Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Background

A Non-Ergot Dopamine Agonist (NEDA) rotigotine has been designed as a new transdermal drug delivery system.

Aim

To maintain optimum homogeneity in drug content, the rotigotine transdermal patch was developed utilizing a solvent casting technique.

Methods

The characteristics of a transdermal patch, including patch weight, folding endurance, patch thickness, surface morphology, tensile strength, swelling rate, surface pH, release studies, water retention rate, uniformity of drug content, and permeation studies, were determined.

Results

drug release studies unequivocally demonstrated that drug release controlled polymer interactions. There was no apparent lag period before the drug release rate started to decline.

The developed patch showed 70 ± 1.18% of prolongation of drug release within 24 hours. The result of the penetration studies demonstrated that 61 ± 2.52% of rotigotine permeated through the epidermal barrier within 24 h.

Conclusion

The developed transdermal patch comprising rotigotine was evidently placed on the dermis layer, and an appropriate dose was delivered into circulation for a longer time based on the aforementioned factors. The findings of this study illustrate the effective approach of transdermal patches to treat Parkinson's disease.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249289689240607064642
2024-06-21
2025-09-18
Loading full text...

Full text loading...

References

  1. PoeweW. SeppiK. TannerC.M. HallidayG.M. BrundinP. VolkmannJ. SchragA.E. LangA.E. Parkinson disease.Nat. Rev. Dis. Primers2017311701310.1038/nrdp.2017.13 28332488
    [Google Scholar]
  2. AlkilaniA. McCruddenM.T. DonnellyR. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum.Pharmaceutics20157443847010.3390/pharmaceutics7040438 26506371
    [Google Scholar]
  3. ChenY. DaiJ. TangL. MikhailovaT. LiangQ. LiM. ZhouJ. KoppR.F. WeickertC. ChenC. LiuC. Neuroimmune transcriptome changes in patient brains of psychiatric and neurological disorders.Mol. Psychiatry202328271072110.1038/s41380‑022‑01854‑7 36424395
    [Google Scholar]
  4. YongK. ChinR.F.M. ShettyJ. HoggK. BurgessK. LindsayM. McLellanA. StoneJ. KamathTallur, K. Functional neurological disorder in children and young people: Incidence, clinical features, and prognosis.Dev. Med. Child Neurol.20236591238124610.1111/dmcn.15538 36752054
    [Google Scholar]
  5. ArvanitisM.L. SatonikR.C. Transdermal fentanyl abuse and misuse.Am. J. Emerg. Med.2002201585910.1053/ajem.2002.29562 11781919
    [Google Scholar]
  6. AzzaroA.J. ZiemniakJ. KemperE. CampbellB.J. VanDenBergC. Pharmacokinetics and absolute bioavailability of selegiline following treatment of healthy subjects with the selegiline transdermal system (6 mg/24 h): A comparison with oral selegiline capsules.J. Clin. Pharmacol.200747101256126710.1177/0091270007304779 17715422
    [Google Scholar]
  7. BauerJ.A. SeifertJ. L. Sublingual transmucosal delivery of organic nitrates: Treatment of angina pectoris.Drugs And The Pharmaceutical Sciences2005145111
    [Google Scholar]
  8. AiacheA. Elbow plasty.Plast Surg Mod Tech2017212810.29011/2577‑1701.100028
    [Google Scholar]
  9. BraccoF. BattagliaA. ChouzaC. DupontE. GershanikO. Marti MassoJ.F. MontastrucJ.L. The long-acting dopamine receptor agonist cabergoline in early Parkinson’s disease: Final results of a 5-year, double-blind, levodopa-controlled study.CNS Drugs2004181173374610.2165/00023210‑200418110‑00003 15330687
