Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

In recent years, there has been an increase in skin cancers due to external factors, especially environmental factors, and studies on treatment alternatives have gained importance. Nanomaterials are common, from sunscreen formulas to formulations designed to treat skin cancers at various stages. Using bioactives has multiple effects in treating skin cancers, which provides many advantages. In this regard, many phytochemicals gain importance with their antioxidant, anti-proliferative, anti-inflammatory, antiangiogenic, and analgesic effects. Their delivery with nanocarriers is on the agenda for phytochemicals to gain the targeted stability, effectiveness, and toxicity/safety properties. This review presents types of skin cancers, phytochemicals effective in skin cancers, and their nanocarrier-loaded studies from an up-to-date perspective.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010300081240329033208
2025-04-01
2025-10-13
Loading full text...

Full text loading...

References

  1. IqubalM.K. IqubalA. ImtiyazK. RizviM.M.A. GuptaM.M. AliJ. BabootaS. Combinatorial lipid-nanosystem for dermal delivery of 5-fluorouracil and resveratrol against skin cancer: Delineation of improved dermatokinetics and epidermal drug deposition enhancement analysis.Eur. J. Pharm. Biopharm.202116322323910.1016/j.ejpb.2021.04.007 33864904
    [Google Scholar]
  2. HigginsS. MillerK.A. WojcikK.Y. AhadiatO. EscobedoL.A. WysongA. CockburnM. Phytochemicals and naturally occurring substances in the chemoprevention of skin cancer.Curr. Dermatol. Rep.20176319620310.1007/s13671‑017‑0190‑9
    [Google Scholar]
  3. IyerA.K. SinghA. GantaS. AmijiM.M. Role of integrated cancer nanomedicine in overcoming drug resistance.Adv. Drug Deliv. Rev.20136513-141784180210.1016/j.addr.2013.07.012 23880506
    [Google Scholar]
  4. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.202010161410.3389/fphar.2019.01614 32116665
    [Google Scholar]
  5. SinghM. SumanS. ShuklaY. New enlightenment of skin cancer chemoprevention through phytochemicals: in vitro and in vivo studies and the underlying mechanisms.BioMed Res. Int.2014201411810.1155/2014/243452 24757666
    [Google Scholar]
  6. ChavdaV.P. ViholD. MehtaB. ShahD. PatelM. VoraL.K. Pereira-SilvaM. Paiva-SantosA.C. Phytochemical-loaded liposomes for anticancer therapy: An updated review.Nanomedicine202217854756810.2217/nnm‑2021‑0463 35259920
    [Google Scholar]
  7. QiaoW. WangB. WangY. YangL. ZhangY. ShaoP. Cancer therapy based on nanomaterials and nanocarrier systems.J. Nanomater.201020101910.1155/2010/796303
    [Google Scholar]
  8. ChamundeeswariM. JeslinJ. VermaM.L. Nanocarriers for drug delivery applications.Environ. Chem. Lett.201917284986510.1007/s10311‑018‑00841‑1
    [Google Scholar]
  9. BaiH. GrahamC. Introduction: Skin.Yale J. Biol. Med.20209312
    [Google Scholar]
  10. NgC. YenH. HsiaoH.Y. SuS.C. Phytochemicals in skin cancer prevention and treatment: An updated review.Int. J. Mol. Sci.201819494110.3390/ijms19040941 29565284
    [Google Scholar]
  11. KhanN.H. MirM. QianL. BalochM. Ali KhanM.F. RehmanA. NgowiE.E. WuD.D. JiX.Y. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures.J. Adv. Res.20223622324710.1016/j.jare.2021.06.014 35127174
    [Google Scholar]
  12. NaqviM. GilaniS.Q. SyedT. MarquesO. KimH.C. Skin cancer detection using deep learning—A review.Diagnostics20231311191110.3390/diagnostics13111911 37296763
    [Google Scholar]
  13. MajumdarA. DubeyN. Nanostructure lipid carriers: A promising tool for the drug delivery in the treatment of skin cancer.Asian J. Pharm. Clin. Res.2019121526
    [Google Scholar]
  14. DikaE. ScarfìF. FerracinM. BroseghiniE. MarcelliE. BortolaniB. CampioneE. RiefoloM. RicciC. LambertiniM. Basal cell carcinoma: A comprehensive review.Int. J. Mol. Sci.20202115557210.3390/ijms21155572 32759706
    [Google Scholar]
  15. NaikP.P. DesaiM.B. Basal cell carcinoma: A narrative review on contemporary diagnosis and management.Oncol. Ther.202210231733510.1007/s40487‑022‑00201‑8 35729457
    [Google Scholar]
  16. NiculetE. CraescuM. RebegeaL. BobeicaC. NastaseF. LupasteanuG. StanD. ChioncelV. AnghelL. LunguM. TatuA. Basal cell carcinoma: Comprehensive clinical and histopathological aspects, novel imaging tools and therapeutic approaches (Review).Exp. Ther. Med.20212316010.3892/etm.2021.10982 34917186
    [Google Scholar]
  17. CombaliaA. CarreraC. Squamous cell carcinoma: An update on diagnosis and treatment.Dermatol. Pract. Concept.2020103e202006610.5826/dpc.1003a66 32642314
    [Google Scholar]
  18. FDA FDA approves first treatment for advanced form of the second most common skin cancerAvailable from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-advanced-form-second-most-common-skin-cancer
    [Google Scholar]
  19. WalshN.M. CerroniL. Merkel cell carcinoma: A review.J. Cutan. Pathol.202148341142110.1111/cup.13910 33128463
    [Google Scholar]
  20. CoggshallK. TelloT.L. NorthJ.P. YuS.S. Merkel cell carcinoma: An update and review.J. Am. Acad. Dermatol.201878343344210.1016/j.jaad.2017.12.001 29229574
    [Google Scholar]
  21. StockflethE. Merkel cell carcinoma: An update and review.Cancers2023155153410.3390/cancers15051534 36900324
    [Google Scholar]
  22. DavisL.E. ShalinS.C. TackettA.J. Current state of melanoma diagnosis and treatment.Cancer Biol. Ther.201920111366137910.1080/15384047.2019.1640032 31366280
    [Google Scholar]
  23. DhanyamrajuP.K. PatelT.N. Melanoma therapeutics: A literature review.J. Biomed. Res.2022362779710.7555/JBR.36.20210163 35260531
    [Google Scholar]
  24. LalanM. ShahP. BarveK. ParekhK. MehtaT. PatelP. Skin cancer therapeutics: Nano-drug delivery vectors—present and beyond.Future J. Pharm. Sci.20217117910.1186/s43094‑021‑00326‑z
    [Google Scholar]
  25. IslamS.U. AhmedM.B. AhsanH. IslamM. ShehzadA. SonnJ.K. LeeY.S. An update on the role of dietary phytochemicals in human skin cancer: New insights into molecular mechanisms.Antioxidants202091091610.3390/antiox9100916 32993035
    [Google Scholar]
  26. AshiqueS. AfzalO. HussainA. ZeyaullahM. AltamimiM.A. MishraN. AhmadM.F. DuaK. AltamimiA.S.A. AnandK. It’s all about plant derived natural phytoconstituents and phytonanomedicine to control skin cancer.J. Drug Deliv. Sci. Technol.20238410449510.1016/j.jddst.2023.104495
    [Google Scholar]
  27. Moballegh NaseryM. AbadiB. PoormoghadamD. ZarrabiA. KeyhanvarP. KhanbabaeiH. AshrafizadehM. MohammadinejadR. TavakolS. SethiG. Curcumin delivery mediated by bio-based nanoparticles: A review.Molecules202025368910.3390/molecules25030689 32041140
    [Google Scholar]
  28. LiL. LuS. MaC. Anti-proliferative and pro-apoptotic effects of curcumin on skin cutaneous melanoma: Bioinformatics analysis and in vitro experimental studies.Front. Genet.20221398394310.3389/fgene.2022.983943 36171883
    [Google Scholar]
  29. BibiN. ur Rehman, A.; Rana, N.F.; Akhtar, H.; Khan, M.I.; Faheem, M.; Jamal, S.B.; Ahmed, N. Formulation and characterization of curcumin nanoparticles for skin cancer treatment.Appl. Nanosci.202212113421343610.1007/s13204‑022‑02346‑4
    [Google Scholar]
  30. TangY. CaoY. Curcumin inhibits the growth and metastasis of melanoma via miR-222-3p/SOX10/Notch axis.Dis. Markers202220221810.1155/2022/3129781 35585935
