Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Background

Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the progressive formation of extracellular amyloid plaques, intracellular neurofibrillary tangles, inflammation, and impaired antioxidant systems. Early detection and intervention are vital for managing AD effectively.

Objectives

This review scrutinizes both and screening models employed in Alzheimer's disease research. models, including transgenic mice expressing AD-related mutations, offer profound insights into disease progression and potential therapeutic targets. A thorough understanding of these models and mechanisms will facilitate the development of novel therapies and interventions for Alzheimer's disease. This review aims to provide an overview of the current experimental models in AD research, assess their strengths and weaknesses as model systems, and underscore the future prospects of experimental AD modeling.

Methods

We conducted a systematic literature search across multiple databases, such as PubMed, Bentham Science, Elsevier, Springer Nature, Wiley, and Research Gate. The search strategy incorporated pertinent keywords related to Alzheimer's disease, models, models, and screening mechanisms. Inclusion criteria were established to identify studies focused on and screening models and their mechanisms in Alzheimer's disease research. Studies not meeting the predefined criteria were excluded from the review.

Results

A well-structured experimental animal model can yield significant insights into the neurobiology of AD, enhancing our comprehension of its pathogenesis and the potential for cutting-edge therapeutic strategies. Given the limited efficacy of current AD medications, there is a pressing need for the development of experimental models that can mimic the disease, particularly in pre-symptomatic stages, to investigate prevention and treatment approaches. To address this requirement, numerous experimental models replicating human AD pathology have been established, serving as invaluable tools for assessing potential treatments.

Conclusion

In summary, this comprehensive review underscores the pivotal role of and screening models in advancing our understanding of Alzheimer's disease. These models offer invaluable insights into disease progression, pathological mechanisms, and potential therapeutic targets. By conducting a rigorous investigation and evaluation of these models and mechanisms, effective screening and treatment methods for Alzheimer's disease can be devised. The review also outlines future research directions and areas for enhancing AD screening models.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249293642240522054929
2024-05-27
2025-09-01
Loading full text...

Full text loading...

References

  1. Mendiola-PrecomaJ. BerumenL.C. PadillaK. Garcia-AlcocerG. Therapies for prevention and treatment of Alzheimer’s disease.BioMed Res. Int.2016201611710.1155/2016/258927627547756
    [Google Scholar]
  2. Guzman-MartinezL. CalfíoC. FariasG.A. VilchesC. PrietoR. MaccioniR.B. New frontiers in the prevention, diagnosis, and treatment of Alzheimer’s disease.J. Alzheimers Dis.202182s1S51S6310.3233/JAD‑20105933523002
    [Google Scholar]
  3. LiX. FengX. SunX. HouN. HanF. LiuY. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019.Front. Aging Neurosci.20221493748610.3389/fnagi.2022.93748636299608
    [Google Scholar]
  4. NangareS. PatilP. Prevalence, distribution, treatment, and modern methods for in vitro diagnosis of Alzheimer’s disease in India: Challenges and future prospective.Thaiphesatchasan2022462
    [Google Scholar]
  5. QiuC. KivipeltoM. von StraussE. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention.Dialogues Clin. Neurosci.200911211112810.31887/DCNS.2009.11.2/cqiu19585947
    [Google Scholar]
  6. DuboisB. PicardG. SarazinM. Early detection of Alzheimer’s disease: New diagnostic criteria.Dialogues Clin. Neurosci.200911213513910.31887/DCNS.2009.11.2/bdubois19585949
    [Google Scholar]
  7. JahnH. Memory loss in Alzheimer’s disease.Dialogues Clin. Neurosci.201315444545410.31887/DCNS.2013.15.4/hjahn24459411