    [Google Scholar]
  10. SahaP. KathuriaH. PandeyM.M. Nose-to-brain delivery of rotigotine redispersible nanosuspension: In vitro and in vivo characterization.J. Drug Deliv. Sci. Technol.20237910404910.1016/j.jddst.2022.104049
    [Google Scholar]
  11. WuX. ChengD. LuY. RongR. KongY. WangX. NiuB. A liquid crystal in situ gel based on rotigotine for the treatment of Parkinson’s disease.Drug Deliv. Transl. Res.202315 37875660
    [Google Scholar]
  12. WatersC. The development of the rotigotine transdermal patch: A historical perspective.Neurol. Clin.2013313Suppl.S37S5010.1016/j.ncl.2013.04.012 23931953
    [Google Scholar]
  13. HollowayR.G. ShoulsonI. KieburtzK. McDermottM.P. TariotP.N. KampC. DayD. ShinamanA. FahnS. LangA.E. MarekK. SeibylJ. WeinerW.J. WelshM. PahwaR. CoeS. BarclayL. SutherlandL. HildebrandK. HubbleJ. Pramipexole vs levodopa as initial treatment for Parkinson disease: A randomized controlled trial.JAMA2000284151931193810.1001/jama.284.15.1931 11035889
    [Google Scholar]
  14. JellingerK.A. Basic mechanisms of neurodegeneration: A critical update.J. Cell. Mol. Med.201014345748710.1111/j.1582‑4934.2010.01010.x 20070435
    [Google Scholar]
  15. KorczynA.D. ThalamasC. AdlerC.H. Dosing with ropinirole in a clinical setting.Acta Neurol. Scand.2002106420020410.1034/j.1600‑0404.2002.01343.x 12225314
    [Google Scholar]
  16. LaurencinC. DanailaT. BroussolleE. ThoboisS. Initial treatment of Parkinson’s disease in 2016: The 2000 consensus conference revisited.Rev. Neurol.20161728-951252310.1016/j.neurol.2016.07.007 27476416
    [Google Scholar]
  17. ArmstrongM.J. OkunM.S. Diagnosis and treatment of parkinson disease.JAMA2020323654856010.1001/jama.2019.22360 32044947
    [Google Scholar]
  18. HuL. ZhangC. DaiH. ZhangC. YangY. WangN. ZhaoF. Ginseng oral liquid enhances therapeutic output of rotigotin patch plus amantadine in parkinson’s disease.Curr. Top. Nutraceutical Res.202321441141610.37290/ctnr2641‑452X.21:411‑416
    [Google Scholar]
  19. MarrasC. Prevention of parkinson’s disease: Preparing for the future.201372210.2217/ebo.13.83
    [Google Scholar]
  20. Abdul RazzaqA. RiazT. ZamanM. WaqarM.A. AshfaqA. Recent advancements and various potential applications of transdermal patches.Int. J. Polym. Mater. Polym. Biomater.202411210.1080/00914037.2023.2299784
    [Google Scholar]
  21. WangL. PangY. ZhengQ. RuanJ. FangL. liuC. Development of mabuterol transdermal patch: Molecular mechanism study of ion-pair improving patch stability.Int. J. Pharm.202364412330210.1016/j.ijpharm.2023.123302 37572858
    [Google Scholar]
  22. MalaiyaM.K. JainA. PoojaH. JainA. JainD. Controlled delivery of rivastigmine using transdermal patch for effective management of alzheimer’s disease.J. Drug Deliv. Sci. Technol.20184540841410.1016/j.jddst.2018.03.030
    [Google Scholar]
  23. McAfeeD.A. HadgraftJ. LaneM.E. Rotigotine: The first new chemical entity for transdermal drug delivery.Eur. J. Pharm. Biopharm.201488358659310.1016/j.ejpb.2014.08.007 25173087
    [Google Scholar]
  24. Abdul RasoolB.K. MohammedA.A. SalemY.Y. The optimization of a dimenhydrinate transdermal patch formulation based on the quantitative analysis of in vitro release data by DDSolver through skin penetration studies.Sci. Pharm.20218933310.3390/scipharm89030033
    [Google Scholar]