    [Google Scholar]
  31. KartalB. Ali̇moğullariE. Özdemi̇r SanciT. Investigation of the effect of curcumin on SK-MEL-30 human melanoma cells.Journal of Uludağ University Faculty of Medicine2023491495410.32708/uutfd.1202758
    [Google Scholar]
  32. PoleràN. BadolatoM. PerriF. CarulloG. AielloF. Quercetin and its natural sources in wound healing management.Curr. Med. Chem.201926315825584810.2174/0929867325666180713150626 30009700
    [Google Scholar]
  33. AghababaeiF. HadidiM. Recent advances in potential health benefits of quercetin.Pharmaceuticals2023167102010.3390/ph16071020 37513932
    [Google Scholar]
  34. KarameseM. DicleY. The antibacterial and antibiofilm activities of resveratrol on gram-positive and gram-negative bacteria.KJMS202212320120610.5505/kjms.2022.76743
    [Google Scholar]
  35. PengD. ChenL. SunY. SunL. YinQ. DengS. NiuL. LouF. WangZ. XuZ. WangC. FanL. WangH. WangH. Melanoma suppression by quercein is correlated with RIG-I and type I interferon signaling.Biomed. Pharmacother.202012510998410.1016/j.biopha.2020.109984 32066042
    [Google Scholar]
  36. HundsbergerH. StierschneiderA. SarneV. RipperD. SchimonJ. WeitzenböckH.P. SchildD. JacobiN. EgerA. AtzlerJ. KleinC.T. WiesnerC. concentration-dependent pro- and antitumor activities of quercetin in human melanoma spheroids: comparative analysis of 2D and 3D cell culture models.Molecules202126371710.3390/molecules26030717 33573155
    [Google Scholar]
  37. SollF. TernentC. BerryI.M. KumariD. MooreT.C. Quercetin inhibits proliferation and induces apoptosis of b16 melanoma cells in vitro.Assay Drug Dev. Technol.202018626126810.1089/adt.2020.993 32799543
    [Google Scholar]
  38. TurnerK.A. ManouchehriJ.M. KalafatisM. Sensitization of recombinant human tumor necrosis factor-related apoptosis-inducing ligand-resistant malignant melanomas by quercetin.Melanoma Res.201828427728510.1097/CMR.0000000000000447 29596115
    [Google Scholar]
  39. WuP. SunW. WuP. Hyperoside exerts potent anticancer activity in skin cancer.Front. Biosci.202025346347910.2741/4814 31585897
    [Google Scholar]
  40. TianB. LiuJ. Resveratrol: A review of plant sources, synthesis, stability, modification and food application.J. Sci. Food Agric.202010041392140410.1002/jsfa.10152 31756276
    [Google Scholar]
  41. KoJ.H. SethiG. UmJ.Y. ShanmugamM.K. ArfusoF. KumarA.P. BishayeeA. AhnK.S. The role of resveratrol in cancer therapy.Int. J. Mol. Sci.20171812258910.3390/ijms18122589 29194365
    [Google Scholar]
  42. SinghG. Resveratrol: Nanocarrier-based delivery systems to enhance its therapeutic potential.Nanomedicine202015282801281710.2217/nnm‑2020‑0289 33191840
    [Google Scholar]
  43. XiaoQ. ZhuW. FengW. LeeS.S. LeungA.W. ShenJ. GaoL. XuC. A review of resveratrol as a potent chemoprotective and synergistic agent in cancer chemotherapy.Front. Pharmacol.20199153410.3389/fphar.2018.01534 30687096
    [Google Scholar]
  44. LeeI.T. LinH.C. HuangT.H. TsengC.N. ChengH.T. HuangW.C. ChengC.Y. Anti-inflammatory effect of resveratrol derivatives via the downregulation of oxidative-stress-dependent and c-Src transactivation EGFR pathways on rat mesangial cells.Antioxidants202211583510.3390/antiox11050835 35624699
    [Google Scholar]
  45. GongC. XiaH. Resveratrol suppresses melanoma growth by promoting autophagy through inhibiting the PI3K/AKT/mTOR signaling pathway.Exp. Ther. Med.201910.3892/etm.2019.8359 32104244
    [Google Scholar]
  46. YangH.Z. ZhangJ. ZengJ. LiuS. ZhouF. ZhangF. GiampieriF. CianciosiD. Forbes-HernandezT.Y. AnsaryJ. GilE. ChenR. BattinoM. Resveratrol inhibits the proliferation of melanoma cells by modulating cell cycle.Int. J. Food Sci. Nutr.2020711849310.1080/09637486.2019.1614541 31154861
    [Google Scholar]
  47. KhalilA.A. RahmanU. KhanM.R. SaharA. MehmoodT. KhanM. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives.RSC Advances2017752326693268110.1039/C7RA04803C
    [Google Scholar]
  48. ZariA.T. ZariT.A. HakeemK.R. Anticancer properties of eugenol: A review.Molecules20212623740710.3390/molecules26237407 34885992
    [Google Scholar]
  49. MakuchE. NowakA. GüntherA. PełechR. KucharskiŁ. DuchnikW. KlimowiczA. Enhancement of the antioxidant and skin permeation properties of eugenol by the esterification of eugenol to new derivatives.AMB Express202010118710.1186/s13568‑020‑01122‑3 33078274
    [Google Scholar]
  50. ValizadehA. KhaleghiA.A. AlipanahH. ZarenezhadE. OsanlooM. Anticarcinogenic effect of chitosan nanoparticles containing syzygium aromaticum essential oil or eugenol toward breast and skin cancer cell lines.Bionanoscience202111367868610.1007/s12668‑021‑00880‑z
    [Google Scholar]
  51. Mohammadi NejadS. ÖzgüneşH. BaşaranN. Pharmacological and toxicological properties of eugenol.Turk. J. Pharm. Sci.201714220120610.4274/tjps.62207 32454614
    [Google Scholar]
  52. PatelK. JainA. PatelD.K. Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’: A concise report.J. Acute Dis.20132316917810.1016/S2221‑6189(13)60123‑7
    [Google Scholar]
  53. HuangC.C. HungC.H. HungT.W. LinY.C. WangC.J. KaoS.H. Dietary delphinidin inhibits human colorectal cancer metastasis associating with upregulation of miR-204-3p and suppression of the integrin/FAK axis.Sci. Rep.2019911895410.1038/s41598‑019‑55505‑z 31831830
    [Google Scholar]
  54. HusainA. ChananaH. KhanS.A. DhanalekshmiU.M. AliM. AlghamdiA.A. AhmadA. Chemistry and pharmacological actions of delphinidin, a dietary purple pigment in anthocyanidin and anthocyanin forms.Front. Nutr.2022974688110.3389/fnut.2022.746881 35369062
    [Google Scholar]
  55. HidalgoJ. TeuberS. MoreraF. OjedaC. FloresC. HidalgoM. NúñezL. VillalobosC. BurgosR. Delphinidin reduces glucose uptake in mice jejunal tissue and human intestinal cells lines through FFA1/GPR40.Int. J. Mol. Sci.201718475010.3390/ijms18040750 28379159
    [Google Scholar]
  56. EreminasG. MajieneD. SidlauskasK. JakstasV. IvanauskasL. VaitiekaitisG. LiobikasJ. Neuroprotective properties of anthocyanidin glycosides against H2O2-induced glial cell death are modulated by their different stability and antioxidant activity in vitro.Biomed. Pharmacother.20179418819610.1016/j.biopha.2017.07.077 28759756
    [Google Scholar]
  57. LeeD.Y. ParkY.J. SongM.G. KimD.R. ZadaS. KimD.H. Cytoprotective effects of delphinidin for human chondrocytes against oxidative stress through activation of autophagy.Antioxidants2020918310.3390/antiox9010083 31963866
    [Google Scholar]
  58. KeravisT. FavotL. AbusninaA.A. AntonA. JustinianoH. SoletiR. Alabed AlibrahimE. SimardG. AndriantsitohainaR. LugnierC. Delphinidin inhibits tumor growth by acting on VEGF signalling in endothelial cells.PLoS One20151012e014529110.1371/journal.pone.0145291 26694325
    [Google Scholar]
  59. KuoH.C.D. WuR. LiS. YangA.Y. KongA.N. Anthocyanin delphinidin prevents neoplastic transformation of mouse skin JB6 P+ cells: Epigenetic re-activation of Nrf2-ARE pathway.AAPS J.20192158310.1208/s12248‑019‑0355‑5 31254216
    [Google Scholar]
  60. PavlíkováN. Caffeic acid and diseases—mechanisms of action.Int. J. Mol. Sci.202224158810.3390/ijms24010588 36614030
    [Google Scholar]
  61. YangT-P. TsaiN-M. WangC-J. Caffeic acid induces autophagy in and inhibits migration of melanoma cells via upregulation of 5′ adenosine monophosphate-activated protein kinase.Chung Shan Med. J.2019303145