    [Google Scholar]
  8. HippiusH. NeundörferG. The discovery of Alzheimer’s disease.Dialogues Clin. Neurosci.202222034141
    [Google Scholar]
  9. MonteiroM.C. ColemanM.D. HillE.J. PredigerR.D. MaiaC.S.F. Neuroprotection in neurodegenerative disease: From basic science to clinical applications.Oxid. Med. Cell. Longev.201720171310.1155/2017/294910228337247
    [Google Scholar]
  10. LanctôtK.L. AmatniekJ. Ancoli-IsraelS. ArnoldS.E. BallardC. Cohen-MansfieldJ. IsmailZ. LyketsosC. MillerD.S. MusiekE. OsorioR.S. RosenbergP.B. SatlinA. SteffensD. TariotP. BainL.J. CarrilloM.C. HendrixJ.A. JurgensH. BootB. Neuropsychiatric signs and symptoms of Alzheimer’s disease: New treatment paradigms.Alzheimers Dement. (N. Y.)20173344044910.1016/j.trci.2017.07.00129067350
    [Google Scholar]
  11. (a BrennanP. StandringS. WisemanS. Gray's surgical anatomy ebook.Elsevier Health Sciences;2019
    [Google Scholar]
  12. (b RaoYL GanarajaB MurlimanjuBV JoyT KrishnamurthyA AgrawalA Hippocampus and its involvement in Alzheimer's disease: A review.3 Biotech202212255
    [Google Scholar]
  13. DickersonB.C. EichenbaumH. The episodic memory system: Neurocircuitry and disorders.Neuropsychopharmacology20103518610410.1038/npp.2009.12619776728
    [Google Scholar]
  14. BoutetC. ChupinM. LehéricyS. Marrakchi-KacemL. EpelbaumS. PouponC. WigginsC. VignaudA. HasbounD. DefontainesB. HanonO. DuboisB. SarazinM. Hertz-PannierL. ColliotO. Detection of volume loss in hippocampal layers in Alzheimer’s disease using 7 T MRI: A feasibility study.Neuroimage Clin.2014534134810.1016/j.nicl.2014.07.01125161900
    [Google Scholar]
  15. ReddyP.H. TonkS. KumarS. VijayanM. KandimallaR. KuruvaC.S. ReddyA.P. A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer’s disease.Biochem. Biophys. Res. Commun.201748341156116510.1016/j.bbrc.2016.08.06727524239
    [Google Scholar]
  16. RajendranL. PaolicelliR.C. Microglia-mediated synapse loss in Alzheimer’s disease.J. Neurosci.201838122911291910.1523/JNEUROSCI.1136‑17.201729563239
    [Google Scholar]
  17. SilvaA. MartínezM.C. Spatial memory deficits in Alzheimer’s disease and their connection to cognitive maps’ formation by place cells and grid cells.Front. Behav. Neurosci.202316108215810.3389/fnbeh.2022.108215836710956
    [Google Scholar]
  18. KnafoS. Amygdala in Alzheimer’s disease.In: The Amygdala–A Discrete Multitasking ManagerIntechOpen20123758310.5772/52804
    [Google Scholar]
  19. LyketsosC.G. LopezO. JonesB. FitzpatrickA.L. BreitnerJ. DeKoskyS. Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: Results from the cardiovascular health study.JAMA2002288121475148310.1001/jama.288.12.147512243634
    [Google Scholar]
  20. LiX. WangH. TianY. ZhouS. LiX. WangK. YuY. Impaired white matter connections of the limbic system networks associated with impaired emotional memory in Alzheimer’s disease.Front. Aging Neurosci.2016825010.3389/fnagi.2016.0025027833549
    [Google Scholar]
  21. Di BenedettoG. BurgalettoC. BellancaC.M. MunafòA. BernardiniR. CantarellaG. Role of microglia and astrocytes in Alzheimer’s Disease: From neuroinflammation to Ca2+ homeostasis dysregulation.Cells20221117272810.3390/cells1117272836078138
    [Google Scholar]
  22. DrummondE. WisniewskiT. Alzheimer’s disease: Experimental models and reality.Acta Neuropathol.2017133215517510.1007/s00401‑016‑1662‑x28025715
    [Google Scholar]
  23. OverkC.R. MasliahE. Pathogenesis of synaptic degeneration in Alzheimer’s disease and Lewy body disease.Biochem. Pharmacol.201488450851610.1016/j.bcp.2014.01.01524462903
    [Google Scholar]
  24. RapakaD. AdiukwuP.C. BitraV.R. Experimentally induced animal models for cognitive dysfunction and Alzheimer’s disease.MethodsX2022910193310.1016/j.mex.2022.10193336479589
    [Google Scholar]
  25. PuzzoD. LeeL. PalmeriA. CalabreseG. ArancioO. Behavioral assays with mouse models of Alzheimer’s disease: Practical considerations and guidelines.Biochem. Pharmacol.201488445046710.1016/j.bcp.2014.01.01124462904
    [Google Scholar]
  26. LiX. BaoX. WangR. Experimental models of Alzheimer’s disease for deciphering the pathogenesis and therapeutic screening (Review).Int. J. Mol. Med.201637227128310.3892/ijmm.2015.242826676932
