Skip to content
2000
image of The Biochemical Effects of Resveratrol Intake on the Neurobehavioral Aspects of Autism Spectrum Disorders: A Systematic Review

Abstract

Introduction/Objective

Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by various neurobehavioral impairments. This study aims to review the preventive and therapeutic effects of Resveratrol (RSV) against ASD during various stages of life, specifically focusing on its influence on behavioral and neurodevelopmental biochemical mechanisms.

Methods

On December 6, 2024, a comprehensive electronic search was conducted across several high-coverage databases, including Web of Science, Scopus, PubMed/MEDLINE, Embase, and the Cochrane Library. The most important data were extracted and reviewed after screening the publications based on our inclusion and exclusion criteria.

Results

RSV alleviates autistic-like social behaviors by promoting social interaction and mitigating repetitive behaviors, anxiety, and symptoms resembling depression. RSV influences chemokine receptor expression, diminishes pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interferon-gamma (IFN-γ), and regulates mitochondrial function by reducing nitrosative stress and thiobarbituric acid reactive substances (TBARS) levels, while also increasing antioxidant markers like glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) in the brain. Additionally, it enhances neuronal organization, increases the proportions of interneurons (SOM+, PV+, CB+), and restores the integrity of the hippocampus. Moreover, RSV modulates epigenetic pathways, such as estrogen receptor-beta (ERβ) activation and sirtuin 1 (Sirt1) expression, counteracts learning, memory, and locomotor activity deficits, and normalizes cortical oscillations. It also potentially modulated gut-brain-axis dysregulation and neurotransmitters.

Conclusion

RSV has shown promising effects on ASD, primarily through its influence on behavioral, neuromolecular, and neurodevelopmental mechanisms.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249387274250521054238
2025-06-16
2025-09-26
Loading full text...

Full text loading...

References

  1. Mughal S. Faizy R.M. Saadabadi A. Autism Spectrum Disorder. Treasure Island, FL StatPearls Publishing 2024 1 9
    [Google Scholar]
  2. Mughal S. Faizy R.M. Saadabadi A. Autism Spectrum Disorder. Treasure Island, FL StatPearls Publishing 2024 1 8
    [Google Scholar]
  3. Braden B.B. Pagni B.A. Monahan L. Walsh M.J.M. Dixon M.V. Delaney S. Ballard L. Ware J.E. Jr Quality of life in adults with autism spectrum disorder: Influence of age, sex, and a controlled, randomized mindfulness-based stress reduction pilot intervention. Qual. Life Res. 2022 31 5 1427 1440 10.1007/s11136‑021‑03013‑x 34655389
    [Google Scholar]
  4. Rogge N. Janssen J. The economic costs of autism spectrum disorder: A literature review. J. Autism Dev. Disord. 2019 49 7 2873 2900 10.1007/s10803‑019‑04014‑z 30976961
    [Google Scholar]
  5. Koukouriki E. Soulis S.G. Self-reported health-related quality of life (hrqol) and anxiety among greek school-age siblings of individuals with autism spectrum disorders (ASD) in relation to parental mental health and social support. J. Autism Dev. Disord. 2020 50 8 2913 2930 10.1007/s10803‑020‑04395‑6 32040799
    [Google Scholar]
  6. Hodges H. Fealko C. Soares N. Autism spectrum disorder: Definition, epidemiology, causes, and clinical evaluation. Transl. Pediatr. 2020 9 S1 S55 S65 10.21037/tp.2019.09.09 32206584
    [Google Scholar]
  7. Botelho R.M. Silva A.L.M. Borbely A.U. The autism spectrum disorder and its possible origins in pregnancy. Int. J. Environ. Res. Public Health 2024 21 3 244 10.3390/ijerph21030244 38541246
    [Google Scholar]
  8. Lu J. Wang Z. Liang Y. Yao P. Rethinking autism: The impact of maternal risk factors on autism development. Am. J. Transl. Res. 2022 14 2 1136 1145 35273718
    [Google Scholar]
