Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Aims

This study aimed to determine the phytoconstituents of bark (CRB) and evaluate the hypolipidemic effect of bioactive CRB extract by preventing adipocyte differentiation and lipogenesis.

Background

After performing the preliminary phytochemicals screening, the antioxidant activity of CRB extracts was determined through a DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay. Ethyl acetate extract (CREAE) and ethanol extract (CRETE) of CRB were selected for chromatographic evaluation.

Methods

The antihyperlipidemic potential was analyzed by molecular docking through the PKCMS software platform. Further, a 3T3-L1 cell line study sulforhodamine B assay and western blotting was performed to confirm the prevention of adipocyte differentiation and lipogenesis

Results

The total phenolic contents in CREAE and CRETE were estimated as 29.47 and 81.19 μg/mg equivalent to gallic acid, respectively. The total flavonoid content was found to be 8.78 and 49.08 μg/mg, equivalent to quercetin in CREAE and CRETE, respectively. CRETE exhibited greater scavenging activity with the IC value of 61.05 µg/ mL. GC-MS analysis confirmed the presence of three bioactive molecules, stigmasterol, gamma sitosterol, and lupeol, in CRETE. Molecular docking studies predicted that the bioactive molecules interact with HMG-CoA reductase, PPARγ, and CCAAT/EBP, which are responsible for lipid metabolism. Sulforhodamine B assays revealed that CRETE dose-dependently reduced cell differentiation and viability. Cellular staining using ‘Oil Red O’ revealed a decreased lipid content in the CRETE-treated cell lines. CRETE significantly inhibited the induction of PPARγ and CCAAT/EBP expression, as determined through protein expression western blotting.

Conclusion

The influence of CRETE on lipid metabolism in 3T3-L1 cells is potentially suggesting a new approach to managing hyperlipidemia.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010314594240816050240
2025-04-01
2025-10-14
Loading full text...

Full text loading...

