Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Various substances possessing radiation scavenging properties, known as radioprotectors, play a crucial role in shielding organisms from the harmful effects of ionizing radiation (IR) by preventing cellular damage caused by free radicals. Initially, synthetic radioprotectors were developed using thiol synthetic compounds. However, among these, only amifostine (WR-2721) underwent clinical testing as a radioprotector. Various composites with different chemical structures other than thiol compounds were also investigated. However, synthetic radioprotectors are known to be associated with severe side effects, which lead to an inclination towards natural substances. Plants and natural products have emerged as promising sources of radioprotectors, renowned for their non-toxic nature across a broad range of doses and their cost-effectiveness. Radioprotectors are employed in diverse pharmaceutical approaches to mitigate the toxicities induced by radiation. The present review encompasses a detailed account of various synthetic and naturally occurring compounds possessing radioprotective properties, and different investigations related to their radioprotective action, ranging from free radicals scavenging to gene therapy, have also been precisely covered. Numerous radioprotectors have different mechanisms of action, and have proven benefits of naturally occurring compounds over chemically synthesized ones.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010293722240522071042
2025-04-01
2025-10-13
Loading full text...

Full text loading...

References

  1. MatthewsE.P. Radiation physics, biology, and protection.Radiol. Technol.2019905471485 31088948
    [Google Scholar]
  2. FerrariC. ManentiG. MaliziaA. Sievert or gray: Dose quantities and protection levels in emergency exposure.Sensors2023234191810.3390/s23041918 36850517
    [Google Scholar]
  3. BelliM. IndovinaL. The response of living organisms to low radiation environment and its implications in radiation protection.Front. Public Health2020860171110.3389/fpubh.2020.601711 33384980
    [Google Scholar]
  4. ZhangX. ChenX. WangL. HeC. ShiZ. FuQ. XuW. ZhangS. HuS. Review of the efficacy and mechanisms of traditional Chinese medicines as a therapeutic option for ionizing radiation induced damage.Front. Pharmacol.20211261755910.3389/fphar.2021.617559 33658941
    [Google Scholar]
  5. KimJ. WellsC. KhanguraS. Proton beam therapy for cancer in children and adults: A health technology assessment.Ont. Health Technol. Assess. Ser.20212111142 34055109
    [Google Scholar]
  6. WijerathneH. LangstonJ.C. YangQ. SunS. MiyamotoC. KilpatrickL.E. KianiM.F. Mechanisms of radiation-induced endothelium damage: Emerging models and technologies.Radiother. Oncol.2021158213210.1016/j.radonc.2021.02.007 33581220
    [Google Scholar]
  7. TaliaferroL.P. CassattD.R. HortaZ.P. SatyamitraM.M. A poly-pharmacy approach to mitigate acute radiation syndrome.Radiat. Res.2021196443644610.1667/RADE‑21‑00048.1 34237144
    [Google Scholar]
  8. HoferM. HoferováZ. FalkM. Brief story on prostaglandins, inhibitors of their synthesis, hematopoiesis, and acute radiation syndrome.Molecules201924224019403010.3390/molecules24224019 31698831
    [Google Scholar]
  9. QianL. CenJ. Hematopoietic stem cells and mesenchymal stromal cells in acute radiation syndrome.Oxid. Med. Cell. Longev.2020202011010.1155/2020/8340756 32855768
    [Google Scholar]