  9. Messedi M. Makni-Ayadi F. 24S-Hydroxycholesterol in neuropsychiatric diseases: Schizophrenia, autism spectrum disorder, and bipolar disorder. Adv. Exp. Med. Biol. 2024 1440 293 304 10.1007/978‑3‑031‑43883‑7_15 38036886
    [Google Scholar]
  10. Grayaa S. Zerbinati C. Messedi M. HadjKacem I. Chtourou M. Touhemi B.D. Naifar M. Ayadi H. Ayedi F. Iuliano L. Plasma oxysterol profiling in children reveals 24-hydroxycholesterol as a potential marker for Autism Spectrum Disorders. Biochimie 2018 153 80 85 10.1016/j.biochi.2018.04.026 29730299
    [Google Scholar]
  11. Jansakova K. Hill M. Celusakova H. Repiska G. Bicikova M. Macova L. Polonyiova K. Kopcikova M. Ostatnikova D. Steroidogenic pathway in girls diagnosed with autism spectrum disorders. PLoS One 2024 19 12 e0312933 10.1371/journal.pone.0312933 39636905
    [Google Scholar]
  12. Karimi A. Majlesi M. Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol. 2015 4 1 27 30 28197471
    [Google Scholar]
  13. Nikfarjam M. Parvin N. Assarzadegan N. Asghari S. The effects of lavandula angustifolia mill infusion on depression in patients using citalopram: A comparison study. Iran. Red Crescent Med. J. 2013 15 8 734 739 10.5812/ircmj.4173 24578844
    [Google Scholar]
  14. Parvin N. Farzane-Dehkordi S. Goudarzi I. Effects of portulaca oleracea L (purslane) on psychological symptoms of chronic schizophrenic patients in sina hospital. J Maz Univ Med Sci 2013 22 97 2 10
    [Google Scholar]
  15. Parvin N. Nikfarjam M. Goudarzi I. Heidari S. Effect of Ginkgo biloba pill on patients with major depression treated with electroconvulsive therapy. J. Maz. Univ. Med. Sci. 2012 22 88 61 69
    [Google Scholar]
  16. Moshfegh F. Baharara J. Namvar F. Effects of date palm pollen on fertility and development of reproductive system in female Balb/C mice. J. Herbmed. Pharmacol. 2016 5 1 23 28
    [Google Scholar]
  17. Wang Q. Yu Q. Wu M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases. Front. Pharmacol. 2022 13 948889 10.3389/fphar.2022.948889 36133823
    [Google Scholar]
  18. PubChem. 2004 Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Resveratrol [cited 2024 Dec. 29].
  19. Bohara R.A. Tabassum N. Singh M.P. Gigli G. Ragusa A. Leporatti S. Recent overview of resveratrol’s beneficial effects and its nano-delivery systems. Molecules 2022 27 16 5154 10.3390/molecules27165154 36014390
    [Google Scholar]
  20. Turner R.S. Thomas R.G. Craft S. Dyck V.C.H. Mintzer J. Reynolds B.A. Brewer J.B. Rissman R.A. Raman R. Aisen P.S. Mintzer J. Reynolds B.A. Karlawish J. Galasko D. Heidebrink J. Aggarwal N. Graff-Radford N. Sano M. Petersen R. Bell K. Doody R. Smith A. Bernick C. Porteinsson A. Tariot P. Mulnard R. Lerner A. Schneider L. Burns J. Raskind M. Ferris S. Jicha G. Quiceno M. Obisesan T. Rosenberg P. Weintraub D. Kieburtz K. Miller B. Kryscio R. Alexopoulis G. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015 85 16 1383 1391 10.1212/WNL.0000000000002035 26362286
    [Google Scholar]
  21. Komorowska J. Wątroba M. Bednarzak M. Grabowska A.D. Szukiewicz D. Anti-inflammatory action of resveratrol in the central nervous system in relation to glucose concentration—an in vitro study on a blood–brain barrier model. Int. J. Mol. Sci. 2024 25 6 3110 10.3390/ijms25063110 38542084
    [Google Scholar]
  22. Malaguarnera M. Khan H. Cauli O. Resveratrol in autism spectrum disorders: Behavioral and molecular effects. Antioxidants 2020 9 3 188 10.3390/antiox9030188 32106489
    [Google Scholar]
  23. Cox B. Nicolaï J. Williamson B. The role of the efflux transporter, P‐glycoprotein, at the blood–brain barrier in drug discovery. Biopharm. Drug Dispos. 2023 44 1 113 126 10.1002/bdd.2331 36198662
    [Google Scholar]
  24. Wang D. Li S.P. Fu J.S. Zhang S. Bai L. Guo L. Resveratrol defends blood-brain barrier integrity in experimental autoimmune encephalomyelitis mice. J. Neurophysiol. 2016 116 5 2173 2179 10.1152/jn.00510.2016 27535376
    [Google Scholar]