References

  1. NelsonR.H. Hyperlipidemia as a risk factor for cardiovascular disease.Prim. Care201340119521110.1016/j.pop.2012.11.003 23402469
    [Google Scholar]
  2. BachhetiR.K. WorkuL.A. GonfaY.H. ZebeamanM. Deepti; Pandey, D.P.; Bachheti, A. Prevention and treatment of cardiovascular diseases with plant phytochemicals: A review.Evid. Based Complement. Alternat. Med.20222022112110.1155/2022/5741198 35832515
    [Google Scholar]
  3. DuarteM.M.M.F. MorescoR.N. DuarteT. SantiA. BagatiniM.D. Da CruzI.B.M. SchetingerM.R.C. LoroV.L. Oxidative stress in hypercholesterolemia and its association with Ala16Val superoxide dismutase gene polymorphism.Clin. Biochem.20104313-141118112310.1016/j.clinbiochem.2010.07.002 20627099
    [Google Scholar]
  4. RizzattiV BoschiF PedrottiM ZoicoE SbarbatiA ZamboniM Lipid droplets characterization in adipocyte differentiated 3T3-L1 cells: Size and optical density distribution. European journal of histochemistry.EJH2013573
    [Google Scholar]
  5. EtesamiB. GhaseminezhadS. NowrouziA. RashidipourM. YazdanparastR. Investigation of 3T3-L1 cell differentiation to adipocyte, affected by aqueous seed extract of Phoenix Dactylifera L.Rep. Biochem. Mol. Biol.202091142510.29252/rbmb.9.1.14 32821747
    [Google Scholar]
  6. WangQ.A. SchererP.E. GuptaR.K. Improved methodologies for the study of adipose biology: Insights gained and opportunities ahead.J. Lipid Res.201455460562410.1194/jlr.R046441 24532650
    [Google Scholar]
  7. GarattiniS. GrignaschiG. Animal testing is still the best way to find new treatments for patients.Eur. J. Intern. Med.201739323510.1016/j.ejim.2016.11.013 27916437
    [Google Scholar]
  8. BaumerY. McCurdyS. WeatherbyT.M. MehtaN.N. HalbherrS. HalbherrP. YamazakiN. BoisvertW.A. Hyperlipidemia-induced cholesterol crystal production by endothelial cells promotes atherogenesis.Nat. Commun.201781112910.1038/s41467‑017‑01186‑z 29066718
    [Google Scholar]
  9. ZhangD. WeiY. HuangQ. ChenY. ZengK. YangW. ChenJ. ChenJ. Important hormones regulating lipid metabolism.Molecules20222720705210.3390/molecules27207052 36296646
    [Google Scholar]
  10. KhalilA.S. JaenischR. MooneyD.J. Engineered tissues and strategies to overcome challenges in drug development.Adv. Drug Deliv. Rev.202015811613910.1016/j.addr.2020.09.012 32987094
    [Google Scholar]
  11. PolliJ.E. In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate-release solid oral dosage forms.AAPS J.200810228929910.1208/s12248‑008‑9027‑6 18500564
    [Google Scholar]
  12. TsangH.G. RashdanN.A. WhitelawC.B.A. CorcoranB.M. SummersK.M. MacRaeV.E. Large animal models of cardiovascular disease.Cell Biochem. Funct.201634311313210.1002/cbf.3173 26914991
    [Google Scholar]
  13. FestingS. WilkinsonR. The ethics of animal research.EMBO Rep.20078652653010.1038/sj.embor.7400993 17545991
    [Google Scholar]
  14. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑2 37592012
    [Google Scholar]
  15. SongJ. ZaidiS.A.A. HeL. ZhangS. ZhouG. Integrative analysis of machine learning and molecule docking simulations for ischemic stroke diagnosis and therapy.Molecules20232823770410.3390/molecules28237704 38067435
    [Google Scholar]
  16. KumarD. SharmaS. KumarS. Botanical description, phytochemistry, traditional uses, and pharmacology of crataeva nurvala buch.Future J. Pharm. Sci.2020611310
    [Google Scholar]
  17. MenonV.P. SudheerA.R. Antioxidant and anti-inflammatory properties of curcumin.Adv. Exp. Med. Biol.200759510512510.1007/978‑0‑387‑46401‑5_3
    [Google Scholar]
  18. Vidhya RekhaU. RajagopalP. VaradhachariyarR. Harie PriyaP. Shazia FathimaJ.H. GovindanR. PalanisamyC. Aswini BrindhaK.B. VeeraraghavanV.P. JayaramanS. Molecular docking analysis of bioactive compounds from Cissampelos pareira with PPAR gamma.Bioinformation202218326526810.6026/97320630018265 36518143
    [Google Scholar]