  10. CravensGwyneth The nuclear information project provides the public with reliable information about the status and trends of the nuclear weapons arsenals of the world’s nuclear-armed countries.Federation of American Scientists.2019Available from: fas.org/issues/nuclear-and-radiological-terrorism
    [Google Scholar]
  11. PereiraA.F. LinoJ.A. AlvesB.W.F. LisboaM.R.P. PontesR.B. LeiteC.A.V.G. NogueiraR.B. Lima-JúniorR.C.P. ValeM.L. Amifostine protects from the peripheral sensory neuropathy induced by oxaliplatin in mice.Braz. J. Med. Biol. Res.20205311e1026310.1590/1414‑431x202010263 32965323
    [Google Scholar]
  12. DuttaS. WadekarR.R. RoyT. Radioprotective natural products as alternative complements in oncological radiotherapy.Bol. Latinoam. Caribe Plantas Med. Aromat.202120210112210.37360/blacpma.21.20.2.9
    [Google Scholar]
  13. ShahM.A. IqbalS. RasulA. SaadullahM. TabassumS. AliS. ZafarM. MuhammadH. UddinM.S. BatihaG.E.S. Vargas-De-La-CruzC. Radioprotective potential of nutraceuticals and their underlying mechanism of action.Anticancer. Agents Med. Chem.2021221405210.2174/1871520621666210223101246 33622231
    [Google Scholar]
  14. MishraK.N. MoftahB.A. AlsbeihG.A. Appraisal of mechanisms of radioprotection and therapeutic approaches of radiation countermeasures.Biomed. Pharmacother.201810610661061710.1016/j.biopha.2018.06.150 29990850
    [Google Scholar]
  15. AlisiI.O. UzairuA. AbechiS.E. Free radical scavenging mechanism of 1,3,4-oxadiazole derivatives: Thermodynamics of O–H and N–H bond cleavage.Heliyon202063e0368310.1016/j.heliyon.2020.e03683 32258501
    [Google Scholar]
  16. MunG.I. KimS. ChoiE. KimC.S. LeeY.S. Pharmacology of natural radioprotectors.Arch. Pharm. Res.201841111033105010.1007/s12272‑018‑1083‑6 30361949
    [Google Scholar]
  17. CervelliT. BastaG. Del TurcoS. Effects of antioxidant nutrients on ionizing radiation-induced oxidative stress.Toxicol.Academic Press202130731610.1016/B978‑0‑12‑819092‑0.00030‑3
    [Google Scholar]
  18. MiazekK. BetonK. ŚliwińskaA. Brożek-PłuskaB. The effect of β-carotene, tocopherols and ascorbic acid as anti-oxidant molecules on human and animal in vitro/in vivo studies: A review of research design and analytical techniques used.Biomolecules2022128108710.3390/biom12081087 36008981
    [Google Scholar]
  19. HuangR. ZhouP.K. DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy.Signal Transduct. Target. Ther.20216125410.1038/s41392‑021‑00648‑7 34238917
    [Google Scholar]
  20. NickoloffJ.A. TaylorL. SharmaN. KatoT.A. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy.Cancer Drug Resist.20214224426310.20517/cdr.2020.89 34337349
    [Google Scholar]
  21. AverbeckD. Rodriguez-LafrasseC. Role of mitochondria in radiation responses: Epigenetic, metabolic, and signaling impacts.Int. J. Mol. Sci.202122201104710.3390/ijms222011047 34681703
    [Google Scholar]
  22. GreenbergerJ.S. MukherjeeA. EpperlyM.W. Gene therapy for systemic or organ specific delivery of manganese superoxide dismutase.Antioxidants2021107105710.3390/antiox10071057 34208819
    [Google Scholar]
  23. EverettW.H. CurielD.T. Gene therapy for radioprotection.Cancer Gene Ther.201522417218010.1038/cgt.2015.8 25721205
    [Google Scholar]
  24. MorganM.A. GallaM. GrezM. FehseB. SchambachA. Retroviral gene therapy in Germany with a view on previous experience and future perspectives.Gene Ther.202128949451210.1038/s41434‑021‑00237‑x 33753908
    [Google Scholar]
