Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Objective

Atherosclerosis (AS) is an inflammatory disease of arterial intima driven by lipids. Liver X receptor alpha (LXRα) and peroxisome proliferator-activated receptor alpha (PPARα) agonists are limited in the treatment of AS due to their off-target effects and serious side effects. Therefore, this study was designed to construct a novel nanoparticle (NP) and evaluate its mechanism of action on inflammation inhibition and lipid reduction in AS.

Methods

We synthesized cRGD-platelet@MnO/MSN@PPARα/LXRα NPs (cRGD-platelet-NPs) and confirmed their size, safety, and targeting ability through various tests, including dynamic light scattering and immunofluorescence. and experiments assessed cell proliferation, apoptosis, inflammation, and plaque formation. Finally, the NF-κB signaling pathway expression in rat aorta was determined using a western blot.

Results

The synthesis of cRGD-platelet-NPs was successful; the particle size was approximately 150 nm, and the PDI was below 0.3. They could be successfully absorbed by cells, exhibiting high safety and . The cRGD-platelet-NPs successfully reduced plaque formation, improved lipid profiles by lowering LDL-cholesterol, total cholesterol, and triglycerides, and raised HDL-cholesterol levels. Additionally, they decreased inflammatory markers in the serum and aortic tissue, suggesting reduced inflammation. Immunohistochemistry and western blot analyses indicated that these NPs could not only promote M2 macrophage polarization but also suppress the NF-κB signaling pathway.

Conclusion

The newly developed cRGD-platelet-NPs with high safety are a promising approach to AS treatment, which can regulate ABCA1, reduce the formation of AS plaques, and enhance cholesterol efflux. The mechanism may involve the suppression of the NF-κB signaling pathway.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010314993240819065655
2025-04-01
2025-10-14
Loading full text...

Full text loading...

References

  1. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA.Z. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ. CatapanoA.L. ChughS.S. CooperL.T. CoreshJ. CriquiM. DeCleeneN. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolàJ. FowkesG. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN. KoroshetzW. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. TemesgenA.M. MokdadA. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. Moraes de OliveiraG. OttoC. OwolabiM. PrattM. RajagopalanS. ReitsmaM. RibeiroA.L.P. RigottiN. RodgersA. SableC. ShakilS. Sliwa-HahnleK. StarkB. SundströmJ. TimpelP. TleyjehI.M. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL. MurrayC. FusterV. RothG.A. MensahG.A. JohnsonC.O. AddoloratoG. AmmiratiE. BaddourL.M. BarengoN.C. BeatonA. BenjaminE.J. BenzigerC.P. BonnyA. BrauerM. BrodmannM. CahillT.J. CarapetisJ.R. CatapanoA.L. ChughS. CooperL.T. CoreshJ. CriquiM.H. DeCleeneN.K. EagleK.A. Emmons-BellS. FeiginV.L. Fernández-SolaJ. FowkesF.G.R. GakidouE. GrundyS.M. HeF.J. HowardG. HuF. InkerL. KarthikeyanG. KassebaumN.J. KoroshetzW.J. LavieC. Lloyd-JonesD. LuH.S. MirijelloA. MisganawA.T. MokdadA.H. MoranA.E. MuntnerP. NarulaJ. NealB. NtsekheM. OliveiraG.M.M. OttoC.M. OwolabiM.O. PrattM. RajagopalanS. ReitsmaM.B. RibeiroA.L.P. RigottiN.A. RodgersA. SableC.A. ShakilS.S. SliwaK. StarkB.A. SundströmJ. TimpelP. TleyjehI.I. ValgimigliM. VosT. WheltonP.K. YacoubM. ZuhlkeL.J. Abbasi-KangevariM. AbdiA. AbediA. AboyansV. AbrhaW.A. Abu-GharbiehE. AbushoukA.I. AcharyaD. AdairT. AdebayoO.M. AdemiZ. AdvaniS.M. AfshariK. AfshinA. AgarwalG. AgasthiP. AhmadS. AhmadiS. AhmedM.B. AjiB. AkaluY. Akande-SholabiW. AkliluA. AkunnaC.J. AlahdabF. Al-EyadhyA. AlhabibK.F. AlifS.M. AlipourV. AljunidS.M. AllaF. Almasi-HashianiA. AlmustanyirS. Al-RaddadiR.M. AmegahA.K. AminiS. AminorroayaA. AmuH. AmugsiD.A. AncuceanuR. AnderliniD. AndreiT. AndreiC.L. Ansari-MoghaddamA. AntenehZ.A. AntonazzoI.C. AntonyB. AnwerR. AppiahL.T. ArablooJ. ÄrnlövJ. ArtantiK.D. AtaroZ. AusloosM. Avila-BurgosL. AwanA.T. AwokeM.A. AyeleH.T. AyzaM.A. AzariS. B, D.B.; Baheiraei, N.; Baig, A.A.; Bakhtiari, A.; Banach, M.; Banik, P.C.; Baptista, E.A.; Barboza, M.A.; Barua, L.; Basu, S.; Bedi, N.; Béjot, Y.; Bennett, D.A.; Bensenor, I.M.; Berman, A.E.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhaskar, S.; Bhattacharyya, K.; Bijani, A.; Bikbov, B.; Birhanu, M.M.; Boloor, A.; Brant, L.C.; Brenner, H.; Briko, N.I.; Butt, Z.A.; Caetano dos Santos, F.L.; Cahill, L.E.; Cahuana-Hurtado, L.; Cámera, L.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, J.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Cerin, E.; Charan, J.; Chattu, V.K.; Chen, S.; Chin, K.L.; Choi, J-Y.J.; Chu, D-T.; Chung, S-C.; Cirillo, M.; Coffey, S.; Conti, S.; Costa, V.M.; Cundiff, D.K.; Dadras, O.; Dagnew, B.; Dai, X.; Damasceno, A.A.M.; Dandona, L.; Dandona, R.; Davletov, K.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Neve, J-W.; Denova-Gutiérrez, E.; Derbew Molla, M.; Derseh, B.T.; Desai, R.; Deuschl, G.; Dharmaratne, S.D.; Dhimal, M.; Dhungana, R.R.; Dianatinasab, M.; Diaz, D.; Djalalinia, S.; Dokova, K.; Douiri, A.; Duncan, B.B.; Duraes, A.R.; Eagan, A.W.; Ebtehaj, S.; Eftekhari, A.; Eftekharzadeh, S.; Ekholuenetale, M.; El Nahas, N.; Elgendy, I.Y.; Elhadi, M.; El-Jaafary, S.I.; Esteghamati, S.; Etisso, A.E.; Eyawo, O.; Fadhil, I.; Faraon, E.J.A.; Faris, P.S.; Farwati, M.; Farzadfar, F.; Fernandes, E.; Fernandez Prendes, C.; Ferrara, P.; Filip, I.; Fischer, F.; Flood, D.; Fukumoto, T.; Gad, M.M.; Gaidhane, S.; Ganji, M.; Garg, J.; Gebre, A.K.; Gebregiorgis, B.G.; Gebregzabiher, K.Z.; Gebremeskel, G.G.; Getacher, L.; Obsa, A.G.; Ghajar, A.; Ghashghaee, A.; Ghith, N.; Giampaoli, S.; Gilani, S.A.; Gill, P.S.; Gillum, R.F.; Glushkova, E.V.; Gnedovskaya, E.V.; Golechha, M.; Gonfa, K.B.; Goudarzian, A.H.; Goulart, A.C.; Guadamuz, J.S.; Guha, A.; Guo, Y.; Gupta, R.; Hachinski, V.; Hafezi-Nejad, N.; Haile, T.G.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hargono, A.; Hartono, R.K.; Hashemian, M.; Hashi, A.; Hassan, S.; Hassen, H.Y.; Havmoeller, R.J.; Hay, S.I.; Hayat, K.; Heidari, G.; Herteliu, C.; Holla, R.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Huang, J.; Humayun, A.; Iavicoli, I.; Ibeneme, C.U.; Ibitoye, S.E.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Iqbal, U.; Irvani, S.S.N.; Islam, S.M.S.; Islam, R.M.; Iso, H.; Iwagami, M.; Jain, V.; Javaheri, T.; Jayapal, S.K.; Jayaram, S.; Jayawardena, R.; Jeemon, P.