    [Google Scholar]
  62. AlamM. AhmedS. ElasbaliA.M. AdnanM. AlamS. HassanM.I. PasupuletiV.R. Therapeutic implications of caffeic acid in cancer and neurological diseases.Front. Oncol.20221286050810.3389/fonc.2022.860508 35359383
    [Google Scholar]
  63. PelinsonL.P. AssmannC.E. PalmaT.V. da CruzI.B.M. PillatM.M. MânicaA. StefanelloN. WeisG.C.C. de Oliveira AlvesA. de AndradeC.M. UlrichH. MorschV.M.M. SchetingerM.R.C. BagatiniM.D. Antiproliferative and apoptotic effects of caffeic acid on SK-Mel-28 human melanoma cancer cells.Mol. Biol. Rep.20194622085209210.1007/s11033‑019‑04658‑1 30719606
    [Google Scholar]
  64. DixonR. FerreiraD. Genistein.Phytochemistry200260320521110.1016/S0031‑9422(02)00116‑4 12031439
    [Google Scholar]
  65. YeligarR.R. SarwaK.K. ChandrakarM. JangdeM.S. Nanotechnology-based delivery of genistein to overcome physicochemical hindrance and enhance therapeutic response in skin cancer.Bionanoscience20231331339135810.1007/s12668‑023‑01118‑w
    [Google Scholar]
  66. PawlickaM. FilipA. Can genistein be a potential agent against skin side effects associated with the treatment of breast cancer?Postepy Dermatol. Alergol.202239171210.5114/ada.2022.113800 35369627
    [Google Scholar]
  67. VenzaI. VisalliM. OteriR. BeninatiC. TetiD. VenzaM. Genistein reduces proliferation of EP3-expressing melanoma cells through inhibition of PGE2-induced IL-8 expression.Int. Immunopharmacol.201862869510.1016/j.intimp.2018.06.009 29990698
    [Google Scholar]
  68. CuiS. WangJ. WuQ. QianJ. YangC. BoP. Genistein inhibits the growth and regulates the migration and invasion abilities of melanoma cells via the FAK/paxillin and MAPK pathways.Oncotarget2017813216742169110.18632/oncotarget.15535 28423510
    [Google Scholar]
  69. NabaviS.F. BraidyN. GortziO. Sobarzo-SanchezE. DagliaM. Skalicka-WoźniakK. NabaviS.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review.Brain Res. Bull.2015119Pt A11110.1016/j.brainresbull.2015.09.00226361743
    [Google Scholar]
  70. SchombergJ. WangZ. FarhatA. GuoK.L. XieJ. ZhouZ. LiuJ. KovacsB. Liu-SmithF. Luteolin inhibits melanoma growth in vitro and in vivo via regulating ECM and oncogenic pathways but not ROS.Biochem. Pharmacol.202017711402510.1016/j.bcp.2020.114025 32413425
    [Google Scholar]
  71. JuszczakA.M. WöelfleU. KončićM.Z. TomczykM. Skin cancer, including related pathways and therapy and the role of luteolin derivatives as potential therapeutics.Med. Res. Rev.20224241423146210.1002/med.21880 35187675
    [Google Scholar]
  72. YaoX. JiangW. YuD. YanZ. Luteolin inhibits proliferation and induces apoptosis of human melanoma cells in vivo and in vitro by suppressing MMP-2 and MMP-9 through the PI3K/AKT pathway.Food Funct.201910270371210.1039/C8FO02013B 30663726
    [Google Scholar]
  73. CordellG.A. AraujoO.E. Capsaicin: Identification, nomenclature, and pharmacotherapy.Ann. Pharmacother.199327333033610.1177/106002809302700316 8453173
    [Google Scholar]
  74. GeorgescuS.R. SârbuM.I. MateiC. IlieM. CaruntuC. ConstantinC. NeaguM. TampaM. Capsaicin: Friend or foe in skin cancer and other related malignancies?Nutrients2017912136510.3390/nu9121365 29258175
    [Google Scholar]
  75. SzallasiA. Capsaicin and cancer: Guilty as charged or innocent until proven guilty?Temperature2023101354910.1080/23328940.2021.2017735 37187832
    [Google Scholar]
  76. ZhangS. WangD. HuangJ. HuY. XuY. Application of capsaicin as a potential new therapeutic drug in human cancers.J. Clin. Pharm. Ther.2020451162810.1111/jcpt.13039 31545523
    [Google Scholar]
  77. ChuH. LiM. WangX. Capsaicin induces apoptosis and autophagy in human melanoma cells.Oncol. Lett.20191764827483410.3892/ol.2019.10206 31186689
    [Google Scholar]
  78. MlalaS. OyedejiA.O. GondweM. OyedejiO.O. Ursolic acid and its derivatives as bioactive agents.Molecules20192415275110.3390/molecules24152751 31362424
    [Google Scholar]
  79. LiuT. MaH. ShiW. DuanJ. WangY. ZhangC. LiC. LinJ. LiS. LvJ. LinL. Inhibition of STAT3 signaling pathway by ursolic acid suppresses growth of hepatocellular carcinoma.Int. J. Oncol.201751255556210.3892/ijo.2017.4035 28714512
    [Google Scholar]
  80. KhwazaV. OyedejiO.O. AderibigbeB.A. Ursolic acid-based derivatives as potential anti-cancer agents: An update.Int. J. Mol. Sci.20202116592010.3390/ijms21165920 32824664
    [Google Scholar]
  81. CauniiA. OpreanC. CristeaM. IvanA. DanciuC. TatuC. PaunescuV. MartiD. TzanakakisG. SpandidosD.A. TsatsakisA. SusanR. SoicaC. AvramS. DeheleanC. Effects of ursolic and oleanolic on SK-MEL-2 melanoma cells: In vitro and in vivo assays.Int. J. Oncol.20175161651166010.3892/ijo.2017.4160 29039461
    [Google Scholar]
  82. Sharifi-RadJ. Herrera-BravoJ. KamilogluS. PetroniK. MishraA.P. Monserrat-MesquidaM. SuredaA. MartorellM. AidarbekovnaD.S. YessimsiitovaZ. YdyrysA. HanoC. CalinaD. ChoW.C. Recent advances in the therapeutic potential of emodin for human health.Biomed. Pharmacother.202215411355510.1016/j.biopha.2022.113555 36027610
    [Google Scholar]
  83. Nowak-PerlakM. BromkeM.A. ZiółkowskiP. WoźniakM. The comparison of the efficiency of emodin and aloe-emodin in photodynamic therapy.Int. J. Mol. Sci.20222311627610.3390/ijms23116276 35682955
    [Google Scholar]
  84. LiuC. ChenL. WangW. QinD. JiaC. YuanM. WangH. GuoY. ZhuJ. ZhouY. ZhaoH. LiuT. Emodin suppresses the migration and invasion of melanoma cells.Biol. Pharm. Bull.202144677177910.1248/bpb.b20‑00807 33731543
    [Google Scholar]
  85. DuM. ShenP. TanR. WuD. TuS. Aloe-emodin inhibits the proliferation, migration, and invasion of melanoma cells via inactivation of the Wnt/beta-catenin signaling pathway.Ann. Transl. Med.20219231722172210.21037/atm‑21‑5437 35071416
    [Google Scholar]
  86. LiQ. WenJ. YuK. ShuY. HeW. ChuH. ZhangB. GeC. Aloe-emodin induces apoptosis in human oral squamous cell carcinoma SCC15 cells.BMC Complement. Altern. Med.201818129610.1186/s12906‑018‑2353‑z 30404637
    [Google Scholar]
  87. NagiaM. MorganI. GamelM.A. FaragM.A. Maximizing the value of indole-3-carbinol, from its distribution in dietary sources, health effects, metabolism, extraction, and analysis in food and biofluids.Crit. Rev. Food Sci. Nutr.202312210.1080/10408398.2023.2197065 37051943
    [Google Scholar]
  88. SinghA.A. PatilM.P. KangM.J. NiyonizigiyeI. KimG.D. Biomedical application of Indole-3-carbinol: A mini-review.Phytochem. Lett.202141495410.1016/j.phytol.2020.09.024
    [Google Scholar]
  89. KunduA. QuiritJ.G. KhouriM.G. FirestoneG.L. Inhibition of oncogenic BRAF activity by indole-3-carbinol disrupts microphthalmia-associated transcription factor expression and arrests melanoma cell proliferation.Mol. Carcinog.2017561496110.1002/mc.22472 26878440
    [Google Scholar]
  90. KunduA. KhouriM.G. AryanaS. FirestoneG.L. 1-Benzyl-indole-3-carbinol is a highly potent new small molecule inhibitor of Wnt/β-catenin signaling in melanoma cells that coordinately inhibits cell proliferation and disrupts expression of microphthalmia-associated transcription factor isoform-M.Carcinogenesis201738121207121710.1093/carcin/bgx103 29028954
    [Google Scholar]
  91. ShenJ.L. ManK.M. HuangP.H. ChenW.C. ChenD.C. ChengY.W. LiuP.L. ChouM.C. ChenY.H. Honokiol and magnolol as multifunctional antioxidative molecules for dermatologic disorders.Molecules20101596452646510.3390/molecules15096452 20877235