  25. BulchaJ.T. WangY. MaH. TaiP.W.L. GaoG. Viral vector platforms within the gene therapy landscape.Signal Transduct. Target. Ther.2021615310.1038/s41392‑021‑00487‑6 33558455
    [Google Scholar]
  26. KimJ.H. JeongB.K. JangS.J. YunJ.W. JungM.H. KangK.M. KimT.G. WooS.H. Alpha-lipoic acid ameliorates radiation-induced salivary gland injury by preserving parasympathetic innervation in rats.Int. J. Mol. Sci.2020217226010.3390/ijms21072260 32218158
    [Google Scholar]
  27. BenderitterM. CaviggioliF. ChapelA. CoppesR.P. GuhaC. KlingerM. MalardO. StewartF. TamaratR. van LuijkP. LimoliC.L. Stem cell therapies for the treatment of radiation-induced normal tissue side effects.Antioxid. Redox Signal.201421233835510.1089/ars.2013.5652 24147585
    [Google Scholar]
  28. de la Cruz BonillaM. StemlerK.M. TaniguchiC.M. Piwnica-WormsH. Stem cell enriched-epithelial spheroid cultures for rapidly assaying small intestinal radioprotectors and radiosensitizers in vitro.Sci. Rep.2018811541010.1038/s41598‑018‑33747‑7 30337664
    [Google Scholar]
  29. CheemaA.K. LiY. GirgisM. JayatilakeM. FatanmiO.O. WiseS.Y. SeedT.M. SinghV.K. Alterations in tissue metabolite profiles with amifostine-prophylaxed mice exposed to gamma radiation.Metabolites202010521110.3390/metabo10050211 32455594
    [Google Scholar]
  30. SinghV.K. SeedT.M. The efficacy and safety of amifostine for the acute radiation syndrome.Expert Opin. Drug Saf.201918111077109010.1080/14740338.2019.1666104 31526195
    [Google Scholar]
  31. CrookA. De Lima LeiteA. PayneT. BhinderwalaF. WoodsJ. SinghV.K. PowersR. Radiation exposure induces cross-species temporal metabolic changes that are mitigated in mice by amifostine.Sci. Rep.20211111400410.1038/s41598‑021‑93401‑7 34234212
    [Google Scholar]
  32. LubyA.O. SubramanianC. BuchmanL.K. LynnJ.V. UrlaubK.M. NelsonN.S. DonneysA. CohenM.S. BuchmanS.R. Amifostine prophylaxis in irradiated breast reconstruction: A study of oncologic safety in vitro.Ann. Plast. Surg.202085442442910.1097/SAP.0000000000002110 31850964
    [Google Scholar]
  33. PfaffA.R. BeltzJ. KingE. ErcalN. Medicinal thiols: Current status and new perspectives.Mini Rev. Med. Chem.202020651352910.2174/1389557519666191119144100 31746294
    [Google Scholar]
  34. BoutrosS.W. ZimmermanB. NagyS.C. LeeJ.S. PerezR. RaberJ. Amifostine (wr-2721) mitigates cognitive injury induced by heavy ion radiation in male mice and alters behavior and brain connectivity.Front. Physiol.2021121277050210.3389/fphys.2021.770502 34867479
    [Google Scholar]
  35. TripathiA.M. KhanS. ChaudhuryN.K. Radiomitigation by melatonin in C57BL/6 mice: possible implications as adjuvant in radiotherapy and chemotherapy.In Vivo20223631203122110.21873/invivo.12820 35478105
    [Google Scholar]
  36. NuszkiewiczJ. WoźniakA. Szewczyk-GolecK. Ionizing radiation as a source of oxidative stress the protective role of melatonin and vitamin D.Int. J. Mol. Sci.20202116580410.3390/ijms21165804 32823530
    [Google Scholar]
  37. NajafiM. ChekiM. HassanzadehG. AminiP. ShabeebD. MusaA.E. Protection from radiation-induced damage in rat’s ileum and colon by combined regimens of melatonin and metformin: A histopathological study.Antiinflamm. Antiallergy Agents Med. Chem.202019218018910.2174/1871523018666190718161928 31438832
    [Google Scholar]
  38. ObradorE. SalvadorR. VillaescusaJ.I. SorianoJ.M. EstrelaJ.M. MontoroA. Radioprotection and radiomitigation: From the bench to clinical practice.Biomedicines202081146110.3390/biomedicines8110461 33142986
    [Google Scholar]