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joukar, F.; Jozwiak, J.J.; Jürisson, M.; Kabir, A.; Kahlon, T.; Kalani, R.; Kalhor, R.; Kamath, A.; Kamel, I.; Kandel, H.; Kandel, A.; Karch, A.; Kasa, A.S.; Katoto, P.D.M.C.; Kayode, G.A.; Khader, Y.S.; Khammarnia, M.; Khan, M.S.; Khan, M.N.; Khan, M.; Khan, E.A.; Khatab, K.; Kibria, G.M.A.; Kim, Y.J.; Kim, G.R.; Kimokoti, R.W.; Kisa, S.; Kisa, A.; Kivimäki, M.; Kolte, D.; Koolivand, A.; Korshunov, V.A.; Koulmane Laxminarayana, S.L.; Koyanagi, A.; Krishan, K.; Krishnamoorthy, V.; Kuate Defo, B.; Kucuk Bicer, B.; Kulkarni, V.; Kumar, G.A.; Kumar, N.; Kurmi, O.P.; Kusuma, D.; Kwan, G.F.; La Vecchia, C.; Lacey, B.; Lallukka, T.; Lan, Q.; Lasrado, S.; Lassi, Z.S.; Lauriola, P.; Lawrence, W.R.; Laxmaiah, A.; LeGrand, K.E.; Li, M-C.; Li, B.; Li, S.; Lim, S.S.; Lim, L-L.; Lin, H.; Lin, Z.; Lin, R-T.; Liu, X.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Lugo, A.; M, N.K.; Madotto, F.; Mahmoudi, M.; Majeed, A.; Malekzadeh, R.; Malik, A.A.; Mamun, A.A.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; Martini, S.; Mathur, M.R.; Mazzaglia, G.; Mehata, S.; Mehndiratta, M.M.; Meier, T.; Menezes, R.G.; Meretoja, A.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Miller, T.R.; Mirrakhimov, E.M.; Mirzaei, H.; Moazen, B.; Moghadaszadeh, M.; Mohammad, Y.; Mohammad, D.K.; Mohammed, S.; Mohammed, M.A.; Mokhayeri, Y.; Molokhia, M.; Montasir, A.A.; Moradi, G.; Moradzadeh, R.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morze, J.; Mubarik, S.; Muruet, W.; Musa, K.I.; Nagarajan, A.J.; Nalini, M.; Nangia, V.; Naqvi, A.A.; Narasimha Swamy, S.; Nascimento, B.R.; Nayak, V.C.; Nazari, J.; Nazarzadeh, M.; Negoi, R.I.; Neupane Kandel, S.; Nguyen, H.L.T.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nouthe, B.E.; Nowak, C.; Odukoya, O.O.; Ogbo, F.A.; Olagunju, A.T.; Orru, H.; Ortiz, A.; Ostroff, S.M.; Padubidri, J.R.; Palladino, R.; Pana, A.; Panda-Jonas, S.; Parekh, U.; Park, E-C.; Parvizi, M.; Pashazadeh Kan, F.; Patel, U.K.; Pathak, M.; Paudel, R.; Pepito, V.C.F.; Perianayagam, A.; Perico, N.; Pham, H.Q.; Pilgrim, T.; Piradov, M.A.; Pishgar, F.; Podder, V.; Polibin, R.V.; Pourshams, A.; Pribadi, D.R.A.; Rabiee, N.; Rabiee, M.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Ur Rahman, M.H.; Rahman, M.A.; Rahmani, A.M.; Rakovac, I.; Ram, P.; Ramalingam, S.; Rana, J.; Ranasinghe, P.; Rao, S.J.; Rathi, P.; Rawal, L.; Rawasia, W.F.; Rawassizadeh, R.; Remuzzi, G.; Renzaho, A.M.N.; Rezapour, A.; Riahi, S.M.; Roberts-Thomson, R.L.; Roever, L.; Rohloff, P.; Romoli, M.; Roshandel, G.; Rwegerera, G.M.; Saadatagah, S.; Saber-Ayad, M.M.; Sabour, S.; Sacco, S.; Sadeghi, M.; Saeedi Moghaddam, S.; Safari, S.; Sahebkar, A.; Salehi, S.; Salimzadeh, H.; Samaei, M.; Samy, A.M.; Santos, I.S.; Santric-Milicevic, M.M.; Sarrafzadegan, N.; Sarveazad, A.; Sathish, T.; Sawhney, M.; Saylan, M.; Schmidt, M.I.; Schutte, A.E.; Senthilkumaran, S.; Sepanlou, S.G.; Sha, F.; Shahabi, S.; Shahid, I.; Shaikh, M.A.; Shamali, M.; Shamsizadeh, M.; Shawon, M.S.R.; Sheikh, A.; Shigematsu, M.; Shin, M-J.; Shin, J.I.; Shiri, R.; Shiue, I.; Shuval, K.; Siabani, S.; Siddiqi, T.J.; Silva, D.A.S.; Singh, J.A.; Mtech, A.S.; Skryabin, V.Y.; Skryabina, A.A.; Soheili, A.; Spurlock, E.E.; Stockfelt, L.; Stortecky, S.; Stranges, S.; Suliankatchi