  19. SaravananR. RajaK. ShanthiD. GC–MS analysis, molecular docking and pharmacokinetic properties of phytocompounds from Solanum torvum unripe fruits and its effect on breast cancer target protein.Appl. Biochem. Biotechnol.2022194152955510.1007/s12010‑021‑03698‑3 34643844
    [Google Scholar]
  20. ArbiantiR. LarasatiA. UtamiT.S. MuharamY. SlametS. Molecular docking bioactive compound from Strobilanthes crispus to decrease cholesterol levels.AIP Conference Proceedings20212376105000110.1063/5.0064599
    [Google Scholar]
  21. BallavS. BiswasB. SahuV.K. RanjanA. BasuS. PPAR-γ partial agonists in disease-fate decision with special reference to cancer.Cells20221120321510.3390/cells11203215 36291082
    [Google Scholar]
  22. ChoucryM.A. KhalilM.N.A. El AwdanS.A. Protective action of crateva nurvala buch. Ham extracts against renal ischaemia reperfusion injury in rats via antioxidant and anti-inflammatory activities.J. Ethnopharmacol.2018214475710.1016/j.jep.2017.11.034 29217496
    [Google Scholar]
  23. AbubakarA. HaqueM. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes.J. Pharm. Bioallied Sci.202012111010.4103/jpbs.JPBS_175_19 32801594
    [Google Scholar]
  24. NortjieE. BasitereM. MoyoD. NyamukambaP. Extraction methods, quantitative and qualitative phytochemical screening of medicinal plants for antimicrobial textiles: A review.Plants20221115201110.3390/plants11152011 35956489
    [Google Scholar]
  25. BlainskiA. LopesG. De MelloJ. Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L.Molecules20131866852686510.3390/molecules18066852 23752469
    [Google Scholar]
  26. ChandraS. KhanS. AvulaB. LataH. YangM.H. ElSohlyM.A. KhanI.A. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study.Evid. Based Complement. Alternat. Med.2014201411910.1155/2014/253875 24782905
    [Google Scholar]
  27. AkarZ. KüçükM. DoğanH. A new colorimetric DPPH • scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs.J. Enzyme Inhib. Med. Chem.201732164064710.1080/14756366.2017.1284068 28262029
    [Google Scholar]
  28. BajpaiV.K. MajumderR. ParkJ.G. Isolation and purification of plant secondary metabolites using column-chromatographic technique.Bangladesh J. Pharmacol.201611484484810.3329/bjp.v11i4.28185
    [Google Scholar]
  29. SloanK.M. MustacichR.V. EckenrodeB.A. Development and evaluation of a low thermal mass gas chromatograph for rapid forensic GC–MS analyses.Field Anal. Chem. Technol.20015628830110.1002/fact.10011
    [Google Scholar]
  30. GurungA.B. AliM.A. LeeJ. FarahM.A. Al-AnaziK.M. Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets.PLoS One2021167e025403510.1371/journal.pone.0254035 34260631
    [Google Scholar]
  31. EswaramoorthyR. HailekirosH. KedirF. EndaleM. In silico molecular docking, DFT analysis and ADMET studies of carbazole alkaloid and coumarins from roots of clausena anisata: A potent inhibitor for quorum sensing.Adv. Appl. Bioinform. Chem.202114132410.2147/AABC.S290912 33584098
    [Google Scholar]
  32. YangH. SunL. LiW. LiuG. TangY. In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts.Front Chem.201863010.3389/fchem.2018.00030 29515993
    [Google Scholar]
  33. OrellanaE. KasinskiA. SulforhodamineB. SRB) assay in cell culture to investigate cell proliferation.Bio Protoc.2016621e198410.21769/BioProtoc.1984 28573164
    [Google Scholar]
  34. VichaiV. KirtikaraK. Sulforhodamine B colorimetric assay for cytotoxicity screening.Nat. Protoc.2006131112111610.1038/nprot.2006.179 17406391
    [Google Scholar]
  35. JiS. DoumitM.E. HillR.A. Regulation of adipogenesis and key adipogenic gene expression by 1, 25-dihydroxyvitamin D in 3T3-L1 cells.PLoS One2015106e012614210.1371/journal.pone.0126142 26030589
    [Google Scholar]
  36. KrausN.A. EhebauerF. ZappB. RudolphiB. KrausB.J. KrausD. Quantitative assessment of adipocyte differentiation in cell culture.Adipocyte20165435135810.1080/21623945.2016.1240137 27994948