  39. Camara PlanekM.I. SilverA.J. VolgmanA.S. OkwuosaT.M. Exploratory review of the role of statins, colchicine, and aspirin for the prevention of radiation‐associated cardiovascular disease and mortality.J. Am. Heart Assoc.202092e01466810.1161/JAHA.119.014668 31960749
    [Google Scholar]
  40. ChungK.J. ParkK.R. LeeJ.H. KimT.G. KimY.H. Simvastatin reduces capsular fibrosis around silicone implants.J. Korean Med. Sci.20163181273127810.3346/jkms.2016.31.8.1273 27478339
    [Google Scholar]
  41. SunX. YangX. ChenJ. GeX.L. QinQ. ZhuH. ZhangC. XuL. Simvastatin attenuates radiation-induced salivary gland dysfunction in mice.Drug Des. Devel. Ther.2016102271227810.2147/DDDT.S105809 27471375
    [Google Scholar]
  42. EfimovaE.V. RiccoN. LabayE. MauceriH.J. FlorA.C. RamamurthyA. SuttonH.G. WeichselbaumR.R. KronS.J. HMG-CoA reductase inhibition delays DNA repair and promotes senescence after tumor irradiation.Mol. Cancer Ther.201817240741810.1158/1535‑7163.MCT‑17‑0288 29030460
    [Google Scholar]
  43. VasinM.V. UshakovI.B. KovtunV.Y. SemenovaL.A. KomarovaS.N. GalkinA.A. Afanas’evR.V. Radioprotective properties of indralin in combination with monizol in the treatment of local acute and delayed radiation injuries caused by local skin γ-irradiation.Bull. Exp. Biol. Med.2015159674774910.1007/s10517‑015‑3065‑8 26519270
    [Google Scholar]
  44. SinghV. FatanmiO. SantiagoP. SimasM. HanlonB.K. GarciaM. WiseS.Y. Current status of radiation countermeasures for acute radiation syndrome under advanced development.JRCR2018911310.4103/jrcr.jrcr_3_18
    [Google Scholar]
  45. CashH. DeanD. The effects of low-dose radiation on articular cartilage: A review.J. Biol. Eng.20191311810.1186/s13036‑018‑0125‑4 30627214
    [Google Scholar]
  46. ZareiH. BahreinipourM. SefidbakhtY. RezaeiS. GheisariR. ArdestaniS.K. UskokovićV. WatabeH. Radioprotective role of vitamins C and E against the gamma ray-induced damage to the chemical structure of bovine serum albumin.Antioxidants20211012187510.3390/antiox10121875 34942979
    [Google Scholar]
  47. LledóI. IbáñezB. MeleroA. Vitamins and radioprotective effect: A review.Antioxidants202312361110.3390/antiox12030611
    [Google Scholar]
  48. KimJ.A. JangJ.H. LeeS.Y. An updated comprehensive review on vitamin A and carotenoids in breast cancer: Mechanisms, genetics, assessment, current evidence, and future clinical implications.Nutrients2021139316210.3390/nu13093162 34579037
    [Google Scholar]
  49. ChangiziV. HaeriS.A. AbbasiS. RajabiZ. MirdoraghiM. Radioprotective effects of vitamin A against gamma radiation in mouse bone marrow cells.MethodsX2019671471710.1016/j.mex.2019.03.020 31008064
    [Google Scholar]
  50. HaritwalT. TiwariM. AgrawalaP. Herbal radioprotectors: A mini-review of the current status.Natural Resources for Human Health20222227428610.53365/nrfhh/144880
    [Google Scholar]
  51. ShivappaP. BernhardtG. Natural radioprotectors on current and future perspectives: A mini-review.J. Pharm. Bioallied Sci.2022142577110.4103/jpbs.jpbs_502_21 36034486
    [Google Scholar]
  52. SalehiB. VendittiA. Sharifi-RadM. KręgielD. Sharifi-RadJ. DurazzoA. LucariniM. SantiniA. SoutoE. NovellinoE. AntolakH. AzziniE. SetzerW. MartinsN. The therapeutic potential of apigenin.Int. J. Mol. Sci.2019206130510.3390/ijms20061305 30875872
    [Google Scholar]
  53. a BegumN. PrasadN.R. ThayalanK. Apigenin protects gammaradiation induced oxidative stress, hematological changes and animal survival in whole body irradiated Swiss albino mice.Int. J. Nutr. Pharmacol. Neurol. Dis.2012214552