Abdulkader, R.; Tadbiri, H.; Tadesse, E.G.; Tadesse, D.B.; Tajdini, M.; Tariqujjaman, M.; Teklehaimanot, B.F.; Temsah, M-H.; Tesema, A.K.; Thakur, B.; Thankappan, K.R.; Thapar, R.; Thrift, A.G.; Timalsina, B.; Tonelli, M.; Touvier, M.; Tovani-Palone, M.R.; Tripathi, A.; Tripathy, J.P.; Truelsen, T.C.; Tsegay, G.M.; Tsegaye, G.W.; Tsilimparis, N.; Tusa, B.S.; Tyrovolas, S.; Umapathi, K.K.; Unim, B.; Unnikrishnan, B.; Usman, M.S.; Vaduganathan, M.; Valdez, P.R.; Vasankari, T.J.; Velazquez, D.Z.; Venketasubramanian, N.; Vu, G.T.; Vujcic, I.S.; Waheed, Y.; Wang, Y.; Wang, F.; Wei, J.; Weintraub, R.G.; Weldemariam, A.H.; Westerman, R.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Wubishet, B.L.; Xu, G.; Yadollahpour, A.; Yamagishi, K.; Yan, L.L.; Yandrapalli, S.; Yano, Y.; Yatsuya, H.; Yeheyis, T.Y.; Yeshaw, Y.; Yilgwan, C.S.; Yonemoto, N.; Yu, C.; Yusefzadeh, H.; Zachariah, G.; Zaman, S.B.; Zaman, M.S.; Zamanian, M.; Zand, R.; Zandifar, A.; Zarghi, A.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, Z-J.; Zhang, Y.; Zhang, W.; Zhong, C.; Zou, Z.; Zuniga, Y.M.H.; Murray, C.J.L.; Fuster, V. Global burden of cardiovascular diseases and risk factors, 1990–2019.J. Am. Coll. Cardiol.202076252982302110.1016/j.jacc.2020.11.010 33309175
    [Google Scholar]
  2. FanJ. WatanabeT. Atherosclerosis: Known and unknown.Pathol. Int.202272315116010.1111/pin.13202 35076127
    [Google Scholar]
  3. SoehnleinO. LibbyP. Targeting inflammation in atherosclerosis from experimental insights to the clinic.Nat. Rev. Drug Discov.202120858961010.1038/s41573‑021‑00198‑1 33976384
    [Google Scholar]
  4. LibbyP. BuringJ.E. BadimonL. HanssonG.K. DeanfieldJ. BittencourtM.S. TokgözoğluL. LewisE.F. Atherosclerosis.Nat. Rev. Dis. Primers2019515610.1038/s41572‑019‑0106‑z 31420554
    [Google Scholar]
  5. LibbyP. The changing landscape of atherosclerosis.Nature2021592785552453310.1038/s41586‑021‑03392‑8 33883728
    [Google Scholar]
  6. KhatanaC. SainiN.K. ChakrabartiS. SainiV. SharmaA. SainiR.V. SainiA.K. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis.Oxid. Med. Cell. Longev.2020202011410.1155/2020/5245308 33014272
    [Google Scholar]
  7. WangY. ShiR. ZhaiR. YangS. PengT. ZhengF. ShenY. LiM. LiL. Matrix stiffness regulates macrophage polarization in atherosclerosis.Pharmacol. Res.202217910623610.1016/j.phrs.2022.106236 35483516
    [Google Scholar]
  8. GutierrezP.S. Foam cells in atherosclerosis.Arq. Bras. Cardiol.2022119454254310.36660/abc.20220659 36287409
    [Google Scholar]
  9. ZhuY. XianX. WangZ. BiY. ChenQ. HanX. TangD. ChenR. Research progress on the relationship between atherosclerosis and inflammation.Biomolecules2018838010.3390/biom8030080 30142970
    [Google Scholar]
  10. ZhangS. HongF. MaC. YangS. Hepatic lipid metabolism disorder and atherosclerosis.Endocr. Metab. Immune Disord. Drug Targets202222659060010.2174/1871530322666211220110810 34931971
    [Google Scholar]
  11. ChowY.L. TehL.K. ChyiL.H. LimL.F. YeeC.C. WeiL.K. Lipid metabolism genes in stroke pathogenesis: the atherosclerosis.Curr. Pharm. Des.202026344261427110.2174/1381612826666200614180958 32534558
    [Google Scholar]
  12. GuptaM. BlumenthalC. ChatterjeeS. BandyopadhyayD. JainV. LavieC.J. ViraniS.S. RayK.K. AronowW.S. GhoshR.K. Novel emerging therapies in atherosclerosis targeting lipid metabolism.Expert Opin. Investig. Drugs202029661162210.1080/13543784.2020.1764937 32363959