    [Google Scholar]
  27. LianW. FangJ. XuL. ZhouW. KangD. XiongW. JiaH. LiuA.L. DuG.H. DL0410 ameliorates memory and cognitive impairments induced by scopolamine via increasing cholinergic neurotransmission in mice.Molecules201722341010.3390/molecules2203041028272324
    [Google Scholar]
  28. LloretA. EsteveD. LloretM.A. Cervera-FerriA. LopezB. NepomucenoM. MonllorP. When does Alzheimer′ s disease really start? The role of biomarkers.Int. J. Mol. Sci.20192022553610.3390/ijms2022553631698826
    [Google Scholar]
  29. ChenZ.Y. ZhangY. Animal models of Alzheimer’s disease: Applications, evaluation, and perspectives.Zool. Res.20224361026104010.24272/j.issn.2095‑8137.2022.28936317468
    [Google Scholar]
  30. RahmatiM. Shariatzadeh JoneydiM. KoyanagiA. YangG. JiB. Won LeeS. Keon YonD. SmithL. Il ShinJ. LiY. Resistance training restores skeletal muscle atrophy and satellite cell content in an animal model of Alzheimer’s disease.Sci. Rep.2023131253510.1038/s41598‑023‑29406‑136781881
    [Google Scholar]
  31. BlaikieL. KayG. MacielP. LinP.K. Experimental modelling of Alzheimer’s disease for therapeutic screening.Eur. J. Med. Chem.2022100044
    [Google Scholar]
  32. SlanziA. IannotoG. RossiB. ZenaroE. ConstantinG. In vitro models of neurodegenerative diseases.Front. Cell Dev. Biol.2020832810.3389/fcell.2020.0032832528949
    [Google Scholar]
  33. BlanchardJ.W. VictorM.B. TsaiL.H. Dissecting the complexities of Alzheimer disease with in vitro models of the human brain.Nat. Rev. Neurol.2022181253910.1038/s41582‑021‑00578‑634750588
    [Google Scholar]
  34. Van BroeckhovenC. BackhovensH. CrutsM. MartinJ.J. CrookR. HouldenH. HardyJ. APOE genotype does not modulate age of onset in families with chromosome 14 encoded Alzheimer’s disease.Neurosci. Lett.19941691-217918010.1016/0304‑3940(94)90385‑98047278
    [Google Scholar]
  35. Grundke-IqbalI. IqbalK. TungY.C. QuinlanM. WisniewskiH.M. BinderL.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology.Proc. Natl. Acad. Sci. USA198683134913491710.1073/pnas.83.13.49133088567
    [Google Scholar]
  36. AndersonK.L. FerreiraA. α 1 integrin activation: A link between β‐amyloid deposition and neuronal death in aging hippocampal neurons.J. Neurosci. Res.200475568869710.1002/jnr.2001814991844
    [Google Scholar]
  37. HorvathP. AulnerN. BickleM. DaviesA.M. NeryE.D. EbnerD. MontoyaM.C. ÖstlingP. PietiäinenV. PriceL.S. ShorteS.L. TurcattiG. von SchantzC. CarragherN.O. Screening out irrelevant cell-based models of disease.Nat. Rev. Drug Discov.2016151175176910.1038/nrd.2016.17527616293
    [Google Scholar]
  38. HargusG. EhrlichM. HallmannA.L. KuhlmannT. Human stem cell models of neurodegeneration: A novel approach to study mechanisms of disease development.Acta Neuropathol.2014127215117310.1007/s00401‑013‑1222‑624306942
    [Google Scholar]
  39. ChambersS.M. FasanoC.A. PapapetrouE.P. TomishimaM. SadelainM. StuderL. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling.Nat. Biotechnol.200927327528010.1038/nbt.152919252484
    [Google Scholar]
  40. TcwJ. Human iPSC application in Alzheimer’s disease and Tau-related neurodegenerative diseases.Neurosci. Lett.2019699314010.1016/j.neulet.2019.01.04330685408
    [Google Scholar]
  41. SpeakmanJ.R. MitchellS.E. MazidiM. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone.Exp. Gerontol.201686283810.1016/j.exger.2016.03.01127006163
    [Google Scholar]
  42. ChenI.Y. MatsaE. WuJ.C. Induced pluripotent stem cells: At the heart of cardiovascular precision medicine.Nat. Rev. Cardiol.201613633334910.1038/nrcardio.2016.3627009425
    [Google Scholar]
  43. Cota-CoronadoA. Ramírez-RodríguezP.B. Padilla-CamberosE. DíazF. Flores-FernándezJ.M. Ávila-GónzalezD. Diaz-MartinezN.E. Implications of human induced pluripotent stem cells in metabolic disorders: From drug discovery toward precision medicine.Drug Discov. Today201924133434110.1016/j.drudis.2018.10.00130292915
    [Google Scholar]