    [Google Scholar]
  54. b LiuD. PengR. ChenZ. YuH. WangS. DongS. LiW. ShaoW. DaiJ. LiF. JiangQ. SunW. The protective effects of apigenin against radiation‐induced intestinal injury.Dose Response202220310.1177/15593258221113791 35859853
    [Google Scholar]
  55. (a KashyapD. SharmaA. TuliH.S. SakK. GargV.K. ButtarH.S. SetzerW.N. SethiG. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function.J. Funct. Foods201848457471
    [Google Scholar]
  56. (b JangJ.Y. SungB. KimN.D. Role of induced programmed cell death in the chemopreventive potential of apigenin.Int. J. Mol. Sci.2022237375710.3390/ijms23073757 35409117
    [Google Scholar]
  57. FaramarziS. PiccolellaS. MantiL. PacificoS. Could polyphenols really be a good radioprotective strategy?Molecules20212616496910.3390/molecules26164969 34443561
    [Google Scholar]
  58. LiY.F. OuyangS.H. TuL.F. WangX. YuanW.L. WangG.E. WuY.P. DuanW.J. YuH.M. FangZ.Z. KuriharaH. ZhangY. HeR.R. Caffeine protects skin from oxidative stress-induced senescence through the activation of autophagy.Theranostics20188205713573010.7150/thno.28778 30555576
    [Google Scholar]
  59. RodakK. KokotI. KratzE.M. Caffeine as a factor influencing the functioning of the human body—Friend or foe?Nutrients2021139308810.3390/nu13093088 34578966
    [Google Scholar]
  60. VinnikovV. HandeM.P. WilkinsR. WojcikA. ZubizarretaE. BelyakovO. Prediction of the acute or late radiation toxicity effects in radiotherapy patients using ex vivo induced biodosimetric markers: A review.J. Pers. Med.202010428510.3390/jpm10040285 33339312
    [Google Scholar]
  61. RosenE.M. DayR. SinghV.K. New approaches to radiation protection.Front. Oncol.2015438110.3389/fonc.2014.00381 25653923
    [Google Scholar]
  62. KushwahaR. NishadD. BhatnagarA. KharR. Melatonin–caffeine combination modulates gamma radiation-induced sperm malformations in C57BL/6 male mice at sublethal dose of gamma radiation.J. Pharm. Bioallied Sci.202113226827510.4103/jpbs.JPBS_303_20 34349489
    [Google Scholar]
  63. LiW. JiangL. LuX. LiuX. LingM. Curcumin protects radiation-induced liver damage in rats through the NF-κB signaling pathway.BMC Complement. Med. Ther.20212111010.1186/s12906‑020‑03182‑1 33386071
    [Google Scholar]
  64. ZoiV. GalaniV. TsekerisP. KyritsisA.P. AlexiouG.A. Radiosensitization and radioprotection by curcumin in glioblastoma and other cancers.Biomedicines202210231210.3390/biomedicines10020312 35203521
    [Google Scholar]
  65. RaineyN.E. MoustaphaA. PetitP.X. Curcumin, a multifaceted hormetic agent, mediates an intricate crosstalk between mitochondrial turnover, autophagy, and apoptosis.Oxid. Med. Cell. Longev.2020202012310.1155/2020/3656419 32765806
    [Google Scholar]
  66. MontesinosC.A. KhalidR. CristeaO. GreenbergerJ.S. EpperlyM.W. LemonJ.A. BorehamD.R. PopovD. GorthiG. RamkumarN. JonesJ.A. Space radiation protection countermeasures in microgravity and planetary exploration.Life202111882910.3390/life11080829 34440577
    [Google Scholar]
  67. MotallebnejadM. ZahedpashaS. MoghadamniaA.A. KazemiS. MoslemiD. PouramirM. AsgharpourF. Protective effect of lycopene on oral mucositis and antioxidant capacity of blood plasma in the rat exposed to gamma radiation.Caspian J. Intern. Med.202011441942510.22088/cjim.11.4.419 33680384
    [Google Scholar]
  68. PuahB.P. JalilJ. AttiqA. KamisahY. New insights into molecular mechanism behind anti-cancer activities of lycopene.Molecules20212613388810.3390/molecules26133888 34202203