    [Google Scholar]
  13. CarielloM. PiccininE. MoschettaA. Transcriptional regulation of metabolic pathways via lipid-sensing nuclear receptors PPARs, FXR, and LXR in NASH.Cell. Mol. Gastroenterol. Hepatol.20211151519153910.1016/j.jcmgh.2021.01.012 33545430
    [Google Scholar]
  14. DixonE.D. NardoA.D. ClaudelT. TraunerM. The role of lipid sensing nuclear receptors (PPARs and LXR) and metabolic lipases in obesity, diabetes and NAFLD.Genes 202112564510.3390/genes12050645 33926085
    [Google Scholar]
  15. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  16. ChaoC.J. ZhangE. ZhaoZ. Engineering cells for precision drug delivery: New advances, clinical translation, and emerging strategies.Adv. Drug Deliv. Rev.202319711484010.1016/j.addr.2023.114840 37088403
    [Google Scholar]
  17. SarkarS. Ekbal KabirM. KalitaJ. MannaP. Mesoporous silica nanoparticles: drug delivery vehicles for antidiabetic molecules.ChemBioChem2023247e20220067210.1002/cbic.202200672 36719179
    [Google Scholar]
  18. HuC. LiuY. CaoW. LiN. GaoS. WangZ. GuF. Efficacy and mechanism of a biomimetic nanosystem carrying doxorubicin and an IDO inhibitor for treatment of advanced triple-negative breast cancer.Int. J. Nanomedicine20241950752610.2147/IJN.S440332 38260240
    [Google Scholar]
  19. SivasubramanianM. ChuC.H. ChengS.H. ChenN.T. ChenC.T. ChuangY.C. YuH. ChenY.L. LiaoL.D. LoL.W. Multimodal magnetic resonance and photoacoustic imaging of tumor-specific enzyme-responsive hybrid nanoparticles for oxygen modulation.Front. Bioeng. Biotechnol.20221091090210.3389/fbioe.2022.910902 35910012
    [Google Scholar]
  20. KoupenovaM. ClancyL. CorkreyH.A. FreedmanJ.E. Circulating platelets as mediators of immunity, inflammation, and thrombosis.Circ. Res.2018122233735110.1161/CIRCRESAHA.117.310795 29348254
    [Google Scholar]
  21. ChoiB. ParkW. ParkS.B. RhimW.K. HanD.K. Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications.Methods202017721410.1016/j.ymeth.2019.12.004 31874237
    [Google Scholar]
  22. KimM. SahuA. KimG.B. NamG.H. UmW. ShinS.J. JeongY.Y. KimI.S. KimK. KwonI.C. TaeG. Comparison of in vivo targeting ability between cRGD and collagen-targeting peptide conjugated nano-carriers for atherosclerosis.J. Control. Release201826933734610.1016/j.jconrel.2017.11.033 29175140
    [Google Scholar]
  23. LomovskayaY.V. KobyakovaM.I. SenotovA.S. LomovskyA.I. MinaychevV.V. FadeevaI.S. ShtatnovaD.Y. KrasnovK.S. ZvyaginaA.I. AkatovV.S. FadeevR.S. Macrophage-like THP-1 cells derived from high-density cell culture are resistant to TRAIL-induced cell death via down-regulation of death-receptors DR4 and DR5.Biomolecules202212215010.3390/biom12020150 35204655
    [Google Scholar]
  24. LiuL. GuoH. SongA. HuangJ. ZhangY. JinS. LiS. ZhangL. YangC. YangP. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways.BMC Immunol.20202113210.1186/s12865‑020‑00355‑y 32503416
    [Google Scholar]
  25. SubramaniC. RajakannuA. GaidhaniS. RajuI. Kartar SinghD.V. Glutathione-redox status on hydro alcoholic root bark extract of Premna integrifolia Linn in high fat diet induced atherosclerosis model.J. Ayurveda Integr. Med.202011437638210.1016/j.jaim.2018.03.002 30738624
    [Google Scholar]