  44. ZhangY. PakC. HanY. AhleniusH. ZhangZ. ChandaS. MarroS. PatzkeC. AcunaC. CovyJ. XuW. YangN. DankoT. ChenL. WernigM. SüdhofT.C. Rapid single-step induction of functional neurons from human pluripotent stem cells.Neuron201378578579810.1016/j.neuron.2013.05.02923764284
    [Google Scholar]
  45. BegumA.N. GuoynesC. ChoJ. HaoJ. LutfyK. HongY. Rapid generation of sub-type, region-specific neurons and neural networks from human pluripotent stem cell-derived neurospheres.Stem Cell Res. (Amst.)201515373174110.1016/j.scr.2015.10.01426613348
    [Google Scholar]
  46. PenneyJ. RalveniusW.T. TsaiL.H. Modeling Alzheimer’s disease with iPSC-derived brain cells.Mol. Psychiatry202025114816710.1038/s41380‑019‑0468‑331391546
    [Google Scholar]
  47. RayA.M. OwenD.E. EvansM.L. DavisJ.B. BenhamC.D. Caspase inhibitors are functionally neuroprotective against oxygen glucose deprivation induced CA1 death in rat organotypic hippocampal slices.Brain Res.20008671-2626910.1016/S0006‑8993(00)02230‑710837798
    [Google Scholar]
  48. BruceA.J. MalfroyB. BaudryM. beta-Amyloid toxicity in organotypic hippocampal cultures: protection by EUK-8, a synthetic catalytic free radical scavenger.Proc. Natl. Acad. Sci. USA19969362312231610.1073/pnas.93.6.23128637869
    [Google Scholar]
  49. Harris-WhiteM.E. ChuT. BalverdeZ. SigelJ.J. FlandersK.C. FrautschyS.A. Effects of transforming growth factor-beta (isoforms 1-3) on amyloid-beta deposition, inflammation, and cell targeting in organotypic hippocampal slice cultures.J. Neurosci.19981824103661037410.1523/JNEUROSCI.18‑24‑10366.19989852574
    [Google Scholar]
  50. LambertM.P. BarlowA.K. ChromyB.A. EdwardsC. FreedR. LiosatosM. MorganT.E. RozovskyI. TrommerB. ViolaK.L. WalsP. ZhangC. FinchC.E. KrafftG.A. KleinW.L. Diffusible, nonfibrillar ligands derived from Aβ 1–42 are potent central nervous system neurotoxins.Proc. Natl. Acad. Sci. USA199895116448645310.1073/pnas.95.11.64489600986
    [Google Scholar]
  51. HumpelC. Organotypic brain slices of ADULT transgenic mice: A tool to study Alzheimer’s disease.Curr. Alzheimer Res.201916217218110.2174/156720501666618121215313830543174
    [Google Scholar]
  52. AlonsoA.C. Grundke-IqbalI. BarraH.S. IqbalK. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: Sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau.Proc. Natl. Acad. Sci. USA199794129830310.1073/pnas.94.1.2988990203
    [Google Scholar]
  53. CrewsL. AdameA. PatrickC. DeLaneyA. PhamE. RockensteinE. HansenL. MasliahE. Increased BMP6 levels in the brains of Alzheimer’s disease patients and APP transgenic mice are accompanied by impaired neurogenesis.J. Neurosci.20103037122521226210.1523/JNEUROSCI.1305‑10.201020844121
    [Google Scholar]
  54. AkiyamaH. BargerS. BarnumS. BradtB. BauerJ. ColeG.M. CooperN.R. EikelenboomP. EmmerlingM. FiebichB.L. FinchC.E. FrautschyS. GriffinW.S. HampelH. HullM. LandrethG. LueL. MrakR. MackenzieI.R. McGeerP.L. O’BanionM.K. PachterJ. PasinettiG. Plata-SalamanC. RogersJ. RydelR. ShenY. StreitW. StrohmeyerR. TooyomaI. Van MuiswinkelF.L. VeerhuisR. WalkerD. WebsterS. WegrzyniakB. WenkG. Wyss-CorayT. Inflammation and Alzheimer’s disease.Neurobiol. Aging200021338342110.1016/S0197‑4580(00)00124‑X10858586
    [Google Scholar]
  55. KinneyJ.W. BemillerS.M. MurtishawA.S. LeisgangA.M. SalazarA.M. LambB.T. Inflammation as a central mechanism in Alzheimer’s disease.Alzheimers Dement. (N. Y.)20184157559010.1016/j.trci.2018.06.01430406177
    [Google Scholar]
  56. BeauquisJ PavíaP PomilioC VinuesaA PodlutskayaN GalvanV SaraviaF Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer's disease.Exp Neurol2392837
    [Google Scholar]
  57. Della BiancaV. DusiS. BianchiniE. Dal PràI. RossiF. beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease.J. Biol. Chem.199927422154931549910.1074/jbc.274.22.1549310336441
    [Google Scholar]
  58. WirthsO. ZamparS. Neuron loss in Alzheimer’s disease: Translation in transgenic mouse models.Int. J. Mol. Sci.20202121814410.3390/ijms2121814433143374
    [Google Scholar]
  59. QuintanillaR.A. OrellanaD.I. González-BillaultC. MaccioniR.B. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway.Exp. Cell Res.2004295124525710.1016/j.yexcr.2004.01.00215051507
    [Google Scholar]