  25. PetersonT.A. WickS.M. KoC. Design, development, manufacturing, and testing of transdermal drug delivery systems. Dermal Drug Delivery.CRC Press202012116210.1201/9781315374215‑4
    [Google Scholar]
  26. LiY. SunY. WeiS. ZhangL. ZongS. Development and evaluation of tofacitinib transdermal system for the treatment of rheumatoid arthritis in rats.Drug Dev. Ind. Pharm.202147687888610.1080/03639045.2021.1916521 33886401
    [Google Scholar]
  27. SuY. LuW. FuX. XuY. YeL. YangJ. HuangH. YuC. Formulation and pharmacokinetic evaluation of a drug-in-adhesive patch for transdermal delivery of koumine.AAPS PharmSciTech202021829710.1208/s12249‑020‑01793‑y 33099696
    [Google Scholar]
  28. SamiiA. NuttJ.G. RansomB.R. Parkinson’s disease.Zenodo2004363942310.1016/S0140‑6736(04)16305‑8
    [Google Scholar]
  29. SchellerD. KehrJ. Continuous stimulation of dopamine receptors by a continuous delivery of rotigotine in a rat model. J. Neurol. Sci.2005238S369
    [Google Scholar]
  30. YounisU. RahiA.A. DanishS. AliM.A. AhmedN. DattaR. FahadS. HolatkoJ. HammerschmiedtT. BrtnickyM. ZareiT. BaazeemA. SabaghA.E.L. GlickB.R. Fourier transform infrared spectroscopy vibrational bands study of spinacia oleracea and trigonella corniculata under biochar amendment in naturally contaminated soil.PLoS One2021166e025339010.1371/journal.pone.0253390 34191839
    [Google Scholar]
  31. AshfaqA. RiazT. WaqarM.A. ZamanM. MajeedI. A comprehensive review on transdermal patches as an efficient approach for the delivery of drug.Polym-Plast Tech Mat.202411210.1080/25740881.2024.2317408
    [Google Scholar]
  32. KhanS.U. UllahM. SaeedS. SalehE.A.M. KassemA.F. ArbiF.M. WahabA. RehmanM. ur RehmanK. KhanD. ZamanU. KhanK.A. KhanM.A. LuK. Nanotherapeutic approaches for transdermal drug delivery systems and their biomedical applications.Eur. Polym. J.202420711281910.1016/j.eurpolymj.2024.112819
    [Google Scholar]
  33. NandiS. MondalS. Fabrication and evaluation of matrix type novel transdermal patch loaded with tramadol hydrochloride.Turk. J. Pharm. Sci.202219557258210.4274/tjps.galenos.2021.43678 36317940
    [Google Scholar]
  34. DubeyR. PothuvanU. Transdermal patches: An emerging mode of drug delivery system in pulmonary arterial hypertension.J. Drug Deliv. Ther.2021114-S17618610.22270/jddt.v11i4‑S.4925
    [Google Scholar]
  35. KhariaA. SinghaiA.K. GilhotraR. Formualtion and evalaution of transdermal patch for the treatment of inflammation.J. Pharm. Sci. Res.2020126780788
    [Google Scholar]
  36. EndharapuP. Formulation optimization and evaluation of evaluation of transdermal drug delivery system of felodipine.IJPRT2023132101114
    [Google Scholar]
  37. AbdullahH.M. FarooqM. AdnanS. MasoodZ. SaeedM.A. AslamN. IshaqW. Development and evaluation of reservoir transdermal polymeric patches for controlled delivery of diclofenac sodium.Polym. Bull.20238066793681810.1007/s00289‑022‑04390‑0
    [Google Scholar]
  38. NewellB.B. ZhanW. Numerical simulation of transdermal delivery of drug nanocarriers using solid microneedles and medicated adhesive patch.Int. J. Heat Mass Transf.202422312529110.1016/j.ijheatmasstransfer.2024.125291
    [Google Scholar]
  39. KurupM. KumarM. ChandraM. VenkateswarluB. RamanathanS. In-vitro and in-vivo wound healing activity of biogenically synthesised s. alternata methanolic extract silver nanoparticle transdermal patches.Pak. Heart J.20235613946
    [Google Scholar]
