fa Journal of Cancer Prevention: APJCP.201415519611970 24716919
    [Google Scholar]
  100. GalunD. Srdic-RajicT. BogdanovicA. LoncarZ. ZuvelaM. Targeted therapy and personalized medicine in hepatocellular carcinoma: drug resistance, mechanisms, and treatment strategies.J. Hepatocell. Carcinoma201749310310.2147/JHC.S106529 28744453
    [Google Scholar]
  101. NakatsukaT. TateishiR. Development and prognosis of hepatocellular carcinoma in patients with diabetes.Clin. Mol. Hepatol.2023291516410.3350/cmh.2022.0095 35903020
    [Google Scholar]
  102. VashishtaP. ChaudharyN. SharmaC.B. Plant protein tyrosine phosphatases: An overview.Proc. Natl. Acad. Sci. India200675207215
    [Google Scholar]
  103. SelvarajK. ChandS. KatareD.P. ChaudharyN. Ribes nigrum and Juglans regia, potential functional foods as a source of protein tyrosine phosphatase enzyme: Biochemical and kinetic studies.Biointerface Res. Appl. Chem.202313161
    [Google Scholar]
  104. SelvarajK. ChandS. KatareD.P. ChaudharyN. Trachyspermum ammi and cinnamomum verum as nutraceuticals: Spices rich in therapeutically significant protein tyrosine phosphatases.Journal of Food Biochemistry20214513750
    [Google Scholar]
  105. ChoH. LeeD.Y. ShresthaS. ShimY.S. KimK.C. KimM.K. LeeK.H. WonJ. KangJ.S. Aurintricarboxylic acid translocates across the plasma membrane, inhibits protein tyrosine phosphatase and prevents apoptosis in PC12 cells.Mol. Cells2004181465210.1016/S1016‑8478(23)13080‑9 15359123
    [Google Scholar]
  106. BottiniN. OtsuA. BorgianiP. SaccucciP. StefaniniL. GrecoE. FontanaL. HopkinsJ.M. MaoX-Q. Genetic control of serum IgE levels: A study of low molecular weight protein tyrosine phosphatase.Clin. Genet.200363322823110.1034/j.1399‑0004.2003.00002.x 12694235
    [Google Scholar]
  107. VogelA. MeyerT. SapisochinG. SalemR. SaborowskiA. Hepatocellular carcinoma.Lancet2022400103601345136210.1016/S0140‑6736(22)01200‑4 36084663
    [Google Scholar]
  108. DhirM. MelinA.A. DouaiherJ. LinC. ZhenW.K. HussainS.M. GeschwindJ.F.H. DoyleM.B.M. Abou-AlfaG.K. AreC. A review and update of treatment options and controversies in the management of hepatocellular carcinoma.Ann. Surg.201626361112112510.1097/SLA.0000000000001556 26813914
    [Google Scholar]
  109. ParkM MoonB KimJH ParkSJ KimSK ParkK KimJ KimSY KimJH KimJA Downregulation of SETD5 suppresses the tumorigenicity of hepatocellular carcinoma cells.mol cells2022458550563
    [Google Scholar]
  110. AltundagO. Recent Advances in systemic therapy for hepatocellular carcinoma.Exp. Clin. Transplant.2022 35867011
    [Google Scholar]
  111. Garcia-LezanaT. Lopez-CanovasJ.L. VillanuevaA. Signaling pathways in hepatocellular carcinoma.Adv. Cancer Res.20211496310110.1016/bs.acr.2020.10.002 33579428
    [Google Scholar]
  112. FauserJ. HuyotV. MatscheJ. SzynalB.N. AlexeevY. KotaP. KarginovA.V. Dissecting protein tyrosine phosphatase signaling by engineered chemogenetic control of its activity.J. Cell Biol.20222218e20211106610.1083/jcb.202111066 35829702
    [Google Scholar]
  113. KambaruA. ChaudharyN. Role of protein tyrosine phosphatase in regulation of cell signaling cascades affecting tumor cell growth: A future perspective as anti-cancer drug target.Curr. Pharm. Biotechnol.202223792093110.2174/1389201022666210810094739 34375185
    [Google Scholar]
  114. ChangY.S. ChouY.P. ChungC.C. LeeY.T. YenJ.C. JengL.B. ChangJ.G. Molecular classification of hepatocellular carcinoma using wnt–hippo signaling pathway-related genes.Cancers20221419458010.3390/cancers14194580 36230503
    [Google Scholar]
  115. BourayouE. GolubR. Signaling pathways tuning innate lymphoid cell response to hepatocellular carcinoma.Front. Immunol.20221384692310.3389/fimmu.2022.846923 35281021
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010288624240213072415
Loading
/content/journals/cpb/10.2174/0113892010288624240213072415
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test