  26. ZaqoutS. BeckerL.L. KaindlA.M. Immunofluorescence staining of paraffin sections step by step.Front. Neuroanat.20201458221810.3389/fnana.2020.582218 33240048
    [Google Scholar]
  27. JinnouchiH. GuoL. SakamotoA. ToriiS. SatoY. CornelissenA. KuntzS. PaekK.H. FernandezR. FullerD. GadhokeN. SurveD. RomeroM. KolodgieF.D. VirmaniR. FinnA.V. Diversity of macrophage phenotypes and responses in atherosclerosis.Cell. Mol. Life Sci.202077101919193210.1007/s00018‑019‑03371‑3 31720740
    [Google Scholar]
  28. SongL. ZhangJ. MaD. FanY. LaiR. TianW. ZhangZ. JuJ. XuH. A bibliometric and knowledge-map analysis of macrophage polarization in atherosclerosis from 2001 to 2021.Front. Immunol.20221391044410.3389/fimmu.2022.910444 35795675
    [Google Scholar]
  29. DorringtonM.G. FraserI.D.C. NF-κB signaling in macrophages: dynamics, crosstalk, and signal integration.Front. Immunol.20191070510.3389/fimmu.2019.00705 31024544
    [Google Scholar]
  30. RiccardiG. GiosuèA. CalabreseI. VaccaroO. Dietary recommendations for prevention of atherosclerosis.Cardiovasc. Res.202211851188120410.1093/cvr/cvab173 34229346
    [Google Scholar]
  31. BougarneN. WeyersB. DesmetS.J. DeckersJ. RayD.W. StaelsB. De BosscherK. Molecular actions of PPARα in lipid metabolism and inflammation.Endocr. Rev.201839576080210.1210/er.2018‑00064 30020428
    [Google Scholar]
  32. WangY. ZhaoQ. HanN. BaiL. LiJ. LiuJ. CheE. HuL. ZhangQ. JiangT. WangS. Mesoporous silica nanoparticles in drug delivery and biomedical applications.Nanomedicine 201511231332710.1016/j.nano.2014.09.014 25461284
    [Google Scholar]
  33. McCarthyC.A. AhernR.J. DontireddyR. RyanK.B. CreanA.M. Mesoporous silica formulation strategies for drug dissolution enhancement: A review.Expert Opin. Drug Deliv.20161319310810.1517/17425247.2016.1100165 26549623
    [Google Scholar]
  34. MénardM. MeyerF. Affolter-ZbaraszczukC. RabineauM. AdamA. RamirezP.D. Bégin-ColinS. MertzD. Design of hybrid protein-coated magnetic core-mesoporous silica shell nanocomposites for MRI and drug release assessed in a 3D tumor cell model.Nanotechnology2019301717400110.1088/1361‑6528/aafe1c 30641488
    [Google Scholar]
  35. LiX. ZhaoW. LiuX. ChenK. ZhuS. ShiP. ChenY. ShiJ. Mesoporous manganese silicate coated silica nanoparticles as multi-stimuli-responsive T1-MRI contrast agents and drug delivery carriers.Acta Biomater.20163037838710.1016/j.actbio.2015.11.036 26602820
    [Google Scholar]
  36. HuG. GuoM. XuJ. WuF. FanJ. HuangQ. YangG. LvZ. WangX. JinY. Nanoparticles targeting macrophages as potential clinical therapeutic agents against cancer and inflammation.Front. Immunol.201910199810.3389/fimmu.2019.01998 31497026
    [Google Scholar]
  37. Ho-Tin-NoéB. BoulaftaliY. CamererE. Platelets and vascular integrity: How platelets prevent bleeding in inflammation.Blood2018131327728810.1182/blood‑2017‑06‑742676 29191915
    [Google Scholar]
  38. ZhaZ. WangJ. ZhangS. WangS. QuE. ZhangY. DaiZ. Engineering of perfluorooctylbromide polypyrrole nano-/microcapsules for simultaneous contrast enhanced ultrasound imaging and photothermal treatment of cancer.Biomaterials201435128729310.1016/j.biomaterials.2013.09.084 24120049
    [Google Scholar]
  39. HeS. CenB. LiaoL. WangZ. QinY. WuZ. LiaoW. ZhangZ. JiA. A tumor-targeting cRGD-EGFR siRNA conjugate and its anti-tumor effect on glioblastoma in vitro and in vivo.Drug Deliv.201724147148110.1080/10717544.2016.1267821 28181832