  25. Kuhnle G. Spencer J.P.E. Chowrimootoo G. Schroeter H. Debnam E.S. Srai S.K.S. Rice-Evans C. Hahn U. Resveratrol is absorbed in the small intestine as resveratrol glucuronide. Biochem. Biophys. Res. Commun. 2000 272 1 212 217 10.1006/bbrc.2000.2750 10872829
    [Google Scholar]
  26. Wenzel E. Somoza V. Metabolism and bioavailability oftrans-resveratrol. Mol. Nutr. Food Res. 2005 49 5 472 481 10.1002/mnfr.200500010 15779070
    [Google Scholar]
  27. Jarosova V. Vesely O. Doskocil I. Tomisova K. Marsik P. Jaimes J.D. Smejkal K. Kloucek P. Havlik J. Metabolism of cis- and trans-resveratrol and dihydroresveratrol in an intestinal epithelial model. Nutrients 2020 12 3 595 10.3390/nu12030595 32106482
    [Google Scholar]
  28. Griffiths K.K. Levy R.J. Evidence of mitochondrial dysfunction in autism: Biochemical links, genetic‐based associations, and non‐energy‐related mechanisms. Oxid. Med. Cell. Longev. 2017 2017 1 4314025 10.1155/2017/4314025 28630658
    [Google Scholar]
  29. Schardt C. Adams M.B. Owens T. Keitz S. Fontelo P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 2007 7 1 16 10.1186/1472‑6947‑7‑16 17573961
    [Google Scholar]
  30. Page M.J. McKenzie J.E. Bossuyt P.M. Boutron I. Hoffmann T.C. Mulrow C.D. Shamseer L. Tetzlaff J.M. Akl E.A. Brennan S.E. Chou R. Glanville J. Grimshaw J.M. Hróbjartsson A. Lalu M.M. Li T. Loder E.W. Mayo-Wilson E. McDonald S. McGuinness L.A. Stewart L.A. Thomas J. Tricco A.C. Welch V.A. Whiting P. Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021 372 71 n71 10.1136/bmj.n71 33782057
    [Google Scholar]
  31. Ferreira F.R. Moura D.N.S.B. Hassib L. Pombo T.R. Resveratrol ameliorates the effect of maternal immune activation associated with schizophrenia in adulthood offspring. Neurosci. Lett. 2020 734 135100 10.1016/j.neulet.2020.135100 32473196
    [Google Scholar]
  32. Bambini-Junior V. Zanatta G. Della Flora Nunes G. Mueller de Melo G. Michels M. Fontes-Dutra M. Freire N.V. Riesgo R. Gottfried C. Resveratrol prevents social deficits in animal model of autism induced by valproic acid. Neurosci. Lett. 2014 583 176 181 10.1016/j.neulet.2014.09.039 25263788
    [Google Scholar]
  33. Bakheet S.A. Alzahrani M.Z. Nadeem A. Ansari M.A. Zoheir K.M.A. Attia S.M. AL-Ayadhi L.Y. Ahmad S.F. Resveratrol treatment attenuates chemokine receptor expression in the BTBR T + tf/J mouse model of autism. Mol. Cell. Neurosci. 2016 77 1 10 10.1016/j.mcn.2016.09.004 27693537
    [Google Scholar]
  34. Bakheet S.A. Alzahrani M.Z. Ansari M.A. Nadeem A. Zoheir K.M.A. Attia S.M. AL-Ayadhi L.Y. Ahmad S.F. Resveratrol ameliorates dysregulation of th1, th2, th17, and T regulatory cell-related transcription factor signaling in a BTBR T + tf/J Mouse Model of Autism. Mol. Neurobiol. 2017 54 7 5201 5212 10.1007/s12035‑016‑0066‑1 27578011
    [Google Scholar]
  35. Bhandari R. Kuhad A. Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders. Neurochem. Int. 2017 103 8 23 10.1016/j.neuint.2016.12.012 28025035
    [Google Scholar]
  36. Ahmad S.F. Ansari M.A. Nadeem A. Alzahrani M.Z. Bakheet S.A. Attia S.M. Resveratrol improves neuroimmune dysregulation through the inhibition of neuronal toll-like receptors and COX-2 signaling in BTBR T+ Itpr3tf/J Mice. Neuromolecular Med. 2018 20 1 133 146 10.1007/s12017‑018‑8483‑0 29468499
    [Google Scholar]
  37. Ahmad S.F. Ansari M.A. Nadeem A. Bakheet S.A. Alzahrani M.Z. Alshammari M.A. Alanazi W.A. Alasmari A.F. Attia S.M. Resveratrol attenuates pro-inflammatory cytokines and activation of JAK1-STAT3 in BTBR T + Itpr3 tf /J autistic mice. Eur. J. Pharmacol. 2018 829 70 78 10.1016/j.ejphar.2018.04.008 29654783
    [Google Scholar]
  38. Fontes-Dutra M. Santos-Terra J. Deckmann I. Schwingel B.G. Della-Flora Nunes G. Hirsch M.M. Bauer-Negrini G. Riesgo R.S. Bambini-Júnior V. Hedin-Pereira C. Gottfried C. Resveratrol prevents cellular and behavioral sensory alterations in the animal model of autism induced by valproic acid. Front. Synaptic Neurosci. 2018 10 9 10.3389/fnsyn.2018.00009 29872390
    [Google Scholar]