    [Google Scholar]
  92. LiY. LiangC. ZhouX. The application prospects of honokiol in dermatology.Dermatol. Ther.2022358e1565810.1111/dth.15658 35726011
    [Google Scholar]
  93. LiuT. LiuH. WangP. HuY. YangR. LiuF. KimH.G. DongZ. LiuK. Honokiol inhibits melanoma growth by targeting keratin 18 in vitro and in vivo.Front. Cell Dev. Biol.2020860347210.3389/fcell.2020.603472 33330500
    [Google Scholar]
  94. Guillermo-LagaeR. SanthaS. ThomasM. ZoelleE. StevensJ. KaushikR.S. DwivediC. Antineoplastic effects of honokiol on melanoma.BioMed Res. Int.2017201711010.1155/2017/5496398 28194418
    [Google Scholar]
  95. PrasadR. SinghT. KatiyarS.K. Honokiol inhibits ultraviolet radiation-induced immunosuppression through inhibition of ultraviolet-induced inflammation and DNA hypermethylation in mouse skin.Sci. Rep.201771165710.1038/s41598‑017‑01774‑5 28490739
    [Google Scholar]
  96. RibeiroB.D. BarretoD.W. CoelhoM.A.Z. Technological aspects of β-carotene production.Food Bioprocess Technol.20114569370110.1007/s11947‑011‑0545‑3
    [Google Scholar]
  97. AnandR. MohanL. BharadvajaN. Disease prevention and treatment using β-carotene: The ultimate provitamin A.Rev. Bras. Farmacogn.202232449150110.1007/s43450‑022‑00262‑w 35669276
    [Google Scholar]
  98. HuC. HuangY. LuoP. YangY. Effect of antioxidants coenzyme Q10 and β carotene on the cytotoxicity of vemurafenib against human malignant melanoma.Oncol. Lett.202121320810.3892/ol.2021.12469 33574947
    [Google Scholar]
  99. PeriferakisA. PeriferakisK. BadarauI.A. PetranE.M. PopaD.C. CaruntuA. CostacheR.S. ScheauC. CaruntuC. CostacheD.O. Kaempferol: Antimicrobial properties, sources, clinical, and traditional applications.Int. J. Mol. Sci.202223231505410.3390/ijms232315054 36499380
    [Google Scholar]
  100. ZhengX. PanY. YangG. LiuY. ZouJ. ZhaoH. YinG. WuY. LiX. WeiZ. YuS. ZhaoY. WangA. ChenW. LuY. Kaempferol impairs aerobic glycolysis against melanoma metastasis via inhibiting the mitochondrial binding of HK2 and VDAC1.Eur. J. Pharmacol.202293117522610.1016/j.ejphar.2022.175226 36007607
    [Google Scholar]
  101. RenJ. LuY. QianY. ChenB. WuT. JiG. Recent progress regarding kaempferol for the treatment of various diseases (Review).Exp. Ther. Med.20191842759277610.3892/etm.2019.7886 31572524
    [Google Scholar]
  102. QiangD. CiC. LiuW. WangJ. HeC. JiB. ShaoX. Inhibitory effect of kaempferol on mouse melanoma cell line B16 in vivo and in vitro.Postepy Dermatol. Alergol.202138349850410.5114/ada.2020.94257 34377134
    [Google Scholar]
  103. SalehiB. VendittiA. Sharifi-RadM. KręgielD. Sharifi-RadJ. DurazzoA. LucariniM. SantiniA. SoutoE. NovellinoE. AntolakH. AzziniE. SetzerW. MartinsN. The therapeutic potential of apigenin.Int. J. Mol. Sci.2019206130510.3390/ijms20061305 30875872
    [Google Scholar]
  104. ZhaoG. HanX. ChengW. NiJ. ZhangY. LinJ. SongZ. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells.Oncol. Rep.20173742277228510.3892/or.2017.5450 28260058
    [Google Scholar]
  105. MirzoevaS. TongX. BridgemanB.B. PlebanekM.P. VolpertO.V. Apigenin inhibits UVB-induced skin carcinogenesis: The role of thrombospondin-1 as an anti-inflammatory factor.Neoplasia201820993094210.1016/j.neo.2018.07.005 30118999
    [Google Scholar]
  106. JangdeyM.S. KaurC.D. SarafS. Efficacy of Concanavalin-A conjugated nanotransfersomal gel of apigenin for enhanced targeted delivery of UV induced skin malignant melanoma.Artif. Cells Nanomed. Biotechnol.201947190491610.1080/21691401.2019.1578784 30856018
    [Google Scholar]
  107. WooJ.S. ChooG.S. YooE.S. KimS.H. LeeJ.H. HanS.H. KimH.J. JungS.H. ParkY.S. KimB.S. KimS.K. ParkB.K. ChoS.D. NamJ.S. ChoiC.S. CheJ.H. JungJ.Y. Apigenin induces apoptosis by regulating Akt and MAPK pathways in human melanoma cell A375SM.Mol. Med. Rep.20202264877488910.3892/mmr.2020.11572 33174048
    [Google Scholar]
  108. ZhuL. ChenL. Progress in research on paclitaxel and tumor immunotherapy.Cell. Mol. Biol. Lett.20192414010.1186/s11658‑019‑0164‑y 31223315
    [Google Scholar]
  109. OliveiraR.R. CintraE.R. Sousa-JuniorA.A. MoreiraL.C. da SilvaA.C.G. de SouzaA.L.R. ValadaresM.C. CarriãoM.S. BakuzisA.F. LimaE.M. Paclitaxel-loaded lipid-coated magnetic nanoparticles for dual chemo-magnetic hyperthermia therapy of melanoma.Pharmaceutics202315381810.3390/pharmaceutics15030818 36986678
    [Google Scholar]
  110. BharadwajR. DasP.J. PalP. MazumderB. Topical delivery of paclitaxel for treatment of skin cancer.Drug Dev. Ind. Pharm.20164291482149410.3109/03639045.2016.1151028 26850463
    [Google Scholar]
  111. MekkawyA.I. NaguibY.W. Alhaj-SulimanS.O. WafaE.I. EbeidK. AcriT. SalemA.K. Paclitaxel anticancer activity is enhanced by the MEK 1/2 inhibitor PD98059 in vitro and by PD98059-loaded nanoparticles in BRAFV600E melanoma-bearing mice.Int. J. Pharm.202160612087610.1016/j.ijpharm.2021.120876 34252520
    [Google Scholar]
  112. WilliamsA.C. BarryB.W. Terpenes and the lipid-protein-partitioning theory of skin penetration enhancement.Pharm. Res.199181172410.1023/A:1015813803205 2014203
    [Google Scholar]
  113. HassanS.B. Gali-MuhtasibH. GöranssonH. LarssonR. Alpha terpineol: A potential anticancer agent which acts through suppressing NF-kappaB signalling.Anticancer Res.201030619111919 20651334
    [Google Scholar]
  114. Alves BatistaF. Brena Cunha FonteleS. Beserra SantosL.K. Alves FilgueirasL. Quaresma NascimentoS. de Castro e Sousa, J.M.; Ramos Gonçalves, J.C.; Nogueira Mendes, A. Synthesis, characterization of α-terpineol-loaded PMMA nanoparticles as proposed of therapy for melanoma.Mater. Today Commun.20202210076210.1016/j.mtcomm.2019.100762
    [Google Scholar]
  115. GargA. AggarwalB.B. Nuclear transcription factor-κB as a target for cancer drug development.Leukemia20021661053106810.1038/sj.leu.2402482 12040437
    [Google Scholar]
  116. WangY. LiuY. DuX. MaH. YaoJ. The anti-cancer mechanisms of berberine: A review.Cancer Manag. Res.20201269570210.2147/CMAR.S242329 32099466
    [Google Scholar]
  117. TillhonM. Guamán OrtizL.M. LombardiP. ScovassiA.I. Berberine: New perspectives for old remedies.Biochem. Pharmacol.201284101260126710.1016/j.bcp.2012.07.018 22842630
    [Google Scholar]
  118. SinghT. VaidM. KatiyarN. SharmaS. KatiyarS.K. RETRACTED: Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E2and prostaglandin E2receptors.Carcinogenesis2011321869210.1093/carcin/bgq215 20974686
    [Google Scholar]
  119. KouY. LiL. LiH. TanY. LiB. WangK. DuB. Berberine suppressed epithelial mesenchymal transition through cross-talk regulation of PI3K/AKT and RARα/RARβ in melanoma cells.Biochem. Biophys. Res. Commun.2016479229029610.1016/j.bbrc.2016.09.061 27639645
    [Google Scholar]
  120. YuH. JinH. GongW. WangZ. LiangH. Pharmacological actions of multi-target-directed evodiamine.Molecules20131821826184310.3390/molecules18021826 23434865
    [Google Scholar]
  121. HuX. LiD. ChuC. LiX. WangX. JiaY. HuaH. XuF. Antiproliferative effects of alkaloid evodiamine and its derivatives.Int. J. Mol. Sci.20181911340310.3390/ijms19113403 30380774
    [Google Scholar]
  122. WangC. WangM. TashiroS. OnoderaS. IkejimaT. Roles of SIRT1 and phosphoinositide 3-OH kinase/protein kinase C pathways in evodiamine-induced human melanoma A375-S2 cell death.J. Pharmacol. Sci.200597449450010.1254/jphs.FPJ04055X 15821341