    [Google Scholar]
  69. JameelQ.Y. MohammedN.K. Protective rules of natural antioxidants against gamma‐induced damage—A review.Food Sci. Nutr.2021995263527810.1002/fsn3.2469 34532033
    [Google Scholar]
  70. Bin-JumahM.N. NadeemM.S. GilaniS.J. MubeenB. UllahI. AlzareaS.I. GhoneimM.M. AlshehriS. Al-AbbasiF.A. KazmiI. Lycopene: A natural arsenal in the war against oxidative stress and cardiovascular diseases.Antioxidants202211223210.3390/antiox11020232 35204115
    [Google Scholar]
  71. MusaA.E. OmyanG. EsmaelyF. ShabeebD. Radioprotective effect of hesperidin: A systematic review.Medicina 201955737010.3390/medicina55070370 31336963
    [Google Scholar]
  72. GhorbaniZ. FardidR. HaddadiG.H. DerakhshanfarA. KouhpayehA. HaddadiZ. Histopathologic evaluation of radio-protective effect of hesperidin on the liver of Sprague Dawely Rats.J. Biomed. Phys. Eng.201910171410.31661/jbpe.v0i0.832 32158707
    [Google Scholar]
  73. LiuY. MiaoL. GuoY. TianH. Preclinical evaluation of safety, pharmacokinetics, efficacy, and mechanism of radioprotective agent HL-003.Oxid. Med. Cell. Longev.2021202111110.1155/2021/6683836 33688393
    [Google Scholar]
  74. HegazyN. RezqS. FahmyA. Mechanisms involved in superiority of angiotensin receptor blockade over ACE inhibition in attenuating neuropathic pain induced in rats.Neurotherapeutics20201731031104710.1007/s13311‑020‑00912‑8 32804335
    [Google Scholar]
  75. TuiengR.J. CartmellS.H. KirwanC.C. SherrattM.J. The effects of ionising and non-ionising electromagnetic radiation on extracellular matrix proteins.Cells20211011304110.3390/cells10113041 34831262
    [Google Scholar]
  76. HuL. WangY. CotrimA.P. ZhuZ. GaoR. ZhengC. GoldsmithC.M. JinL. ZhangC. MitchellJ.B. BaumB.J. WangS. Effect of tempol on the prevention of irradiation‐induced mucositis in miniature pigs.Oral Dis.201723680180810.1111/odi.12667 28326646
    [Google Scholar]
  77. WeiL. LeibowitzB.J. EpperlyM. BiC. LiA. SteinmanJ. WipfP. LiS. ZhangL. GreenbergerJ. YuJ. The GS-nitroxide JP4-039 improves intestinal barrier and stem cell recovery in irradiated mice.Sci. Rep.201881207210.1038/s41598‑018‑20370‑9 29391546
    [Google Scholar]
  78. WangQ. WangY. DuL. XuC. LiuQ. FanS. The effects of melatonin administration on intestinal injury caused by abdominal irradiation from mice.Int. J. Mol. Sci.20212218971510.3390/ijms22189715 34575874
    [Google Scholar]
  79. VasinM.V. SemenovL.F. SuvorovN.N. AntipovV.V. UshakovI.B. IlyinL.A. LapinB.A. Protective effect and the therapeutic index of indralin in juvenile rhesus monkeys.J. Radiat. Res.20145561048105510.1093/jrr/rru046 25012697
    [Google Scholar]
  80. LoriaR.M. ConradD.H. HuffT. CarterH. Ben-NathanD. Androstenetriol and androstenediol. Protection against lethal radiation and restoration of immunity after radiation injury.Ann. N. Y. Acad. Sci.2000917186086710.1111/j.1749‑6632.2000.tb05452.x 11268417
    [Google Scholar]
  81. ZakariyaN.I. KahnM.T. Benefits and biological effects of ionizing radiation.Scholars Acad. J. Biosci.201429583591
    [Google Scholar]
  82. AschenbrennerB. NegroG. SavicD. SorokinM. BuzdinA. GanswindtU. CemazarM. SersaG. SkvortsovS. SkvortsovaI. Simvastatin is effective in killing the radioresistant breast carcinoma cells.Radiol. Oncol.202155330531610.2478/raon‑2021‑0020 33939900
    [Google Scholar]
  83. KouvarisJ.R. Amifostine: The first selective-target and broad-spectrum radioprotector.Mutat. Res.2002519374810.1634/theoncologist.12‑6‑738 17602063