  39. Hirsch M.M. Deckmann I. Fontes-Dutra M. Bauer-Negrini G. Della-Flora Nunes G. Nunes W. Rabelo B. Riesgo R. Margis R. Bambini-Junior V. Gottfried C. Behavioral alterations in autism model induced by valproic acid and translational analysis of circulating microRNA. Food Chem. Toxicol. 2018 115 336 343 10.1016/j.fct.2018.02.061 29510222
    [Google Scholar]
  40. Hirsch M.M. Deckmann I. Fontes-Dutra M. Bauer-Negrini G. Nunes G.D.F. Nunes W. Rabelo B. Riesgo R. Margis R. Bambini-Junior V. Gottfried C. Data on social transmission of food preference in a model of autism induced by valproic acid and translational analysis of circulating microRNA. Data Brief 2018 18 1433 1440 10.1016/j.dib.2018.04.047 29904648
    [Google Scholar]
  41. Tekula M.R. Sunand K. Begum N. Kakalij R.M. Bakshi V. Neuroprotective effect of resveratrol on valproic acid-induced oxidative stress autism in swiss albino mice. Int. J. Pharm. Sci. Drug Res. 2018 10 3 103 110 10.25004/IJPSDR.2018.100301
    [Google Scholar]
  42. Xie W. Ge X. Li L. Yao A. Wang X. Li M. Gong X. Chu Z. Lu Z. Huang X. Jiao Y. Wang Y. Xiao M. Chen H. Xiang W. Yao P. Resveratrol ameliorates prenatal progestin exposure-induced autism-like behavior through ERβ activation. Mol. Autism 2018 9 1 43 10.1186/s13229‑018‑0225‑5 30123446
    [Google Scholar]
  43. Fontes-Dutra M. Della-Flora Nunes G. Santos-Terra J. Souza-Nunes W. Bauer-Negrini G. Hirsch M.M. Green L. Riesgo R. Gottfried C. Bambini-Junior V. Abnormal empathy-like pro-social behaviour in the valproic acid model of autism spectrum disorder. Behav. Brain Res. 2019 364 11 18 10.1016/j.bbr.2019.01.034 30682436
    [Google Scholar]
  44. Hendouei F. Moghaddam S.H. Mohammadi M.R. Taslimi N. Rezaei F. Akhondzadeh S. Resveratrol as adjunctive therapy in treatment of irritability in children with autism: A double‐blind and placebo‐controlled randomized trial. J. Clin. Pharm. Ther. 2020 45 2 324 334 10.1111/jcpt.13076 31714621
    [Google Scholar]
  45. Hidema S. Kikuchi S. Takata R. Yanai T. Shimomura K. Horie K. Nishimori K. Single administration of resveratrol improves social behavior in adult mouse models of autism spectrum disorder. Biosci. Biotechnol. Biochem. 2020 84 11 2207 2214 10.1080/09168451.2020.1794783 32698690
    [Google Scholar]
  46. Juybari K.B. Sepehri G. Meymandi M.S. Shahrbabaki V.S.S. Moslemizadeh A. Saeedi N. Aminzadeh A. Nozari M. Khaksari M. Haghpanah T. Bashiri H. Sex dependent alterations of resveratrol on social behaviors and nociceptive reactivity in VPA-induced autistic-like model in rats. Neurotoxicol. Teratol. 2020 81 106905 10.1016/j.ntt.2020.106905 32534151
    [Google Scholar]
  47. Sunand K. Mohan G.K. Bakshi V. Resveratrol alone and its combination with pterostilbene amends valproic acid-induced autism in swiss albino mice: Postnatal model. Inter. J. Appl. Pharma. Sci. Res. 2020 5 1 12 21 10.21477/ijapsr.5.1.3
    [Google Scholar]
  48. Deckmann I. Santos-Terra J. Fontes-Dutra M. Körbes-Rockenbach M. Bauer-Negrini G. Schwingel G.B. Riesgo R. Bambini-Junior V. Gottfried C. Resveratrol prevents brain edema, blood–brain barrier permeability, and altered aquaporin profile in autism animal model. Int. J. Dev. Neurosci. 2021 81 7 579 604 10.1002/jdn.10137 34196408
    [Google Scholar]
  49. Santos-Terra J. Deckmann I. Schwingel G.B. Paz A.V.C. Gama C.S. Bambini-Junior V. Fontes-Dutra M. Gottfried C. Resveratrol prevents long-term structural hippocampal alterations and modulates interneuron organization in an animal model of ASD. Brain Res. 2021 1768 147593 10.1016/j.brainres.2021.147593 34331907
    [Google Scholar]
  50. Sunand K. Mohan G.K. Bakshi V. Synergetic Potential of Combination Probiotic Complex with Phytopharmaceuticals in Valproic Acid Induced Autism: Prenatal Model. Inter. J. Appl. Pharma. Sci. Res. 2021 6 3 33 43 10.21477/ijapsr.6.3.02
    [Google Scholar]
  51. Marchezan J. Deckmann I. Fonseca D.G.C. Margis R. Riesgo R. Gottfried C. Resveratrol treatment of autism spectrum disorder—a pilot study. Clin. Neuropharmacol. 2022 45 5 122 127 10.1097/WNF.0000000000000516 36066854