  60. LiY. LiuL. KangJ. ShengJ.G. BargerS.W. MrakR.E. GriffinW.S.T. Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression.J. Neurosci.200020114915510.1523/JNEUROSCI.20‑01‑00149.200010627591
    [Google Scholar]
  61. MohsR.C. GreigN.H. Drug discovery and development: Role of basic biological research.Alzheimers Dement. (N. Y.)20173465165710.1016/j.trci.2017.10.00529255791
    [Google Scholar]
  62. CummingsJ. FeldmanH.H. ScheltensP. The “rights” of precision drug development for Alzheimer’s disease.Alzheimers Res. Ther.20191117610.1186/s13195‑019‑0529‑531470905
    [Google Scholar]
  63. KelbermanM.A. RorabaughJ.M. AndersonC.R. MarriottA. DePuyS.D. RasmussenK. McCannK.E. WeissJ.M. WeinshenkerD. Age-dependent dysregulation of locus coeruleus firing in a transgenic rat model of Alzheimer’s disease.Neurobiol. Aging20231259810810.1016/j.neurobiolaging.2023.01.01636889122
    [Google Scholar]
  64. MesitiF. ChavarriaD. GasparA. AlcaroS. BorgesF. The chemistry toolbox of multitarget-directed ligands for Alzheimer’s disease.Eur. J. Med. Chem.201918111157210.1016/j.ejmech.2019.11157231404859
    [Google Scholar]
  65. WangT. LiuX. GuanJ. GeS. WuM.B. LinJ. YangL. Advancement of multi-target drug discoveries and promising applications in the field of Alzheimer’s disease.Eur. J. Med. Chem.201916920022310.1016/j.ejmech.2019.02.07630884327
    [Google Scholar]
  66. HeutinkP. Untangling tau-related dementia.Hum. Mol. Genet.20009697998610.1093/hmg/9.6.97910767321
    [Google Scholar]
  67. ElderG.A. Gama SosaM.A. De GasperiR. Transgenic mouse models of Alzheimer’s disease.Mt. Sinai J. Med.2010771698110.1002/msj.2015920101721
    [Google Scholar]
  68. LiH.W. ZhangL. QinC. Current state of research on non‐human primate models of Alzheimer’s disease.Animal Model. Exp. Med.20192422723810.1002/ame2.1209231942555
    [Google Scholar]
  69. PrüßingK. VoigtA. SchulzJ.B. Drosophila melanogaster as a model organism for Alzheimer’s disease.Mol. Neurodegener.2013813510.1186/1750‑1326‑8‑3524267573
    [Google Scholar]
  70. TewariD. StankiewiczA.M. MocanA. SahA.N. TzvetkovN.T. HuminieckiL. HorbańczukJ.O. AtanasovA.G. Ethnopharmacological approaches for dementia therapy and significance of natural products and herbal drugs.Front. Aging Neurosci.201810310.3389/fnagi.2018.0000329483867
    [Google Scholar]
  71. Di PaoloM. PapiL. GoriF. TurillazziE. Natural products in neurodegenerative diseases: A great promise but an ethical challenge.Int. J. Mol. Sci.20192020517010.3390/ijms2020517031635296
    [Google Scholar]
  72. ChierritoT.P.C. Pedersoli-MantoaniS. RocaC. RequenaC. Sebastian-PerezV. CastilloW.O. MoreiraN.C.S. PérezC. Sakamoto-HojoE.T. TakahashiC.S. Jiménez-BarberoJ. CañadaF.J. CampilloN.E. MartinezA. CarvalhoI. From dual binding site acetylcholinesterase inhibitors to allosteric modulators: A new avenue for disease-modifying drugs in Alzheimer’s disease.Eur. J. Med. Chem.201713977379110.1016/j.ejmech.2017.08.05128863358
    [Google Scholar]
  73. KhuranaK. KumarM. BansalN. Lacidipine prevents scopolamine-induced memory impairment by reducing brain oxido-nitrosative stress in mice.Neurotox. Res.20213941087110210.1007/s12640‑021‑00346‑w33721210
    [Google Scholar]
  74. BaiS. WangW. ZhangZ. LiM. ChenZ. WangJ. ZhaoY. AnL. WangY. XingS. FuX. MaJ. Ethanol alleviates amyloid-β-induced toxicity in an Alzheimer’s disease model of Caenorhabiditis elegans. Front. Aging Neurosci.20211376265910.3389/fnagi.2021.76265934867289
    [Google Scholar]
  75. Veening-GriffioenD.H. FerreiraG.S. van MeerP.J.K. BoonW.P.C. Gispen-de WiedC.C. MoorsE.H.M. SchellekensH. Are some animal models more equal than others? A case study on the translational value of animal models of efficacy for Alzheimer’s disease.Eur. J. Pharmacol.201985917252410.1016/j.ejphar.2019.17252431291566
    [Google Scholar]
  76. Abu AlmaatyA.H. MosaadR.M. HassanM.K. AliE.H.A. MahmoudG.A. AhmedH. AnberN. AlkahtaniS. Abdel-DaimM.M. AleyaL. HammadS. Urtica dioica extracts abolish scopolamine-induced neuropathies in rats.Environ. Sci. Pollut. Res. Int.20212814181341814510.1007/s11356‑020‑12025‑y33405105
    [Google Scholar]