    [Google Scholar]
  123. YangJ. WuL. TashinoS. OnoderaS. IkejimaT. Critical roles of reactive oxygen species in mitochondrial permeability transition in mediating evodiamine-induced human melanoma A375-S2 cell apoptosis.Free Radic. Res.200741101099110810.1080/10715760701499356 17886031
    [Google Scholar]
  124. YangJ. WuL.J. TashiroS.I. OnoderaS. IkejimaT. Nitric oxide activated by p38 and NF- κ B facilitates apoptosis and cell cycle arrest under oxidative stress in evodiamine-treated human melanoma A375-S2 cells.Free Radic. Res.200842111110.1080/10715760701762407 18324518
    [Google Scholar]
  125. JainB. JainN. JainS. TejaP.K. ChautheS.K. JainA. Exploring brucine alkaloid: A comprehensive review on pharmacology, therapeutic applications, toxicity, extraction and purification techniques.Phytomedicine Plus20233410049010.1016/j.phyplu.2023.100490
    [Google Scholar]
  126. AgrawalS.S. SaraswatiS. MathurR. PandeyM. Cytotoxic and antitumor effects of brucine on Ehrlich ascites tumor and human cancer cell line.Life Sci.2011895-614715810.1016/j.lfs.2011.05.020 21684292
    [Google Scholar]
  127. SaraswatiS. AgrawalS.S. Brucine, an indole alkaloid from Strychnos nux-vomica attenuates VEGF-induced angiogenesis via inhibiting VEGFR2 signaling pathway in vitro and in vivo.Cancer Lett.20133321839310.1016/j.canlet.2013.01.012 23348691
    [Google Scholar]
  128. LuL. HuangR. WuY. JinJ.M. ChenH.Z. ZhangL.J. LuanX. Brucine: A review of phytochemistry, pharmacology, and toxicology.Front. Pharmacol.20201137710.3389/fphar.2020.00377 32308621
    [Google Scholar]
  129. IsmailT.A. ShehataT.M. MohamedD.I. ElsewedyH.S. SolimanW.E. Quality by design for development, optimization and characterization of brucine ethosomal gel for skin cancer delivery.Molecules20212611345410.3390/molecules26113454 34200144
    [Google Scholar]
  130. AlhakamyN.A. AldawsariH.M. AliJ. GuptaD.K. WarsiM.H. BilgramiA.L. AsfourH.Z. NoorA.O. MdS. Brucineloaded transliposomes nanogel for topical delivery in skin cancer: Statistical optimization, in vitro and dermatokinetic evaluation.3 Biotech20211128810.1007/s13205‑021‑02841‑5
    [Google Scholar]
  131. AdjaklyM. NgolloM. BoiteuxJ-P. BignonY-J. GuyL. Bernard-GallonD. Genistein and daidzein: Different molecular effects on prostate cancer.Anticancer Res.20133313944 23267126
    [Google Scholar]
  132. JungW. YuO. LauS.M.C. O’KeefeD.P. OdellJ. FaderG. McGonigleB. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes.Nat. Biotechnol.200018220821210.1038/72671 10657130
    [Google Scholar]
  133. CasagrandeF. DarbonJ.M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK111 Abbreviations: CDK, cyclin-dependent kinase; CKI, CDK inhibitor; PI 3-kinase, phosphatidylinositol 3-kinase; PKC, protein kinase C; DTT, dithiothreitol; RIPA, radioimmunoprecipitation assay buffer.Biochem. Pharmacol.200161101205121510.1016/S0006‑2952(01)00583‑4 11322924
    [Google Scholar]
  134. ZhengW. SunR. YangL. ZengX. XueY. AnR. Daidzein inhibits choriocarcinoma proliferation by arresting cell cycle at G1 phase through suppressing ERK pathway in vitro and in vivo.Oncol. Rep.20173842518252410.3892/or.2017.5928 28849226
    [Google Scholar]
  135. WangY. YangM. QinJ. WaW. Interactions between puerarin/daidzein and micellar casein.J. Food Biochem.2022462e1404810.1111/jfbc.14048 34981538
    [Google Scholar]
  136. MinK. KwonT.K. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate.Integr. Med. Res.201431162410.1016/j.imr.2013.12.001 28664074
    [Google Scholar]
  137. KatiyarS. MukhtarH. Tea in chemoprevention of cancer.Int. J. Oncol.19968222123810.3892/ijo.8.2.221 21544351
    [Google Scholar]
  138. KohY.W. ChoiE.C. KangS.U. HwangH.S. LeeM.H. PyunJ. ParkR. LeeY. KimC.H. Green tea (−)-epigallocatechin-3-gallate inhibits HGF-induced progression in oral cavity cancer through suppression of HGF/c-Met.J. Nutr. Biochem.201122111074108310.1016/j.jnutbio.2010.09.005 21292466
    [Google Scholar]
  139. KwakI. ShinY.H. KimM. ChaH.Y. NamH.J. LeeB.S. ChaudharyS.C. PaiK.S. LeeJ.H. Epigallocatechin-3-gallate inhibits paracrine and autocrine hepatocyte growth factor/scatter factor-induced tumor cell migration and invasion.Exp. Mol. Med.201143211112010.3858/emm.2011.43.2.013 21209554
    [Google Scholar]
  140. LeónD. BucheggerK. SilvaR. RiquelmeI. ViscarraT. Mora-LagosB. ZanellaL. SchaferF. KurachiC. RoaJ.C. IliC. BrebiP. Epigallocatechin gallate enhances MAL-PDT cytotoxic effect on PDT-resistant skin cancer squamous cells.Int. J. Mol. Sci.2020219332710.3390/ijms21093327 32397263
    [Google Scholar]
  141. XuZ. GodberJ.S. Purification and identification of components of γ-oryzanol in rice bran Oil.J. Agric. Food Chem.19994772724272810.1021/jf981175j 10552553
    [Google Scholar]
  142. GhaderiS. GhanbarzadehS. MohammadhassaniZ. HamishehkarH. Formulation of gammaoryzanol-loaded nanoparticles for potential application in fortifying food products.Adv. Pharm. Bull.20144Suppl. 254955410.5681/apb.2014.081 25671188
    [Google Scholar]
  143. ShahH.S. GotechaA. JethaD. RajputA. BariyaA. PanchalS. ButaniS. Gamma oryzanol niosomal gel for skin cancer: Formulation and optimization using quality by design (QbD) approach.AAPS Open202171910.1186/s41120‑021‑00041‑2
    [Google Scholar]
  144. ZeinaliM. Abbaspour-RavasjaniS. SoltanfamT. Paiva-SantosA.C. BabaeiH. VeigaF. HamishehkarH. Prevention of UV-induced skin cancer in mice by gamma oryzanol-loaded nanoethosomes.Life Sci.202128311975910.1016/j.lfs.2021.119759 34171381
    [Google Scholar]
  145. AggarwalV. TuliH.S. KaurJ. AggarwalD. ParasharG. Chaturvedi ParasharN. KulkarniS. KaurG. SakK. KumarM. AhnK.S. Garcinol exhibits anti-neoplastic effects by targeting diverse oncogenic factors in tumor cells.Biomedicines20208510310.3390/biomedicines8050103 32365899
    [Google Scholar]
  146. LiuC. HoP.C.L. WongF.C. SethiG. WangL.Z. GohB.C. Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects.Cancer Lett.2015362181410.1016/j.canlet.2015.03.019 25796441
    [Google Scholar]
  147. ZhouX.Y. CaoJ. HanC.M. LiS.W. ZhangC. DuY.D. ZhouQ.Q. ZhangX.Y. ChenX. The C8 side chain is one of the key functional group of Garcinol for its anti-cancer effects.Bioorg. Chem.201771748010.1016/j.bioorg.2017.01.013 28169002
    [Google Scholar]
  148. PadhyeS. AhmadA. OswalN. DandawateP. RubR.A. DeshpandeJ. SwamyK.V. SarkarF.H. Fluorinated 2′-hydroxychalcones as garcinol analogs with enhanced antioxidant and anticancer activities.Bioorg. Med. Chem. Lett.201020195818582110.1016/j.bmcl.2010.07.128 20729081
    [Google Scholar]
  149. PaulB. GaonkarR.H. MukhopadhyayR. GangulyS. DebnathM.C. MukherjeeB. Garcinol-loaded novel cationic nanoliposomes: in vitro and in vivo study against B16F10 melanoma tumor model.Nanomedicine201914152045206510.2217/nnm‑2019‑0022 31368402
    [Google Scholar]
  150. BeheraA.K. SwamyM.M. NateshN. KunduT.K. Garcinol and its role in chronic diseases.Adv. Exp. Med. Biol.201692843545210.1007/978‑3‑319‑41334‑1_18
    [Google Scholar]
  151. The metabolomics innovation centre (TMIC) T3DB: Lycorine.Available from: http://www.t3db.ca/toxins/T3D4064
  152. CaoZ. YangP. ZhouQ. Multiple biological functions and pharmacological effects of lycorine.Sci. China Chem.201356101382139110.1007/s11426‑013‑4967‑9 32215001