    [Google Scholar]
  52. Santos-Terra J. Deckmann I. Carello-Collar G. Nunes G.D.F. Bauer-Negrini G. Schwingel G.B. Fontes-Dutra M. Riesgo R. Gottfried C. Resveratrol prevents cytoarchitectural and interneuronal alterations in the valproic acid rat model of autism. Int. J. Mol. Sci. 2022 23 8 4075 10.3390/ijms23084075 35456893
    [Google Scholar]
  53. Fontes-Dutra M. Marafiga R.J. Santos-Terra J. Deckmann I. Schwingel B.G. Rabelo B. Kazmierzak de Moraes R. Rockenbach M. Pasquetti V.M. Gottfried C. Calcagnotto M.E. GABAergic synaptic transmission and cortical oscillation patterns in the primary somatosensory area of a valproic acid rat model of autism spectrum disorder. Eur. J. Neurosci. 2023 57 3 527 546 10.1111/ejn.15893 36504470
    [Google Scholar]
  54. Schwingel G.B. Fontes-Dutra M. Ramos B. Riesgo R. Bambini-Junior V. Gottfried C. Preventive effects of resveratrol against early-life impairments in the animal model of autism induced by valproic acid. IBRO Neurosci. Rep. 2023 15 242 251 10.1016/j.ibneur.2023.09.008 37841088
    [Google Scholar]
  55. Shahrbabaki S.S.V. Moslemizadeh A. Amiresmaili S. Tezerji S.S. Juybari K.B. Sepehri G. Meymandi S.M. Bashiri H. Ameliorating age-dependent effects of resveratrol on VPA-induced social impairments and anxiety-like behaviors in a rat model of neurodevelopmental disorder. Neurotoxicology 2023 96 154 165 10.1016/j.neuro.2023.03.003 36933665
    [Google Scholar]
  56. Duarte R.M.F. Ribeiro-Barbosa E.R. Ferreira F.R. Espindola F.S. Spini V.B.M.G. Resveratrol prevents offspring’s behavioral impairment associated with immunogenic stress during pregnancy. Prog. Neuropsychopharmacol. Biol. Psychiatry 2025 136 111188 10.1016/j.pnpbp.2024.111188 39522792
    [Google Scholar]
  57. Zeng X. Fan L. Li M. Qin Q. Pang X. Shi S. Zheng D. Jiang Y. Wang H. Wu L. Liang S. Resveratrol regulates Thoc5 to improve maternal immune activation-induced autism-like behaviors in adult mouse offspring. J. Nutr. Biochem. 2024 129 109638 10.1016/j.jnutbio.2024.109638 38583499
    [Google Scholar]
  58. Freeth M. Morgan E.J. I see you, you see me: The impact of social presence on social interaction processes in autistic and non-autistic people. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2023 378 1875 20210479 10.1098/rstb.2021.0479 36871584
    [Google Scholar]
  59. Koegel R.L. Vernon T.W. Koegel L.K. Improving social initiations in young children with autism using reinforcers with embedded social interactions. J. Autism Dev. Disord. 2009 39 9 1240 1251 10.1007/s10803‑009‑0732‑5 19357942
    [Google Scholar]
  60. Zarafshan H. Salmanian M. Mohammadi M.R. Aghamohammadi S. Mostafavi S.A. Effectiveness of non-pharmacological interventions on stereotyped and repetitive behaviors in preschool children with autism: A systematic review. Basic Clin. Neurosci. 2017 8 2 95 104 10.18869/nirp.bcn.8.2.95 28539993
    [Google Scholar]
  61. Ghanizadeh A. Clinical approach to motor stereotypies in autistic children. Iran. J. Pediatr. 2010 20 2 149 159 23056697
    [Google Scholar]
  62. Charlot L. Deutsch C.K. Albert A. Hunt A. Connor D.F. McIlvane W.J. Jr Mood and anxiety symptoms in psychiatric inpatients with autism spectrum disorder and depression. J. Ment. Health Res. Intellect. Disabil. 2008 1 4 238 253 10.1080/19315860802313947 24009649
    [Google Scholar]
  63. Greenberg R.L. Guzick A.G. Schneider S.C. Weinzimmer S.A. Kook M. Garcia P.A.B. Storch E.A. Depressive symptoms in autistic youth with anxiety disorders. J. Dev. Behav. Pediatr. 2023 44 9 e597 e603 10.1097/DBP.0000000000001223 38019467
    [Google Scholar]
  64. Tseilikman V.E. Tseilikman O.B. Yegorov O.N. Brichagina A.A. Karpenko M.N. Tseilikman D.V. Shatilov V.A. Zhukov M.S. Novak J. Resveratrol: A multifaceted guardian against anxiety and stress disorders—an overview of experimental evidence. Nutrients 2024 16 17 2856 10.3390/nu16172856 39275174
    [Google Scholar]