  40. AliH.S.M. NamaziN. ElbadawyH.M. El-SayedA.A.A. AhmedS.A. BafailR. AlmikhlafiM.A. AlahmadiY.M. Repaglinide–solid lipid nanoparticles in chitosan patches for transdermal application: Box–behnken design, characterization, and in vivo evaluation.Int. J. Nanomedicine20241920923010.2147/IJN.S438564 38223883
    [Google Scholar]
  41. SathyanarayanaT. Development and evaluation of nanostructured lipid carriers for transdermal delivery of ketoprofen.FABAD J. Pharm. Sci.2023481105124
    [Google Scholar]
  42. TavasliA. KocaagaB. GunerF.S. Development of procaine loaded transdermal patches based on biopolymer pectin, castor oil, and polyethylene glycol for controllable drug release studies and their characterizations.ChemistrySelect2023834e20230111510.1002/slct.202301115
    [Google Scholar]
  43. AlhausheyL. Darwish AhmadR. Formulation and evaluation of celecoxib transdermal patches.RJPT20231641574158010.52711/0974‑360X.2023.00257
    [Google Scholar]
  44. SahuP. Anjali SahuG.K. SharmaH. KaurC.D. Formulation, characterization and ex vivo evaluation of epinephrine transdermal patches.Res J Pharm Technol20201341684169210.5958/0974‑360X.2020.00305.4
    [Google Scholar]
  45. ThakurN. GoswamiM. Deka DeyA. KaurB. SharmaC. KumarA. Fabrication and synthesis of thiococlchicoside loaded matrix type transdermal patch.Pharm. Nanotechnol.202412214315410.2174/2211738511666230606120828 37282636
    [Google Scholar]
  46. NaazF. MajumdarA. MalviyaN. MouryaP. DhereM. Formulation and evaluation of febuxostat transdermal patch for management of gout.Res J Pharm Technol202417137337810.52711/0974‑360X.2024.00058
    [Google Scholar]
  47. Zaid AlkilaniA. HamedR. MuslehB. SharaireZ. Breaking boundaries: The advancements in transdermal delivery of antibiotics.Drug Deliv.2024311230425110.1080/10717544.2024.2304251 38241087
    [Google Scholar]
  48. JainM. PansuriyaR. ThakurR. SainiA.K. KumarS. AswalV.K. KailasaS.K. MalekN.I. PVA/guanidinium oleate transdermal patch as a pH-responsive drug delivery system for the localized and targeted delivery of anticancer drugs.Mater. Adv.202451998201110.1039/D3MA00346A
    [Google Scholar]
  49. JamaludinW.B. MuthiaR. KartiniK. SetiawanF. JuhrahS. YulidaN. Formulation and evaluation of transdermal patches from eleutherine Bulbosa Urb. Bulb extract with plasticizer variations.Int J App Pharm2024161949710.22159/ijap.2024v16i1.46421
    [Google Scholar]
  50. SagareA. YadavR. GautamV. YadavS. SawaleJ. MalviyaJ. Development of multilayered niosomal transdermal patch of lamotrigene drug.NATURALISTA CAMPANO.202428110331041
    [Google Scholar]
  51. YangF. WangW. ZhouJ. YuZ. AnM. HeW. XueY. ChenF. Transdermal delivery of IBU-PLGA nanoparticles with dissolving microneedle array patch.J. Drug Deliv. Sci. Technol.20249510552810.1016/j.jddst.2024.105528
    [Google Scholar]
  52. DasS. DasS. BahadurS. MukherjeeM. NandiG. MannaS. Fabrication, evaluation, and enhanced penetration of vinyl and cellulose-engineered transdermal patch of nifedipine using essential oil as penetration enhancer.J. Biomater. Sci. Polym. Ed.202412110.1080/09205063.2024.2330682 38502545
    [Google Scholar]
  53. Fathima AF. KhanI. Irfhan NM. Ahmed NZ. AnwarN. KhanM.S. YadavD.K. ShamsiS. ShamsiA. In vitro and Ex vivo study targeting the development of a Lavandula stoechas L. (Ustukhuddūs) loaded Unani Transdermal patch: Implication of unani medicine in the treatment of nisyan (Dementia).Heliyon2024103e2528410.1016/j.heliyon.2024.e25284 38322847
    [Google Scholar]