  77. RapakaD. BitraV.R. UmmidiR. AkulaA. Benincasa hispida alleviates amyloid pathology by inhibition of Keap1/Nrf2-axis: Emphasis on oxidative and inflammatory stress involved in Alzheimer’s disease model.Neuropeptides2021888810215110.1016/j.npep.2021.10215133932860
    [Google Scholar]
  78. PocivavsekA. IcenogleL. LevinE.D. Ventral hippocampal α7 and α4β2 nicotinic receptor blockade and clozapine effects on memory in female rats.Psychopharmacology (Berl.)2006188459760410.1007/s00213‑006‑0416‑116715255
    [Google Scholar]
  79. ZhongJ. WangF. WangZ. ShenC. ZhengY. MaF. ZhuT. ChenL. TangQ. ZhuJ. Aloin attenuates cognitive impairment and inflammation induced by d-galactose via down-regulating ERK, p38 and NF-κB signaling pathway.Int. Immunopharmacol.20197272485410.1016/j.intimp.2019.03.05030959371
    [Google Scholar]
  80. BraidyN. MuñozP. PalaciosA.G. Castellano-GonzalezG. InestrosaN.C. ChungR.S. SachdevP. GuilleminG.J. Recent rodent models for Alzheimer’s disease: clinical implications and basic research.J. Neural Transm. (Vienna)2012119217319510.1007/s00702‑011‑0731‑522086139
    [Google Scholar]
  81. WebsterS.J. BachstetterA.D. NelsonP.T. SchmittF.A. Van EldikL.J. Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models.Front. Genet.201458810.3389/fgene.2014.0008824795750
    [Google Scholar]
  82. HallA.M. RobersonE.D. Mouse models of Alzheimer’s disease.Brain Res. Bull.201288131210.1016/j.brainresbull.2011.11.01722142973
    [Google Scholar]
  83. AlvarezR.P. BiggsA. ChenG. PineD.S. GrillonC. Contextual fear conditioning in humans: Cortical-hippocampal and amygdala contributions.J. Neurosci.200828246211621910.1523/JNEUROSCI.1246‑08.200818550763
    [Google Scholar]
  84. LaBarK.S. GatenbyJ.C. GoreJ.C. LeDouxJ.E. PhelpsE.A. Human amygdala activation during conditioned fear acquisition and extinction: A mixed-trial fMRI study.Neuron199820593794510.1016/S0896‑6273(00)80475‑49620698
    [Google Scholar]
  85. Sotres-BayonF. QuirkG.J. Prefrontal control of fear: More than just extinction.Curr. Opin. Neurobiol.201020223123510.1016/j.conb.2010.02.00520303254
    [Google Scholar]
  86. KoselF. Torres MunozP. YangJ.R. WongA.A. FranklinT.B. Age-related changes in social behaviours in the 5xFAD mouse model of Alzheimer’s disease.Behav. Brain Res.201936216017210.1016/j.bbr.2019.01.02930659846
    [Google Scholar]
  87. PentkowskiN.S. BouquinS.J. Maestas-OlguinC.R. VillasenorZ.M. ClarkB.J. Differential effects of chronic stress on anxiety-like behavior and contextual fear conditioning in the TgF344-AD rat model of Alzheimer’s disease.Behav. Brain Res.202241811366110.1016/j.bbr.2021.11366134780859
    [Google Scholar]
  88. BachD.R. MelinscakF. Psychophysiological modelling and the measurement of fear conditioning.Behav. Res. Ther.202012710357610.1016/j.brat.2020.10357632087391
    [Google Scholar]
  89. RashnoM. GholipourP. SalehiI. KomakiA. RashidiK. Esmaeil KhoshnamS. GhaderiS. p-Coumaric acid mitigates passive avoidance memory and hippocampal synaptic plasticity impairments in aluminum chloride-induced Alzheimer’s disease rat model.J. Funct. Foods20229410511710.1016/j.jff.2022.105117
    [Google Scholar]
  90. BuschertV.C. FrieseU. TeipelS.J. SchneiderP. MerenskyW. RujescuD. MöllerH.J. HampelH. BuergerK. Effects of a newly developed cognitive intervention in amnestic mild cognitive impairment and mild Alzheimer’s disease: a pilot study.J. Alzheimers Dis.201125467969410.3233/JAD‑2011‑10099921483095
    [Google Scholar]
  91. GhafarimoghadamM. MashayekhR. GholamiM. FereydaniP. Shelley-TremblayJ. KandeziN. SabouriE. MotaghinejadM. A review of behavioral methods for the evaluation of cognitive performance in animal models: Current techniques and links to human cognition.Physiol. Behav.202224411365210.1016/j.physbeh.2021.11365234801559
    [Google Scholar]
  92. MankeH.N. RiceK.C. RileyA.L. Effects of methylone pre-exposure on fluoxetine-induced conditioned taste avoidance in male and female sprague-dawley rats.Brain Sci.202313458510.3390/brainsci1304058537190550
    [Google Scholar]
  93. HaskellA.M. BrittonP.C. ServatiusR.J. Toward an assessment of escape/avoidance coping in depression.Behav. Brain Res.202038111236310.1016/j.bbr.2019.11236331739002