  65. Ghamdi K. AlMusailhi J. Attention-deficit hyperactivity disorder and autism spectrum disorder: Towards better diagnosis and management. Med. Arh. 2024 78 2 159 163 10.5455/medarh.2024.78.159‑163 38566879
    [Google Scholar]
  66. Kalvin C.B. Gladstone T.R. Jordan R. Rowley S. Marsh C.L. Ibrahim K. Sukhodolsky D.G. Assessing irritability in children with autism spectrum disorder using the affective reactivity index. J. Autism Dev. Disord. 2021 51 5 1496 1507 10.1007/s10803‑020‑04627‑9 32734421
    [Google Scholar]
  67. Blum K. Chen A.L. Braverman E.R. Comings D.E. Chen T.J. Arcuri V. Blum S.H. Downs B.W. Waite R.L. Notaro A. Lubar J. Williams L. Prihoda T.J. Palomo T. Oscar-Berman M. Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatr. Dis. Treat. 2008 4 5 893 918 19183781
    [Google Scholar]
  68. Hirota T. Deserno M. McElroy E. The network structure of irritability and aggression in individuals with autism spectrum disorder. J. Autism Dev. Disord. 2020 50 4 1210 1220 10.1007/s10803‑019‑04354‑w 31897854
    [Google Scholar]
  69. Hajri M. Abbes Z. Yahia H.B. Jelili S. Halayem S. Mrabet A. Bouden A. Cognitive deficits in children with autism spectrum disorders: Toward an integrative approach combining social and non-social cognition. Front. Psychiatry 2022 13 917121 10.3389/fpsyt.2022.917121 36003981
    [Google Scholar]
  70. Patil O. Kaple M. Sensory processing differences in individuals with autism spectrum disorder: A narrative review of underlying mechanisms and sensory-based interventions. Cureus 2023 15 10 e48020 10.7759/cureus.48020 38034138
    [Google Scholar]
  71. Rabiee A. Vasaghi-Gharamaleki B. Samadi S.A. Amiri-Shavaki Y. Alaghband-Rad J. Working memory deficits and its relationship to autism spectrum disorders. Iran. J. Med. Sci. 2020 45 2 100 109 10.30476/IJMS.2019.45315 32210486
    [Google Scholar]
  72. Al-Mazidi S.H. The physiology of cognition in autism spectrum disorder: Current and future challenges. Cureus 2023 15 10 e46581 10.7759/cureus.46581 37808604
    [Google Scholar]
  73. Kouémou N.E. Savo F.M. Pale S. Noubissi A.P. Dongmo S.M.N. Taiwe G.S. Bum E.N. Anxiolytic, memory improvement, hepatoprotective, and antioxidant effects of Thymus vulgaris on alcohol withdrawal syndrome in mice. Journal of Herbmed Pharmacology 2024 13 4 572 586 10.34172/jhp.2024.51455
    [Google Scholar]
  74. Oyagbemi A.A. Hassan F.O. Adebiyi O.E. Adigun K.O. Folarin O.R. Ajibade T.O. Esan O.O. Omobowale T.O. Ola-Davies O.E. Olopade J.O. Saba A.B. Adedapo A.A. Nkadimeng S.M. McGaw L.J. Nwulia E. Yakubu M.A. Oguntibeju O.O. Neuroprotective effect of Launaea taraxacifolia against neuroinflammation, memory loss and neurobehavioral deficit in a rat model of hypertension: Biochemical and immunohistochemical approaches. J. Herb. Pharm. 2024 13 3 390 398 10.34172/jhp.2024.44768
    [Google Scholar]
  75. Wang L. Wang B. Wu C. Wang J. Sun M. Autism spectrum disorder: Neurodevelopmental risk factors, biological mechanism, and precision therapy. Int. J. Mol. Sci. 2023 24 3 1819 10.3390/ijms24031819 36768153
    [Google Scholar]
  76. Sato A. Kotajima-Murakami H. Tanaka M. Katoh Y. Ikeda K. Influence of prenatal drug exposure, maternal inflammation, and parental aging on the development of autism spectrum disorder. Front. Psychiatry 2022 13 821455 10.3389/fpsyt.2022.821455 35222122
    [Google Scholar]
  77. Courchesne E. Gazestani V.H. Lewis N.E. Prenatal origins of asd: The when, what, and how of ASD development. Trends Neurosci. 2020 43 5 326 342 10.1016/j.tins.2020.03.005 32353336
    [Google Scholar]
  78. Santos D.M.G. Schimith L.E. André-Miral C. Muccillo-Baisch A.L. Arbo B.D. Hort M.A. Neuroprotective effects of resveratrol in in vivo and in vitro experimental models of parkinson’s disease: A systematic review. Neurotox. Res. 2022 40 1 319 345 10.1007/s12640‑021‑00450‑x 35013904
    [Google Scholar]