  54. NeetuA.A. AnandA. PanjwaniD. Optimization of simvastatin transdermal patch for hyperlipidemia treatment in rat model.FJPS20241013110.1186/s43094‑024‑00606‑4
    [Google Scholar]
  55. MadhaviN. BattuH. Enhanced in vitro and ex vivo transdermal permeation of microemulsion gel of tapentadol hydrochloride.J. Microencapsul.202441212713910.1080/02652048.2024.2319045 38410926
    [Google Scholar]
  56. ElsayedS.I. El-DahanM.S. GirgisG.N.S. Pharmacodynamic studies of pravastatin sodium nanoemulsion loaded transdermal patch for treatment of hyperlipidemia.AAPS PharmSciTech20242523410.1208/s12249‑024‑02746‑5 38332233
    [Google Scholar]
  57. SahuN. AlamP. AliA. KumarN. TyagiR. MadanS. WaliaR. SaxenaS. Optimization, in vitro and ex vivo assessment of nanotransferosome gels infused with a methanolic extract of solanum xanthocarpum for the topical treatment of psoriasis.Gels202410211910.3390/gels10020119 38391449
    [Google Scholar]
  58. HewerC. RichfieldE. HaltonC. AltyJ. Transdermal rotigotine at end-of-life for parkinson’s disease: association with measures of distress.J. Pain Symptom Manage.2024672e121e12810.1016/j.jpainsymman.2023.10.002 37838081
    [Google Scholar]
  59. ChauhanR. KushwahP. MouryaH. GarudN. JoshiR. AkramW. KumarP. HaiderT. Nanocarriers for topical delivery of drug. Smart Nanocarrier for Effective Drug Delivery1st ed202422424210.1201/9781003438953‑11
    [Google Scholar]
  60. HiranoM. SamukawaM. IsonoC. KusunokiS. NagaiY. The effect of rasagiline on swallowing function in Parkinson’s disease.Heliyon2024101e2340710.1016/j.heliyon.2023.e23407 38187336
    [Google Scholar]
  61. ZhaoX. GuoC. ZhangH. YuX. DuG. TianJ. LiuW. SongT. ChenX. GuoW. A study of the genotoxicity, fertility and early embryonic development toxicity of rotigotine behenate extended‐release microspheres.Basic Clin. Pharmacol. Toxicol.2024134336137310.1111/bcpt.13972 38105635
    [Google Scholar]
  62. GuoQ. WangC. ZhangQ. ChengK. ShanW. WangX. YangJ. WangY. RenL. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of HBc VLPs based cancer vaccine.Appl. Mater. Today20212410111010.1016/j.apmt.2021.101110
    [Google Scholar]
  63. LiuY. ZhangZ. WangC. XieX. MaY. WangY. Biodegradable and dissolvable resveratrol nanocrystals non-silicon microneedles for transdermal drug delivery.J. Drug Deliv. Sci. Technol.20238610465310.1016/j.jddst.2023.104653
    [Google Scholar]
  64. JosiahA.J. PillaiS.K. CordierW. NellM. LallN. TwilleyD. RayS.S. One‐step synthesis of metal oxide nanoparticles using cannabidiol: Characterisation and cytotoxicity assessment in human keratinocyte cells.ChemistrySelect202498e20230437310.1002/slct.202304373
    [Google Scholar]
  65. KhanD. QindeelM. AhmedN. KhanA.U. KhanS. RehmanA. Development of novel pH-sensitive nanoparticle-based transdermal patch for management of rheumatoid arthritis.Nanomedicine202015660362410.2217/nnm‑2019‑0385 32098563
    [Google Scholar]
  66. SoralM. NanjappaS. AlayadanP. Formulation and evaluation of transdermal patch of rabeprazole sodium.JRPS202110224024610.4103/jrptps.JRPTPS_126_20
    [Google Scholar]
  67. MandavaK. CherukuriS. BatchuU.R. CherukuriV. GanapuramK. Formulation and evaluation of transdermal drug delivery of topiramate.Int. J. Pharm. Investig.201771101710.4103/jphi.JPHI_35_16 28405574
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249289689240607064642
Loading
/content/journals/cnsamc/10.2174/0118715249289689240607064642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test