    [Google Scholar]
  94. UrcelayG.P. PrévelA. Extinction of instrumental avoidance.Curr. Opin. Behav. Sci.20192616517110.1016/j.cobeha.2019.01.018
    [Google Scholar]
  95. LissnerL.J. WartchowK.M. ToniazzoA.P. GonçalvesC.A. RodriguesL. Object recognition and Morris water maze to detect cognitive impairment from mild hippocampal damage in rats: A reflection based on the literature and experience.Pharmacol. Biochem. Behav.202121017327310.1016/j.pbb.2021.17327334536480
    [Google Scholar]
  96. ChernyukD.P. Bol’shakovaA.V. VlasovaO.L. BezprozvannyI.B. Possibilities and prospects of the behavioral test “morris water maze”.J. Evol. Biochem. Physiol.202157228930310.1134/S0022093021020113
    [Google Scholar]
  97. CurdtN. SchmittF.W. BouterC. IseniT. WeileH.C. AltunokB. BeindorffN. BayerT.A. CookeM.B. BouterY. Search strategy analysis of Tg4-42 Alzheimer Mice in the Morris Water Maze reveals early spatial navigation deficits.Sci. Rep.2022121545110.1038/s41598‑022‑09270‑135361814
    [Google Scholar]
  98. WhishawI. A comparison of rats and mice in a swimming pool place task and matching to place task: Some surprising differences.Physiol. Behav.199558468769310.1016/0031‑9384(95)00110‑58559777
    [Google Scholar]
  99. StryjekR. ModlińskaK. PisulaW. Species specific behavioural patterns (digging and swimming) and reaction to novel objects in wild type, Wistar, Sprague-Dawley and Brown Norway rats.PLoS One201277e4064210.1371/journal.pone.004064222815778
    [Google Scholar]
  100. TopuzR.D. GunduzO. TastekinE. KaradagC.H. Effects of hippocampal histone acetylation and HDAC inhibition on spatial learning and memory in the Morris water maze in rats.Fundam. Clin. Pharmacol.202034222222810.1111/fcp.1251231617237
    [Google Scholar]
  101. SalmanT. NawazS. IkramH. HaleemD.J. Enhancement and impairment of cognitive behaviour in Morris water maze test by methylphenidate to rats.Pak. J. Pharm. Sci.201932389990331278697
    [Google Scholar]
  102. DieterichA. YohnC.N. SamuelsB.A. Chronic stress shifts effort-related choice behavior in a Y-maze barrier task in mice.J. Vis. Exp.2020162e6154832865538
    [Google Scholar]
  103. d’IsaR. ComiG. LeocaniL. Apparatus design and behavioural testing protocol for the evaluation of spatial working memory in mice through the spontaneous alternation T-maze.Sci. Rep.20211112117710.1038/s41598‑021‑00402‑734707108
    [Google Scholar]
  104. RaoS.S. LagoL. VolitakisI. ShuklaJ.J. McCollG. FinkelsteinD.I. AdlardP.A. Deferiprone treatment in aged transgenic tau mice improves Y-maze performance and alters tau pathology.Neurotherapeutics20211821081109410.1007/s13311‑020‑00972‑w33410108
    [Google Scholar]
  105. BrivioP. SbriniG. RivaM.A. CalabreseF. Acute stress induces cognitive improvement in the novel object recognition task by transiently modulating bdnf in the prefrontal cortex of male rats.Cell. Mol. Neurobiol.20204061037104710.1007/s10571‑020‑00793‑731960229
    [Google Scholar]
  106. AntunesM. BialaG. The novel object recognition memory: Neurobiology, test procedure, and its modifications.Cogn. Process.20121329311010.1007/s10339‑011‑0430‑z22160349
    [Google Scholar]
  107. KraeuterAK GuestPC SarnyaiZ The Y-maze for assessment of spatial working and reference memory in mice.In: Pre-clinical models: Techniques and protocols201910511
    [Google Scholar]
  108. Bengoetxea de TenaI. Moreno-RodríguezM. Llorente-OvejeroA. Monge-BenitoS. Martínez-GardeazabalJ. Onandia-HinchadoI. ManuelI. Giménez-LlortL. Rodríguez-PuertasR. Handling and novel object recognition modulate fear response and endocannabinoid signaling in nucleus basalis magnocellularis.Eur. J. Neurosci.20225561532154610.1111/ejn.1564235266590
    [Google Scholar]
  109. ShepherdA. TyebjiS. HannanA.J. BurrowsE.L. Translational assays for assessment of cognition in rodent models of Alzheimer’s disease and dementia.J. Mol. Neurosci.201660337138210.1007/s12031‑016‑0837‑127637601
    [Google Scholar]
  110. KimJ. JeongM. StilesW.R. ChoiH.S. Neuroimaging modalities in Alzheimer’s disease: Diagnosis and clinical features.Int. J. Mol. Sci.20222311607910.3390/ijms2311607935682758