  79. Islam F. Nafady M.H. Islam M.R. Saha S. Rashid S. Akter A. Or-Rashid M.H. Akhtar M.F. Perveen A. Ashraf M.G. Rahman M.H. Sweilam H.S. Resveratrol and neuroprotection: An insight into prospective therapeutic approaches against Alzheimer’s disease from bench to bedside. Mol. Neurobiol. 2022 59 7 4384 4404 10.1007/s12035‑022‑02859‑7 35545730
    [Google Scholar]
  80. Griñán-Ferré C. Bellver-Sanchis A. Izquierdo V. Corpas R. Roig-Soriano J. Chillón M. Andres-Lacueva C. Somogyvári M. Sőti C. Sanfeliu C. Pallàs M. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy. Ageing Res. Rev. 2021 67 101271 10.1016/j.arr.2021.101271 33571701
    [Google Scholar]
  81. Danışman B. Kelek S.E. Aslan M. Resveratrol in neurodegeneration, in neurodegenerative diseases, and in the redox biology of the mitochondria. Psychiatry Clin. Psychopharmacol. 2023 33 2 147 155 10.5152/pcp.2023.23633 38765928
    [Google Scholar]
  82. Liu X. Lin J. Zhang H. Khan N.U. Zhang J. Tang X. Cao X. Shen L. Oxidative stress in autism spectrum disorder—current progress of mechanisms and biomarkers. Front. Psychiatry 2022 13 813304 10.3389/fpsyt.2022.813304 35299821
    [Google Scholar]
  83. Manivasagam T. Arunadevi S. Essa M.M. SaravanaBabu C. Borah A. Thenmozhi A.J. Qoronfleh M.W. Role of oxidative stress and antioxidants in autism. Adv. Neurobiol. 2020 24 193 206 10.1007/978‑3‑030‑30402‑7_7 32006361
    [Google Scholar]
  84. Parker W. Hornik C.D. Bilbo S. Holzknecht Z.E. Gentry L. Rao R. Lin S.S. Herbert M.R. Nevison C.D. The role of oxidative stress, inflammation and acetaminophen exposure from birth to early childhood in the induction of autism. J. Int. Med. Res. 2017 45 2 407 438 10.1177/0300060517693423 28415925
    [Google Scholar]
  85. Chen L. Shi X.J. Liu H. Mao X. Gui L.N. Wang H. Cheng Y. Oxidative stress marker aberrations in children with autism spectrum disorder: A systematic review and meta-analysis of 87 studies (N = 9109). Transl. Psychiatry 2021 11 1 15 10.1038/s41398‑020‑01135‑3 33414386
    [Google Scholar]
  86. Siddiqui M.F. Elwell C. Johnson M.H. Mitochondrial dysfunction in autism spectrum disorders. Autism Open Access 2016 6 5 1000190 27928515
    [Google Scholar]
  87. Rossignol D.A. Frye R.E. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol. Psychiatry 2012 17 3 290 314 10.1038/mp.2010.136 21263444
    [Google Scholar]
  88. Balachandar V. Rajagopalan K. Jayaramayya K. Jeevanandam M. Iyer M. Mitochondrial dysfunction: A hidden trigger of autism? Genes Dis. 2021 8 5 629 639 10.1016/j.gendis.2020.07.002 34291134
    [Google Scholar]
  89. Eissa N. Sadeq A. Sasse A. Sadek B. Role of neuroinflammation in autism spectrum disorder and the emergence of brain histaminergic system. lessons also for BPSD? Front. Pharmacol. 2020 11 886 10.3389/fphar.2020.00886 32612529
    [Google Scholar]
  90. Jyonouchi H. Autism spectrum disorder and a possible role of anti-inflammatory treatments: Experience in the pediatric allergy/immunology clinic. Front. Psychiatry 2024 15 1333717 10.3389/fpsyt.2024.1333717 38979496
    [Google Scholar]
  91. Xiang Y. Zhang M. Jiang D. Su Q. Shi J. The role of inflammation in autoimmune disease: A therapeutic target. Front. Immunol. 2023 14 1267091 10.3389/fimmu.2023.1267091 37859999
    [Google Scholar]
  92. Pangrazzi L. Balasco L. Bozzi Y. Oxidative stress and immune system dysfunction in autism spectrum disorders. Int. J. Mol. Sci. 2020 21 9 3293 10.3390/ijms21093293 32384730
    [Google Scholar]
  93. Appelbaum L.G. Shenasa M.A. Stolz L. Daskalakis Z. Synaptic plasticity and mental health: Methods, challenges and opportunities. Neuropsychopharmacology 2023 48 1 113 120 10.1038/s41386‑022‑01370‑w 35810199
    [Google Scholar]
  94. Farbin M. Hejazi A. Fakhraei N. Azizi Y. Mehrabi S. Hajisoltani R. Neuroprotective effects of Apigenin on prenatal Valproic acid-induced autism spectrum disorder in rats. IBRO Neurosci. Rep. 2024 17 493 502 10.1016/j.ibneur.2024.10.003 39720795
    [Google Scholar]
  95. Rashidi S.K. Kalirad A. Rafie S. Behzad E. Dezfouli M.A. The role of microRNAs in neurobiology and pathophysiology of the hippocampus. Front. Mol. Neurosci. 2023 16 1226413 10.3389/fnmol.2023.1226413 37727513