    [Google Scholar]
  153. ShiS. LiC. ZhangY. DengC. TanM. PanG. DuJ. JiY. LiQ. LiangH. LiuW. GuoL. ZhaoG. LiuY. CuiH. Lycorine hydrochloride inhibits melanoma cell proliferation, migration and invasion via down-regulating p21Cip1/WAF1.Am. J. Cancer Res.202111413911409 33948364
    [Google Scholar]
  154. YuH. QiuY. PangX. LiJ. WuS. YinS. HanL. ZhangY. JinC. GaoX. HuW. WangT. Lycorine promotes autophagy and apoptosis via TCRP1/Akt/mTOR axis inactivation in human hepatocellular carcinoma.Mol. Cancer Ther.201716122711272310.1158/1535‑7163.MCT‑17‑0498 28974556
    [Google Scholar]
  155. MishraK. SrivastavaP.S. ChaudhuryN.K. Sesamol as a potential radioprotective agent: In vitro studies.Radiat. Res.2011176561362310.1667/RR2661.1 21899433
    [Google Scholar]
  156. GeethaT. KapilaM. PrakashO. DeolP.K. KakkarV. KaurI.P. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer.J. Drug Target.201523215916910.3109/1061186X.2014.965717 25268273
    [Google Scholar]
  157. SrisongkramT. WeerapreeyakulN. Route of intracellular uptake and cytotoxicity of sesamol, sesamin, and sesamolin in human melanoma SK-MEL-2 cells.Biomed. Pharmacother.202214611252810.1016/j.biopha.2021.112528 34906777
    [Google Scholar]
  158. KoltaiT. FliegelL. Role of silymarin in cancer treatment: Facts, hypotheses, and questions.J. Evidence-Based Integr. Med.2022272515690X211068810.1177/2515690X211068826
    [Google Scholar]
  159. DingT. TianS. ZhangZ. GuD. ChenY. ShiY. SunZ. Determination of active component in silymarin by RP-LC and LC/MS.J. Pharm. Biomed. Anal.200126115516110.1016/S0731‑7085(01)00364‑8 11451653
    [Google Scholar]
  160. BerardescaE. CameliN. CavallottiC. LevyJ.L. PiérardG.E. De Paoli AmbrosiG. Combined effects of silymarin and methylsulfonylmethane in the management of rosacea: Clinical and instrumental evaluation.J. Cosmet. Dermatol.20087181410.1111/j.1473‑2165.2008.00355.x 18254805
    [Google Scholar]
  161. WangM.J. LinW.W. ChenH.L. ChangY.H. OuH.C. KuoJ.S. HongJ.S. JengK.C.G. Silymarin protects dopaminergic neurons against lipopolysaccharide‐induced neurotoxicity by inhibiting microglia activation.Eur. J. Neurosci.200216112103211210.1046/j.1460‑9568.2002.02290.x 12473078
    [Google Scholar]
  162. MurataN. MurakamiK. OzawaY. KinoshitaN. IrieK. ShirasawaT. ShimizuT. Silymarin attenuated the amyloid β plaque burden and improved behavioral abnormalities in an Alzheimer’s disease mouse model.Biosci. Biotechnol. Biochem.201074112299230610.1271/bbb.100524 21071836
    [Google Scholar]
  163. ShariatiM. ShaygannejadV. AbbasiradF. HosseininasabF. KazemiM. MirmosayyebO. EsmaeilN. Silymarin restores regulatory T cells (Tregs) function in multiple sclerosis (MS) patients in vitro.Inflammation20194241203121410.1007/s10753‑019‑00980‑9 30806958
    [Google Scholar]
  164. SotoC.P. PerezB.L. FavariL.P. ReyesJ.L. Prevention of alloxan-induced diabetes mellitus in the rat by silymarin.Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol.1998119212512910.1016/S0742‑8413(97)00198‑9 9669080
    [Google Scholar]
  165. LaoC.D. DemierreM.F. SondakV.K. Targeting events in melanoma carcinogenesis for the prevention of melanoma.Expert Rev. Anticancer Ther.20066111559156810.1586/14737140.6.11.1559 17134361
    [Google Scholar]
  166. LeeM.H. HuangZ. KimD.J. KimS.H. KimM.O. LeeS.Y. XieH. ParkS.J. KimJ.Y. KunduJ.K. BodeA.M. SurhY.J. DongZ. Direct targeting of MEK1/2 and RSK2 by silybin induces cell-cycle arrest and inhibits melanoma cell growth.Cancer Prev. Res.20136545546510.1158/1940‑6207.CAPR‑12‑0425 23447564
    [Google Scholar]
  167. Gajos-MichniewiczA. CzyzM. Modulation of WNT/β-catenin pathway in melanoma by biologically active components derived from plants.Fitoterapia201610928329210.1016/j.fitote.2016.02.002 26851176
    [Google Scholar]
  168. HigdonJ. DrakeV.J. DelageB. IsothiocyanatesAvailable from: https://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/isothiocyanates (accessed on Nov 29, 2023).
  169. Dinkova-KostovaA.T. JenkinsS.N. FaheyJ.W. YeL. WehageS.L. LibyK.T. StephensonK.K. WadeK.L. TalalayP. Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts.Cancer Lett.2006240224325210.1016/j.canlet.2005.09.012 16271437
    [Google Scholar]
  170. ShibataA. NakagawaK. YamanoiH. TsudukiT. SookwongP. HiguchiO. KimuraF. MiyazawaT. Sulforaphane suppresses ultraviolet B-induced inflammation in HaCaT keratinocytes and HR-1 hairless mice.J. Nutr. Biochem.201021870270910.1016/j.jnutbio.2009.04.007 19576749
    [Google Scholar]
  171. AlyoussefA. TahaM. Antitumor activity of sulforaphane in mice model of skin cancer via blocking sulfatase‐2.Exp. Dermatol.2019281283410.1111/exd.13802 30315662
    [Google Scholar]
  172. AzadiM. JamaliT. KianmehrZ. KavoosiG. ArdestaniS.K. In-vitro (2D and 3D cultures) and in-vivo cytotoxic properties of Zataria multiflora essential oil (ZEO) emulsion in breast and cervical cancer cells along with the investigation of immunomodulatory potential.J. Ethnopharmacol.202025711286510.1016/j.jep.2020.112865 32298750
    [Google Scholar]
  173. KarimiA. KrähmerA. HerwigN. SchulzH. HadianJ. MeinersT. Variation of secondary metabolite profile of Zataria multiflora boiss. Populations linked to geographic, climatic, and edaphic factors.Front. Plant Sci.20201196910.3389/fpls.2020.00969 32719699
    [Google Scholar]
  174. AlipanahH. YarianF. RastiF. SafariM. HatamiS. OsanlooM. Cytotoxic effects of chitosan nanoparticles containing Zataria multiflora essential oil against human breast and melanoma cells.Beni. Suef Univ. J. Basic Appl. Sci.20221115810.1186/s43088‑022‑00241‑z
    [Google Scholar]
  175. BegumS.N. RayA.S. RahamanC.H. A comprehensive and systematic review on potential anticancer activities of eugenol: From pre-clinical evidence to molecular mechanisms of action.Phytomedicine202210715445610.1016/j.phymed.2022.154456 36152592
    [Google Scholar]
  176. SharmaA. ChoiH.K. KimY.K. LeeH.J. Delphinidin and its glycosides’ war on cancer: Preclinical perspectives.Int. J. Mol. Sci.202122211150010.3390/ijms222111500 34768930
    [Google Scholar]
  177. LiuP. DuR. YuX. Ursolic acid exhibits potent anticancer effects in human metastatic melanoma cancer cells (SK-MEL-24) via apoptosis induction, inhibition of cell migration and invasion, cell cycle arrest, and inhibition of mitogen-activated protein kinase (MAPK)/ERK signaling pathway.Med. Sci. Monit.2019251283129010.12659/MSM.913069 30772887
    [Google Scholar]
  178. FriedL.E. ArbiserJ.L. Honokiol, a multifunctional antiangiogenic and antitumor agent.Antioxid. Redox Signal.20091151139114810.1089/ars.2009.2440 19203212
    [Google Scholar]
  179. YanX. QiM. LiP. ZhanY. ShaoH. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action.Cell Biosci.2017715010.1186/s13578‑017‑0179‑x 29034071
    [Google Scholar]
  180. ClementeN. ArgenzianoM. GigliottiC.L. FerraraB. BoggioE. ChiocchettiA. CalderaF. TrottaF. BenettiE. AnnaratoneL. RiberoS. PizzimentiS. BarreraG. DianzaniU. CavalliR. DianzaniC. Paclitaxel-loaded nanosponges inhibit growth and angiogenesis in melanoma cell models.Front. Pharmacol.20191077610.3389/fphar.2019.00776 31354491
    [Google Scholar]
  181. LiL.H. WuL.J. JiangY.Y. TashiroS.I. OnoderaS. UchiumiF. IkejimaT. Silymarin enhanced cytotoxic effect of anti-Fas agonistic antibody CH11 on A375-S2 cells.J. Asian Nat. Prod. Res.20079759360210.1080/10286020600882502 17943553