    [Google Scholar]
  37. YuZ.K. HausmanG.J. Expression of CCAAT/enhancer binding proteins during porcine preadipocyte differentiation.Exp. Cell Res.1998245234334910.1006/excr.1998.4260 9851875
    [Google Scholar]
  38. RosenE.D. HsuC.H. WangX. SakaiS. FreemanM.W. GonzalezF.J. SpiegelmanB.M. C/EBPα induces adipogenesis through PPARγ: A unified pathway.Genes Dev.2002161222610.1101/gad.948702 11782441
    [Google Scholar]
  39. PoulosS.P. SiskM. HausmanD.B. AzainM.J. HausmanG.J. Pre- and postnatal dietary conjugated linoleic acid alters adipose development, body weight gain and body composition in Sprague-Dawley rats.J. Nutr.2001131102722273110.1093/jn/131.10.2722 11584096
    [Google Scholar]
  40. MishraM. TiwariS. GomesA.V. Protein purification and analysis: Next generation Western blotting techniques.Expert Rev. Proteomics201714111037105310.1080/14789450.2017.1388167 28974114
    [Google Scholar]
  41. TowbinH. StaehelinT. GordonJ. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications.Proc. Natl. Acad. Sci. USA19797694350435410.1073/pnas.76.9.4350 388439
    [Google Scholar]
  42. RadziejewskaI. SupruniukK. JakimiukK. TomczykM. BielawskaA. GalickaA. Tiliroside combined with anti-muc1 monoclonal antibody as promising anti-cancer strategy in AGS Cancer Cells.Int. J. Mol. Sci.202324171303610.3390/ijms241713036 37685842
    [Google Scholar]
  43. MaiuoloJ. MusolinoV. GliozziM. CarresiC. OppedisanoF. NuceraS. ScaranoF. ScicchitanoM. GuarnieriL. BoscoF. MacrìR. RugaS. CardamoneA. CoppolettaA.R. IlariS. MollaceA. MuscoliC. CognettiF. MollaceV. The employment of genera Vaccinium, Citrus, Olea, and Cynara polyphenols for the reduction of selected anti-cancer drug side effects.Nutrients2022148157410.3390/nu14081574 35458136
    [Google Scholar]
  44. KristiningrumN. WulandariL.E. ZuhriyahA.I. Phytochemical screening, total phenolic content, and antioxidant activity of water, ethyl acetate, and n-hexane fractions from mistletoe moringa oleifera lam. (dendrophthoe pentandra (l.) miq.).Asian Journal of Pharmaceutical and Clinical Research20181110104
    [Google Scholar]
  45. SulaimanC.T. BalachandranI. Total phenolics and total flavonoids in selected Indian medicinal plants.Indian J. Pharm. Sci.201274325826010.4103/0250‑474X.106069 23439764
    [Google Scholar]
  46. TungmunnithumD. ThongboonyouA. PholboonA. YangsabaiA. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview.Medicines2018539310.3390/medicines5030093 30149600
    [Google Scholar]
  47. WagayN.A. KhanN.A. RotheS.P. Profiling of secondary metabolites and antimicrobial activity of Crateva religiosa G. Forst. Bark – A rare medicinal plant of Maharashtra India.Int. J. Biosci.201710534335410.12692/ijb/10.5.343‑354
    [Google Scholar]
  48. RathinavelT. IqbalM.N. KumarasamyS. Lupeol from Crateva adansonii DC exhibits promising enzymes inhibition: Play a crucial role in inflammation and diabetes.S. Afr. J. Bot.202114344945610.1016/j.sajb.2021.08.023
    [Google Scholar]
  49. PangM. HeW. LuX. SheY. XieL. KongR. ChangS. CoDock-Ligand: Combined template-based docking and CNN-based scoring in ligand binding prediction.BMC Bioinformatics202324144410.1186/s12859‑023‑05571‑y 37996806
    [Google Scholar]
  50. SteinbergD. Thematic review series: The pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: Part I.J. Lipid Res.20044591583159310.1194/jlr.R400003‑JLR200 15102877
    [Google Scholar]
  51. Curiel-PedrazaD.A. Villaseñor-TapiaE.C. Márquez-AguirreA.L. Morales-MartínezC.E. Diaz-VidalT. Basulto-PadillaG.C. Mateos-DíazJ.C. López-MunguíaA. Canales-AguirreA. RodríguezJ.A. Olvanil inhibits adipocyte differentiation in 3T3-L1 cells, reduces fat accumulation and improves lipidic profile on mice with diet-induced obesity.Food Chemistry Advances2023310043810.1016/j.focha.2023.100438