    [Google Scholar]
  96. Tsai Y.C. Chang C.H. Chong Y.B. Wu C.H. Tsai H.P. Cheng T.L. Lin C.L. MicroRNA-195-5p attenuates intracerebral-hemorrhage-induced brain damage by inhibiting MMP-9/MMP-2 expression. Biomedicines 2024 12 6 1373 10.3390/biomedicines12061373 38927580
    [Google Scholar]
  97. Puricelli C. Rolla R. Gigliotti L. Boggio E. Beltrami E. Dianzani U. Keller R. The gut-brain-immune axis in autism spectrum disorders: A state-of-art report. Front. Psychiatry 2022 12 755171 10.3389/fpsyt.2021.755171 35185631
    [Google Scholar]
  98. Taniya M.A. Chung H.J. Mamun A.A. Alam S. Aziz M.A. Emon N.U. Islam M.M. Hong S.T. Podder B.R. Mimi A.A. Suchi A.S. Xiao J. Role of gut microbiome in autism spectrum disorder and its therapeutic regulation. Front. Cell. Infect. Microbiol. 2022 12 915701 10.3389/fcimb.2022.915701 35937689
    [Google Scholar]
  99. Prakash V. Bose C. Sunilkumar D. Cherian R.M. Thomas S.S. Nair B.G. Resveratrol as a promising nutraceutical: Implications in gut microbiota modulation, inflammatory disorders, and colorectal cancer. Int. J. Mol. Sci. 2024 25 6 3370 10.3390/ijms25063370 38542344
    [Google Scholar]
  100. Nelson S.B. Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 2015 87 4 684 698 10.1016/j.neuron.2015.07.033 26291155
    [Google Scholar]
  101. Malvasi A. Kosmas I. Mynbaev O.A. Sparic R. Gustapane S. Guido M. Tinelli A. Can trans resveratrol plus d-chiro-inositol and myo-inositol improve maternal metabolic profile in overweight pregnant patients? Clin. Ter. 2017 168 4 e240 e247 28703838
    [Google Scholar]
  102. Shaito A. Posadino A.M. Younes N. Hasan H. Halabi S. Alhababi D. Al-Mohannadi A. Abdel-Rahman W.M. Eid A.H. Nasrallah G.K. Pintus G. Potential adverse effects of resveratrol: A literature review. Int. J. Mol. Sci. 2020 21 6 2084 10.3390/ijms21062084 32197410
    [Google Scholar]
  103. Guthrie A.R. Chow H.H.S. Martinez J.A. Effects of resveratrol on drug- and carcinogen-metabolizing enzymes, implications for cancer prevention. Pharmacol. Res. Perspect. 2017 5 1 e00294 10.1002/prp2.294 28596842
    [Google Scholar]
  104. Detampel P. Beck M. Krähenbühl S. Huwyler J. Drug interaction potential of resveratrol. Drug Metab. Rev. 2012 44 3 253 265 10.3109/03602532.2012.700715 22788578
    [Google Scholar]
  105. Posadino A.M. Cossu A. Giordo R. Zinellu A. Sotgia S. Vardeu A. Hoa P.T. Nguyen L.H.V. Carru C. Pintus G. Resveratrol alters human endothelial cells redox state and causes mitochondrial-dependent cell death. Food Chem. Toxicol. 2015 78 10 16 10.1016/j.fct.2015.01.017 25656643
    [Google Scholar]
  106. Brown V.A. Patel K.R. Viskaduraki M. Crowell J.A. Perloff M. Booth T.D. Vasilinin G. Sen A. Schinas A.M. Piccirilli G. Brown K. Steward W.P. Gescher A.J. Brenner D.E. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: Safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res. 2010 70 22 9003 9011 10.1158/0008‑5472.CAN‑10‑2364 20935227
    [Google Scholar]
  107. Yiu E.M. Tai G. Peverill R.E. Lee K.J. Croft K.D. Mori T.A. Scheiber-Mojdehkar B. Sturm B. Praschberger M. Vogel A.P. Rance G. Stephenson S.E.M. Sarsero J.P. Stockley C. Lee C.Y.J. Churchyard A. Evans-Galea M.V. Ryan M.M. Lockhart P.J. Corben L.A. Delatycki M.B. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J. Neurol. 2015 262 5 1344 1353 10.1007/s00415‑015‑7719‑2 25845763
    [Google Scholar]
  108. Chachay VS Macdonald GA Martin JH Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2014 12 2 2092 103.e1-6 10.1016/j.cgh.2014.02.024
    [Google Scholar]
  109. Saleem Z. Rehman K. Akash H.M.S. Role of drug delivery system in improving the bioavailability of resveratrol. Curr. Pharm. Des. 2022 28 20 1632 1642 10.2174/1381612828666220705113514 35792129
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249387274250521054238
Loading
/content/journals/cnsamc/10.2174/0118715249387274250521054238
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test