    [Google Scholar]
  111. ShuklaA. TiwariR. TiwariS. Alzheimer’s disease detection from fused PET and MRI modalities using an ensemble classifier.Machine Learning and Knowledge Extraction20235251253810.3390/make5020031
    [Google Scholar]
  112. KraeuterA.K. GuestP.C. SarnyaiZ. The Y-maze for assessment of spatial working and reference memory in mice.Methods Mol. Biol.2019191610511110.1007/978‑1‑4939‑8994‑2_1030535688
    [Google Scholar]
  113. FreitasD.A. Rocha-VieiraE. De SousaR.A.L. SoaresB.A. Rocha-GomesA. Chaves GarciaB.C. CassilhasR.C. MendonçaV.A. CamargosA.C.R. De GregorioJ.A.M. LacerdaA.C.R. LeiteH.R. High-intensity interval training improves cerebellar antioxidant capacity without affecting cognitive functions in rats.Behav. Brain Res.201937611218110.1016/j.bbr.2019.11218131465796
    [Google Scholar]
  114. Martínez-DrudisL. Amorós-AguilarL. Torras-GarciaM. Serra-EliasB. Costa-MiserachsD. Portell-CortésI. Coll-AndreuM. Delayed voluntary physical exercise restores “when” and “where” object recognition memory after traumatic brain injury.Behav. Brain Res.202140011304810.1016/j.bbr.2020.11304833279639
    [Google Scholar]
  115. Trujillo-EstradaL. Sanchez-MejiasE. Sanchez-VaroR. Garcia-LeonJ.A. Nuñez-DiazC. DavilaJ.C. VitoricaJ. LaFerlaF.M. Moreno-GonzalezI. GutierrezA. Baglietto-VargasD. Animal and cellular models of Alzheimer’s disease: Progress, promise, and future approaches.Neuroscientist202228657259310.1177/1073858421100175333769131
    [Google Scholar]
  116. ArberC. ToombsJ. LovejoyC. RyanN.S. PatersonR.W. WillumsenN. GkanatsiouE. PorteliusE. BlennowK. HeslegraveA. SchottJ.M. HardyJ. LashleyT. FoxN.C. ZetterbergH. WrayS. Familial Alzheimer’s disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta.Mol. Psychiatry202025112919293110.1038/s41380‑019‑0410‑830980041
    [Google Scholar]
  117. AndrewsS.J. Fulton-HowardB. GoateA. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease.Lancet Neurol.202019432633510.1016/S1474‑4422(19)30435‑131986256
    [Google Scholar]
  118. BelfioreR. RodinA. FerreiraE. VelazquezR. BrancaC. CaccamoA. OddoS. Temporal and regional progression of Alzheimer’s disease‐like pathology in 3xTg‐AD mice.Aging Cell2019181e1287310.1111/acel.1287330488653
    [Google Scholar]
  119. Gunn-MooreD. Kaidanovich-BeilinO. IradiM.C.G. Gunn-MooreF. LovestoneS. Alzheimer’s disease in humans and other animals: A consequence of postreproductive life span and longevity rather than aging.Alzheimers Dement.201814219520410.1016/j.jalz.2017.08.01428972881
    [Google Scholar]
  120. KleimanM.J. BarenholtzE. GalvinJ.E. Alzheimer’s Disease Neuroimaging Initiative Screening for early-stage Alzheimer’s disease using optimized feature sets and machine learning.J. Alzheimers Dis.202181135536610.3233/JAD‑20137733780367
    [Google Scholar]
  121. WangQ. GaoF. DaiL.N. ZhangJ. BiD. ShenY. Clinical research investigating alzheimer’s disease in China: Current status and future perspectives toward prevention.J. Prev. Alzheimers Dis.20229353254135841254
    [Google Scholar]
  122. PalmqvistS. TidemanP. CullenN. ZetterbergH. BlennowK. DageJ.L. StomrudE. JanelidzeS. Mattsson-CarlgrenN. HanssonO. Alzheimer’s Disease Neuroimaging Initiative Prediction of future Alzheimer’s disease dementia using plasma phospho-tau combined with other accessible measures.Nat. Med.20212761034104210.1038/s41591‑021‑01348‑z34031605
    [Google Scholar]
  123. AkhtarA. GuptaS.M. DwivediS. KumarD. ShaikhM.F. NegiA. Preclinical models for Alzheimer’s disease: Past, present, and future approaches.ACS Omega2022751475044751710.1021/acsomega.2c0560936591205
    [Google Scholar]
  124. van der FlierW.M. de VugtM.E. SmetsE.M.A. BlomM. TeunissenC.E. Towards a future where Alzheimer’s disease pathology is stopped before the onset of dementia.Nature Aging20233549450510.1038/s43587‑023‑00404‑237202515
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249293642240522054929
Loading
/content/journals/cnsamc/10.2174/0118715249293642240522054929
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test