    [Google Scholar]
  182. KoklesovaL. JakubikovaJ. CholujovaD. SamecM. MazurakovaA. ŠudomováM. PecM. HassanS.T.S. BiringerK. BüsselbergD. HurtovaT. GolubnitschajaO. KubatkaP. Phytochemical-based nanodrugs going beyond the state-of-the-art in cancer management—Targeting cancer stem cells in the framework of predictive, preventive, personalized medicine.Front. Pharmacol.202314112195010.3389/fphar.2023.1121950 37033601
    [Google Scholar]
  183. AhmadR. SrivastavaS. GhoshS. KhareS.K. Phytochemical delivery through nanocarriers: A review.Colloids Surf. B Biointerfaces202119711138910.1016/j.colsurfb.2020.111389 33075659
    [Google Scholar]
  184. U.S. National library of medicine PubMedAvailable from: https://pubmed.ncbi.nlm.nih.gov
  185. ScopusAvailable from: https://www.scopus.com
  186. Web of ScienceAvailable from: https://www.webofscience.com/wos/woscc/basic-search
  187. PandeyR. BhairamM. ShuklaS.S. GidwaniB. Colloidal and vesicular delivery system for herbal bioactive constituents.Daru202129241543810.1007/s40199‑021‑00403‑x 34327650
    [Google Scholar]
  188. WitikaB.A. MweetwaL.L. TshiamoK.O. EdlerK. MatafwaliS.K. NtemiP.V. ChikukwaM.T.R. MakoniP.A. Vesicular drug delivery for the treatment of topical disorders: current and future perspectives.J. Pharm. Pharmacol.202173111427144110.1093/jpp/rgab082 34132342
    [Google Scholar]
  189. JangdeyM.S. GuptaA. SarafS. SarafS. Development and optimization of apigenin-loaded transfersomal system for skin cancer delivery: In vitro evaluation.Artif. Cells Nanomed. Biotechnol.20174571452146210.1080/21691401.2016.1247850 28050929
    [Google Scholar]
  190. AdnanM. AfzalO. S.A.Altamimi A.; Alamri, M.A.; Haider, T.; Faheem Haider, M. Development and optimization of transethosomal gel of apigenin for topical delivery: In-vitro, ex-vivo and cell line assessment.Int. J. Pharm.202363112250610.1016/j.ijpharm.2022.122506 36535455
    [Google Scholar]
  191. LinH. LinL. ChoiY. Michniak-KohnB. Development and in-vitro evaluation of co-loaded berberine chloride and evodiamine ethosomes for treatment of melanoma.Int. J. Pharm.202058111927810.1016/j.ijpharm.2020.119278 32229284
    [Google Scholar]
  192. Abdel FadeelD.A. KamelR. FadelM. PEGylated lipid nanocarrier for enhancing photodynamic therapy of skin carcinoma using curcumin: in-vitro/in-vivo studies and histopathological examination.Sci. Rep.20201011043510.1038/s41598‑020‑67349‑z 32591621
    [Google Scholar]
  193. JoseA. LabalaS. NinaveK.M. GadeS.K. VenugantiV.V.K. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes.AAPS PharmSciTech201819116617510.1208/s12249‑017‑0833‑y 28639178
    [Google Scholar]
  194. DasM. KumarR. Development of curcumin nanoniosomes for skin cancer chemoprevention.Int. J. Chemtech Res.20157747754
    [Google Scholar]
  195. KolliparaR.K. TallapaneniV. SanapalliB.K.R. KumarG.V. KarriV.V.S.R. Curcumin loaded ethosomal vesicular drug delivery system for the treatment of melanoma skin cancer.Res J Pharm Technol2019124178310.5958/0974‑360X.2019.00298.1
    [Google Scholar]
  196. MangalathillamS. RejinoldN.S. NairA. LakshmananV.K. NairS.V. JayakumarR. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route.Nanoscale20124123925010.1039/C1NR11271F 22080352
    [Google Scholar]
  197. SampathM. LakraR. KorrapatiP. SengottuvelanB. Curcumin loaded poly (lactic-co-glycolic) acid nanofiber for the treatment of carcinoma.Colloids Surf. B Biointerfaces201411712813410.1016/j.colsurfb.2014.02.020 24646452
    [Google Scholar]
  198. Ugur KaplanA.B. CetinM. OrgulD. TaghizadehghalehjoughiA. HacımuftuogluA. HekimogluS. Formulation and in vitro evaluation of topical nanoemulsion and nanoemulsion-based gels containing daidzein.J. Drug Deliv. Sci. Technol.20195218920310.1016/j.jddst.2019.04.027
    [Google Scholar]
  199. MarwahM. PerrieY. BadhanR.K.S. LowryD. Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer.J. Liposome Res.202030213614910.1080/08982104.2019.1604746 31010367
    [Google Scholar]
  200. LiY. TaiZ. MaJ. MiaoF. XinR. ShenC. ShenM. ZhuQ. ChenZ. Lycorine transfersomes modified with cell-penetrating peptides for topical treatment of cutaneous squamous cell carcinoma.J. Nanobiotechnology202321113910.1186/s12951‑023‑01877‑4 37118807
    [Google Scholar]
  201. PaolinoD. CeliaC. TrapassoE. CilurzoF. FrestaM. Paclitaxel-loaded ethosomes®: Potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses.Eur. J. Pharm. Biopharm.201281110211210.1016/j.ejpb.2012.02.008 22414731
    [Google Scholar]
  202. XuH. WenY. ChenS. ZhuL. FengR. SongZ. Paclitaxel skin delivery by micelles-embedded Carbopol 940 hydrogel for local therapy of melanoma.Int. J. Pharm.202058711962610.1016/j.ijpharm.2020.119626 32659404
    [Google Scholar]
  203. FerraraF. BenedusiM. SguizzatoM. CortesiR. BaldisserottoA. BuzziR. ValacchiG. EspositoE. Ethosomes and transethosomes as cutaneous delivery systems for quercetin: A preliminary study on melanoma cells.Pharmaceutics2022145103810.3390/pharmaceutics14051038 35631628
    [Google Scholar]
  204. GullaS. LomadaD. AravetiP.B. SrivastavaA. MurikinatiM.K. ReddyK.R. Inamuddin; Reddy, M.C.; Altalhi, T. Titanium dioxide nanotubes conjugated with quercetin function as an effective anticancer agent by inducing apoptosis in melanoma cells.J. Nanostructure Chem.202111472173410.1007/s40097‑021‑00396‑8
    [Google Scholar]
  205. AdhikariM. KaushikN. GhimireB. AdhikariB. BabootaS. Al-KhedhairyA.A. WahabR. LeeS.J. KaushikN.K. ChoiE.H. Cold atmospheric plasma and silymarin nanoemulsion synergistically inhibits human melanoma tumorigenesis via targeting HGF/c-MET downstream pathway.Cell Commun. Signal.20191715210.1186/s12964‑019‑0360‑4 31126298
    [Google Scholar]
  206. CristianoM.C. FroiioF. SpaccapeloR. MancusoA. NisticòS.P. UdongoB.P. FrestaM. PaolinoD. Sulforaphane-loaded ultradeformable vesicles as a potential natural nanomedicine for the treatment of skin cancer diseases.Pharmaceutics2019121610.3390/pharmaceutics12010006 31861672
    [Google Scholar]
  207. ValizadehA. KhaleghiA.A. RoozitalabG. OsanlooM. High anticancer efficacy of solid lipid nanoparticles containing Zataria multiflora essential oil against breast cancer and melanoma cell lines.BMC Pharmacol. Toxicol.20212215210.1186/s40360‑021‑00523‑9 34587996
    [Google Scholar]
  208. DiazM.J. NatarelliN. AflatooniS. AlemanS.J. NeelamS. TranJ.T. TanejaK. Lucke-WoldB. ForouzandehM. Nanoparticle-based treatment approaches for skin cancer: A systematic review.Curr. Oncol.20233087112713110.3390/curroncol30080516 37622997
    [Google Scholar]
  209. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑4 36635761
    [Google Scholar]
  210. SivadasanD. RamakrishnanK. MahendranJ. RanganathanH. KaruppaiahA. RahmanH. Solid lipid nanoparticles: Applications and prospects in cancer treatment.Int. J. Mol. Sci.2023247619910.3390/ijms24076199 37047172
    [Google Scholar]
  211. AliA. MadniA. ShahH. JamshaidT. JanN. KhanS. KhanM.M. MahmoodM.A. Solid lipid-based nanoparticulate system for sustained release and enhanced in-vitro cytotoxic effect of 5-fluorouracil on skin Melanoma and squamous cell carcinoma.PLoS One2023182e028100410.1371/journal.pone.0281004 36854019
    [Google Scholar]