    [Google Scholar]
  40. De LorenziF. RizzoL.Y. DawareR. MottaA. BauesM. BartneckM. VogtM. van ZandvoortM. KapsL. HuQ. ThewissenM. CasettariL. RijckenC.J.F. KiesslingF. SofiasA.M. LammersT. Profiling target engagement and cellular uptake of cRGD-decorated clinical-stage core-crosslinked polymeric micelles.Drug Deliv. Transl. Res.20231351195121110.1007/s13346‑022‑01204‑8 35816231
    [Google Scholar]
  41. RobitailleM.C. ChristodoulidesJ.A. LiuJ. KangW. ByersJ.M. RaphaelM.P. Problem of diminished cRGD surface activity and what can be done about it.ACS Appl. Mater. Interfaces20201217193371934410.1021/acsami.0c04340 32249578
    [Google Scholar]
  42. YamashitaS. MasudaD. MatsuzawaY. Pemafibrate, a new selective pparα modulator: drug concept and its clinical applications for dyslipidemia and metabolic diseases.Curr. Atheroscler. Rep.2020221510.1007/s11883‑020‑0823‑5 31974794
    [Google Scholar]
  43. MatsuoM. ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis.J. Pharmacol. Sci.2022148219720310.1016/j.jphs.2021.11.005 35063134
    [Google Scholar]
  44. SteckT.L. LangeY. Is reverse cholesterol transport regulated by active cholesterol?J. Lipid Res.202364610038510.1016/j.jlr.2023.100385 37169287
    [Google Scholar]
  45. HouP. FangJ. LiuZ. ShiY. AgostiniM. BernassolaF. BoveP. CandiE. RovellaV. SicaG. SunQ. WangY. ScimecaM. FedericiM. MaurielloA. MelinoG. Macrophage polarization and metabolism in atherosclerosis.Cell Death Dis.2023141069110.1038/s41419‑023‑06206‑z 37863894
    [Google Scholar]
  46. ChristofidesA. KonstantinidouE. JaniC. BoussiotisV.A. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses.Metabolism202111415433810.1016/j.metabol.2020.154338 32791172
    [Google Scholar]
  47. CrisafulliC. CuzzocreaS. The role of endogenous and exogenous ligands for the peroxisome proliferator-activated receptor alpha (PPAR-alpha) in the regulation of inflammation in macrophages.Shock2009321627310.1097/SHK.0b013e31818bbad6 19533851
    [Google Scholar]
  48. PenasF. MirkinG.A. VeraM. CeveyÁ. GonzálezC.D. GómezM.I. SalesM.E. GorenN.B. Treatment in vitro with PPARα and PPARγ ligands drives M1-to-M2 polarization of macrophages from T. cruzi-infected mice.Biochim. Biophys. Acta Mol. Basis Dis.20151852589390410.1016/j.bbadis.2014.12.019 25557389
    [Google Scholar]
  49. MussbacherM. DerlerM. BasílioJ. SchmidJ.A. NF-κB in monocytes and macrophages an inflammatory master regulator in multitalented immune cells.Front. Immunol.202314113466110.3389/fimmu.2023.1134661 36911661
    [Google Scholar]
  50. SuiA. ChenX. DemetriadesA.M. ShenJ. CaiY. YaoY. YaoY. ZhuY. ShenX. XieB. Inhibiting NF-κB signaling activation reduces retinal neovascularization by promoting a polarization shift in macrophages.Invest. Ophthalmol. Vis. Sci.2020616410.1167/iovs.61.6.4 32492108
    [Google Scholar]
  51. KorbeckiJ. BobińskiR. DutkaM. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors.Inflamm. Res.201968644345810.1007/s00011‑019‑01231‑1 30927048
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010314993240819065655
Loading
/content/journals/cpb/10.2174/0113892010314993240819065655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test