    [Google Scholar]
  84. McCartE.A. LeeY.H. JhaJ. MungunsukhO. RittaseW.B. SummersT.A.Jr MuirJ. DayR.M. Delayed captopril administration mitigates hematopoietic injury in a murine model of total body irradiation.Sci. Rep.201991219810.1038/s41598‑019‑38651‑2 30778109
    [Google Scholar]
  85. KumarA. ChoudharyS. AdhikariJ.S. ChaudhuryN.K. Sesamol ameliorates radiation induced DNA damage in hematopoietic system of whole body γ‐irradiated mice.Environ. Mol. Mutagen.2018591799010.1002/em.22118 28766757
    [Google Scholar]
  86. NukalaU. ThakkarS. KragerK. BreenP. CompadreC. Aykin-BurnsN. Antioxidant tocols as radiation countermeasures (challenges to be addressed to use tocols as radiation countermeasures in humans).Antioxidants2018723310.3390/antiox7020033 29473853
    [Google Scholar]
  87. MizrachiA. CotrimA.P. KatabiN. MitchellJ.B. VerheijM. Haimovitz-FriedmanA. Radiation-induced microvascular injury as a mechanism of salivary gland hypofunction and potential target for radioprotectors.Radiat. Res.2016186218919510.1667/RR14431.1 27459704
    [Google Scholar]
  88. BrandR.M. EpperlyM.W. StottlemyerJ.M. SkodaE.M. GaoX. LiS. HuqS. WipfP. KaganV.E. GreenbergerJ.S. FaloL.D. Jr A topical mitochondria-targeted redox-cycling nitroxide mitigates oxidative stress-induced skin damage.J. Invest. Dermatol.2017137357658610.1016/j.jid.2016.09.033 27794421
    [Google Scholar]
  89. AminiP. Mirtavoos-MahyariH. MotevaseliE. ShabeebD. MusaA.E. ChekiM. FarhoodB. YahyapourR. ShiraziA. GoushbolaghN.A. NajafiM. Mechanisms for radioprotection by melatonin; can it be used as a radiation countermeasure?Curr. Mol. Pharmacol.201912121110.2174/1874467211666180802164449 30073934
    [Google Scholar]
  90. KashiwakuraI. Overview of radiation-protective agent research and prospects for the future.Health Physics201752428529510.5453/jhps.52.285
    [Google Scholar]
  91. TevyashovaA.N. ShapovalovaK.S. Potential for the development of a new generation of aminoglycoside antibiotics.Pharm. Chem. J.202155986087510.1007/s11094‑021‑02510‑0 35039693
    [Google Scholar]
  92. AlokA. ChaudhuryN.K. Tetracycline hydrochloride: A potential clinical drug for radioprotection.Chem. Biol. Interact.2016245909910.1016/j.cbi.2016.01.001 26763761
    [Google Scholar]
  93. CihanY.B. Curcumins antineoplastic, radiosensitizing and radioprotective properties.Clinical Oncology202134427327710.48095/ccko2021273
    [Google Scholar]
  94. SzejkM. Kołodziejczyk-CzepasJ. ŻbikowskaH.M. Radioprotectors in radiotherapy – advances in the potential application of phytochemicals.Postepy Hig. Med. Dosw.201670072273410.5604/17322693.1208039 27356603
    [Google Scholar]
  95. RezaeyanA. HaddadiG.H. Mosleh-ShiraziM. HosseinzadehM. FardidR. NajafiM. SalajeghehA. Hesperidin as radioprotector against radiation-induced lung damage in rat: A histopathological study.J. Med. Phys.2017421253210.4103/jmp.JMP_119_16 28405105
    [Google Scholar]
  96. ŐszB.E. JîtcăG. ȘtefănescuR.E. PușcașA. Tero-VescanA. VariC.E. Caffeine and its antioxidant properties—it is all about dose and source.Int. J. Mol. Sci.202223211307410.3390/ijms232113074 36361861
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010293722240522071042
Loading
/content/journals/cpb/10.2174/0113892010293722240522071042
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): amifostine; Ionizing radiation; natural; oxidative stress; radioprotectors; synthetic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test