  212. SheoranS. AroraS. SamsonrajR. GovindaiahP. vuree, S. Lipid-based nanoparticles for treatment of cancer.Heliyon202285e0940310.1016/j.heliyon.2022.e09403 35663739
    [Google Scholar]
  213. AndraV.V.S.N.L. PammiS.V.N. BhatrajuL.V.K.P. RuddarajuL.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents.Bionanoscience202212127429110.1007/s12668‑022‑00941‑x 35096502
    [Google Scholar]
  214. MirzaviF. BaratiM. SoleimaniA. Vakili-GhartavolR. JaafariM.R. SoukhtanlooM. A review on liposome-based therapeutic approaches against malignant melanoma.Int. J. Pharm.202159912041310.1016/j.ijpharm.2021.120413 33667562
    [Google Scholar]
  215. Castañeda-ReyesE.D. Perea-FloresM.J. Davila-OrtizG. LeeY. Gonzalez de MejiaE. Development, characterization and use of liposomes as amphipathic transporters of bioactive compounds for melanoma treatment and reduction of skin inflammation: A review.Int. J. Nanomedicine2020157627765010.2147/IJN.S263516 33116492
    [Google Scholar]
  216. BashkeranT. KamaruddinA.H. NgoT.X. SudaK. UmakoshiH. WatanabeN. NadzirM.M. Niosomes in cancer treatment: A focus on curcumin encapsulation.Heliyon202398e1871010.1016/j.heliyon.2023.e18710 37593605
    [Google Scholar]
  217. ShinuP. NairA.B. KumariB. JacobS. KumarM. TiwariA. TiwariV. VenugopalaK.N. AttimaradM. NagarajaS. Recent advances and appropriate use of niosomes for the treatment of skin cancer.Indian J. Pharm. Educ. Res.202256492493710.5530/ijper.56.4.170
    [Google Scholar]
  218. KomathyJ. SangeethaS. GayathriH. Transferosomes the nano novel vesicular carrier for skin cancer.J RNA Genom2022116
    [Google Scholar]
  219. KodiS.R. ReddyM.S. Transferosomes: A novel topical approach.J. Drug Deliv. Ther.202313212613110.22270/jddt.v13i2.5952
    [Google Scholar]
  220. ShindeP. PageA. BhattacharyaS. Ethosomes and their monotonous effects on Skin cancer disruption.Front. Nanotechnol.20235108741310.3389/fnano.2023.1087413
    [Google Scholar]
  221. GrossiL.N. BrazW.R. da SilvaN.P. CazarimE.L.C.C. PalmieriM.G.S. TavaresG.D. PittellaF. Ethosomes as delivery system for treatment of melanoma: A mini-review.Oncologie202325545545910.1515/oncologie‑2023‑0177
    [Google Scholar]
  222. RajA. DuaK. NairR.S. Sarath ChandranC. AlexA.T. Transethosome: An ultra-deformable ethanolic vesicle for enhanced transdermal drug delivery.Chem. Phys. Lipids202325510531510.1016/j.chemphyslip.2023.105315 37356610
    [Google Scholar]
  223. AscensoA. BatistaC. CardosoP. MendesT. PraçaF. BentleyV. RaposoS. SimõesS. Development, characterization, and skin delivery studies of related ultradeformable vesicles: Transfersomes, ethosomes, and transethosomes.Int. J. Nanomedicine2015105837585110.2147/IJN.S86186 26425085
    [Google Scholar]
  224. AlotaibiG. AlharthiS. BasuB. AshD. DuttaS. SinghS. PrajapatiB.G. BhattacharyaS. ChidrawarV.R. ChitmeH. Nano-gels: Recent advancement in fabrication methods for mitigation of skin cancer.Gels20239433110.3390/gels9040331 37102943
    [Google Scholar]
  225. AttamaA.A. NnamaniP.O. OnokalaO.B. UgwuA.A. OnugwuA.L. Nanogels as target drug delivery systems in cancer therapy: A review of the last decade.Front. Pharmacol.20221387451010.3389/fphar.2022.874510 36160424
    [Google Scholar]
  226. MohiteP. RajputT. PandhareR. SangaleA. SinghS. PrajapatiB.G. Nanoemulsion in management of colorectal cancer: Challenges and future prospects.Nanomanufacturing20233213916610.3390/nanomanufacturing3020010
    [Google Scholar]
  227. Sánchez-LópezE. GuerraM. Dias-FerreiraJ. Lopez-MachadoA. EttchetoM. CanoA. EspinaM. CaminsA. GarciaM.L. SoutoE.B. Current applications of nanoemulsions in cancer therapeutics.Nanomaterials20199682110.3390/nano9060821 31159219
    [Google Scholar]
  228. GarrettR. NiiyamaE. KotsuchibashiY. UtoK. EbaraM. Biodegradable nanofiber for delivery of immunomodulating agent in the treatment of basal cell carcinoma.Fibers20153447849010.3390/fib3040478
    [Google Scholar]
  229. UzelE. DurgunM.E. Esentürk-Güzelİ. GüngörS. ÖzsoyY. Nanofibers in ocular drug targeting and tissue engineering: Their importance, advantages, advances, and future perspectives.Pharmaceutics2023154106210.3390/pharmaceutics15041062 37111550
    [Google Scholar]
  230. P, B.; G, S.; S, A.M.; A, T.S. Efficacy of biopolymeric PVA-AuNPs and PCL-Curcumin loaded electrospun nanofibers and their anticancer activity against A431 skin cancer cell line.Mater. Today Commun.20202510127610.1016/j.mtcomm.2020.101276
    [Google Scholar]
  231. ZhangC. ZhuX. HouS. PanW. LiaoW. Functionalization of nanomaterials for skin cancer theranostics.Front. Bioeng. Biotechnol.20221088754810.3389/fbioe.2022.887548 35557870
    [Google Scholar]
  232. HanafyN. El-KemaryM. LeporattiS. Micelles structure development as a strategy to improve smart cancer therapy.Cancers201810723810.3390/cancers10070238 30037052
    [Google Scholar]
  233. FatfatZ. FatfatM. Gali-MuhtasibH. Micelles as potential drug delivery systems for colorectal cancer treatment.World J. Gastroenterol.202228252867288010.3748/wjg.v28.i25.2867 35978871
    [Google Scholar]
  234. NathanC-A. Microsized curcumin compositions.U.S. Patent 20160089343A12015
  235. GunzburgS. Methods to create a double nanoemulsion for transdermal delivery of hydrophilic and hydrophobic phytochemical active ingredients.A.U. Patent 2018101231A42018
  236. OzmenZ. A novel method for carrying bioactive molecules using nanocarriers.W.O. Patent 2021225548A12023
  237. ZhangH-G. Exosomal compositions and methods for the treatment of disease.U.S. Patent 20190336446A12023
  238. Livneh, Ido Tyrosine, tryptophan and phenylalanine as mtor agonists mediating proteasome dynamics, compositions, methods and uses thereof in therapy, and prognostic methods for drug-resistance.U.S Patent 202303300642023
  239. Petkoska, A.T. Antioxidant compositions and methods of protecting skin, hair and nails against high energy blue-violet light.W.O. Patent 2016176485A12023
  240. KumariS. PriyaK. SahniM. VermaN. PanditS. KumarA. Green synthesis of alpha-magnetic nanoparticles and its anti-cancer application thereofU.S. Patent 8057682B22022
  241. Bermudez PerezF. Prados SalazarJ.C. Melguizo AlonsoC. Porres FoulquieJ.M. Mesas HernandezC. Martinez MartinezR. Galisteo MoyaM. Ortiz QuesadaR. Cabeza MontillaL. Lopez-Jurado Romero De LaC. Drug delivery system based on calcium phosphate nanoparticles functionalized with bioactive compounds from euphorbia extract and the uses thereof.2023
  242. JangB.K. Immunity-boosting agent, immuno-therapeutic anticancer agent, and anti-cancer therapy adverse effect mitigating agent containing anthocyanin-fucoidan complex as active ingredient.U.S. Patent 20200376066A12023
  243. ChauhanA. SharmaP. DhawanD. Gold nanoparticles with albizia lebreckl benth leaves extract for dermal cancer.2022
  244. BarnhillS. Methods for treatment of human cancers using cannabis compositions.W.O. Patent 20221654392022
  245. WargovichM. Compositions of azadirachta indica and methods of treating cancer.W.O. Patent 2020047405A12022
  246. MilbockerM. BluecherL. Medical device comprising boswellic acid.W.O. Patent 2012177825A12022
/content/journals/cpb/10.2174/0113892010300081240329033208
Loading
/content/journals/cpb/10.2174/0113892010300081240329033208
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test