    [Google Scholar]
  52. SenamontreeS. LakthanT. CharoenpanichP. ChanchaoC. CharoenpanichA. Betulinic acid decreases lipid accumulation in adipogenesis-induced human mesenchymal stem cells with upregulation of PGC-1α and UCP-1 and post-transcriptional downregulation of adiponectin and leptin secretion.PeerJ20219e1232110.7717/peerj.12321 34721992
    [Google Scholar]
  53. JakabJ. MiškićB. MikšićŠ. JuranićB. ĆosićV. SchwarzD. VčevA. Adipogenesis as a potential anti-obesity target: A review of pharmacological treatment and natural products.Diabetes Metab. Syndr. Obes.202114678310.2147/DMSO.S281186 33447066
    [Google Scholar]
  54. AryalS. BaniyaM.K. DanekhuK. KunwarP. GurungR. KoiralaN. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal.Plants2019849610.3390/plants8040096 30978964
    [Google Scholar]
  55. AndjicM. BožinB. DraginicN. KocovicA. JeremicJ.N. TomovicM. Milojevic Šamanovic.Pharmaceuticals.202114813 34451910
    [Google Scholar]
  56. PomaA FontecchioG CarlucciG ChichiriccoG Anti-inflammatory properties of drugs from saffron crocus.Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Inflammatory and Anti-Allergy Agents).2012111375110.2174/187152312803476282
    [Google Scholar]
  57. VassalloA. CaddeoC. ManconiM. MancaM.L. ArmentanoM.F. CarboneC. PuglisiG. FaddaA.M. Liposomes for the co-delivery of naturally occurring polyphenols (quercetin and resveratrol): characterization andin vitro/in vivo evaluation. InXXVI–SILAE 2017 SOCIETÀ ITALO-LATINOAMERICANA DI ETNOMEDICINA IX CONGRESO COLOMBIANO DE CROMATOGRAFÍA–COCOCRO 2017.Sociedad Colombiana de Ciencias Químicas20178888
    [Google Scholar]
  58. Phytochemicals in Goji BerriesApplications in Functional Foods.CRC Press202010.1201/9780429021749
    [Google Scholar]
  59. BouwmanAC NugrohoJE WongsoD van ScheltJ PannebakkerBA ZwaanBJ EllenED A full sib design is a practically feasible way to estimate genetic parameters in Black Soldier Fly (Hermetia illucens).InInsects to feed the world202281S53S53
    [Google Scholar]
  60. MorenoJ.M. Meyer-RochowB. OlsenB. PaolettiM.G. SchneiderJ. SchlüterO. Editorial board: Prof. Jérôme CasasUniversity of Tours, France Dr Adrian Charlton, FERA: United Kingdom; Dr Florence Dunkel.
    [Google Scholar]
  61. DeruytterD. GascoL. GligorescuA. YaktiW. CoudronC.L. MeneguzM. GrossoF. ShumoM. FrooninckxL. NoyensI. OddonS.B. The (im) possible standardisation of insect feed experiments: A BSF case study.J. Insects Food Feed20228Suppl. 1S144S144
    [Google Scholar]
  62. KarS. LeszczynskiJ. Recent advances of computational modeling for predicting drug metabolism: A perspective.Curr. Drug Metab.201818121106112210.2174/1389200218666170607102104 28595533
    [Google Scholar]
  63. ClancyC.E. AnG. CannonW.R. LiuY. MayE.E. OrtolevaP. PopelA.S. SlukaJ.P. SuJ. ViciniP. ZhouX. EckmannD.M. Multiscale modeling in the clinic: Drug design and development.Ann. Biomed. Eng.20164492591261010.1007/s10439‑016‑1563‑0 26885640
    [Google Scholar]
  64. GanJ. BolonB. Van VleetT. WoodC. Alternative models in biomedical research:In silico, in vitro, ex vivo.and nontraditional in vivo approaches.InHaschek and Rousseaux’s handbook of toxicologic pathology.Academic Press2022925966
    [Google Scholar]
  65. ToscaE.M. RonchiD. FaccioloD. MagniP. Replacement, reduction, and refinement of animal experiments in anticancer drug development: The contribution of 3D in vitro cancer models in the drug efficacy assessment.Biomedicines2023114105810.3390/biomedicines11041058 37189676
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010314594240816050240
Loading
/content/journals/cpb/10.2174/0113892010314594240816050240
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 3T3-L1 cell lines; adipocyte; antihyperlipidemic; GC-MS analysis; in silico; in vitro
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test