Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Background

Aging affects cellular functions and impairs tissue homeostasis. Carvacrol, a polyphenolic compound, has been shown to exert a wide range of pharmacological effects, such as antioxidant, anti-inflammatory, and anticancer characteristics.

Methods

This investigation aimed to evaluate the effect of carvacrol in elderly male rats. Carvacrol at a dose of 15 or 30 mg/kg was administrated daily per os for 60 days to aged rats. The liver, heart, and kidney samples were taken for the analysis of oxidative stress markers. Serum samples were used to evaluate liver enzymes (alanine transaminase (ALT) and aspartate aminotransferase (AST)).

Results

The levels of malondialdehyde (MDA) in the liver, heart, and kidney tissues of aged rats were higher. Conversely, the level of thiol was lower in the mentioned tissues than in the young control group.

The levels of MDA in the liver, heart, and kidney tissues of aged rats were significantly reduced by carvacrol, which was accompanied by increased levels of total thiol. ALT and AST levels were higher in the serum of aged rats than in the young control ones. Carvacrol decreased ALT and AST levels in the serum of aged rats aged control rats.

Conclusion

Carvacrol can be effective in protecting susceptible aged tissues and organs by increasing antioxidant defenses and decreasing liver enzymes.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249303906240729074821
2024-08-13
2025-09-18
Loading full text...

Full text loading...

References

  1. MasoroE.J. AustadS.N. Handbook of the Biology of Aging.Academic press2010
    [Google Scholar]
  2. LiochevS. Which is the most significant cause of aging?Antioxidants20154479381010.3390/antiox4040793 26783959
    [Google Scholar]
  3. MylonasA. O’LoghlenA. Cellular senescence and ageing: Mechanisms and interventions.Front. Aging2022386671810.3389/fragi.2022.866718 35821824
    [Google Scholar]
  4. Di MiccoR. KrizhanovskyV. BakerD. d’Adda di FagagnaF. Cellular senescence in ageing: from mechanisms to therapeutic opportunities.Nat. Rev. Mol. Cell Biol.2021222759510.1038/s41580‑020‑00314‑w 33328614
    [Google Scholar]
  5. GuoJ. HuangX. DouL. YanM. ShenT. TangW. LiJ. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments.Signal Transduct. Target. Ther.20227139110.1038/s41392‑022‑01251‑0 36522308
    [Google Scholar]
  6. Le CouteurD.G. ThillainadesanJ. What is an aging-related disease? An epidemiological perspective.J. Gerontol- Series A202277112168217410.1093/gerona/glac039
    [Google Scholar]
  7. ChangA.Y. SkirbekkV.F. TyrovolasS. KassebaumN.J. DielemanJ.L. Measuring population ageing: An analysis of the Global Burden of Disease Study 2017.Lancet Public Health201943e159e16710.1016/S2468‑2667(19)30019‑2 30851869
    [Google Scholar]
  8. GrossC.G. Claude Bernard and the constancy of the internal environment.Neuroscientist19984538038510.1177/107385849800400520
    [Google Scholar]
  9. PouloseN. RajuR. Aging and injury: Alterations in cellular energetics and organ function.Aging Dis.20145210110810.14336/ad.2014.0500101 24729935
    [Google Scholar]
  10. MussoC.G. OreopoulosD.G. Aging and physiological changes of the kidneys including changes in glomerular filtration rate.Nephron, Physiol.2011119Suppl. 1p1p510.1159/000328010 21832859
    [Google Scholar]
  11. JomovaK. RaptovaR. AlomarS.Y. AlwaselS.H. NepovimovaE. KucaK. ValkoM. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging.Arch. Toxicol.202397102499257410.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  12. LiuJ.K. Antiaging agents: Safe interventions to slow aging and healthy life span extension.Nat. Prod. Bioprospect.20221211810.1007/s13659‑022‑00339‑y 35534591
    [Google Scholar]
  13. MondalA. BoseS. MazumderK. KhanraR. Carvacrol (Origanum vulgare): Therapeutic properties and molecular mechanisms. Bioactive Natural Products for Pharmaceutical Applications.ChamSpringer2021437462
    [Google Scholar]
  14. ImranM. AslamM. AlsagabyS.A. SaeedF. AhmadI. AfzaalM. ArshadM.U. AbdelgawadM.A. El-GhorabA.H. KhamesA. ShariatiM.A. AhmadA. HussainM. ImranA. IslamS. Therapeutic application of carvacrol: A comprehensive review.Food Sci. Nutr.202210113544356110.1002/fsn3.2994 36348778
    [Google Scholar]
  15. ForqaniM.A. AkbarianM. AmirahmadiS. SoukhtanlooM. HosseiniM. ForouzanfarF. Carvacrol improved learning and memory and attenuated the brain tissue oxidative damage in aged male rats.Int. J. Neurosci.202320231810.1080/00207454.2023.2257877 37694395
    [Google Scholar]
  16. RakhshandehH. GhorbanzadehA. NegahS.S. AkaberiM. RashidiR. ForouzanfarF. Pain-relieving effects of Lawsonia inermis on neuropathic pain induced by chronic constriction injury.Metab. Brain Dis.20213671709171610.1007/s11011‑021‑00773‑w 34169409
    [Google Scholar]
  17. RakhshandehH. Pourbagher-ShahriA.M. HasanpourM. IranshahiM. ForouzanfarF. Effects of Capparis Spinosa extract on the neuropathic pain induced by chronic constriction injury in rats.Metab. Brain Dis.20223782839285210.1007/s11011‑022‑01094‑2 36222985
    [Google Scholar]
  18. WhitbourneS.K. The Aging Body: Physiological Changes and Psychological Consequences.Springer Science & Business Media2012
    [Google Scholar]
  19. HuntN.J. KangS.W.S. LockwoodG.P. Le CouteurD.G. CoggerV.C. Hallmarks of aging in the liver.Comput. Struct. Biotechnol. J.2019171151116110.1016/j.csbj.2019.07.021 31462971
    [Google Scholar]
  20. DenicA. GlassockR.J. RuleA.D. Structural and functional changes with the aging kidney.Adv. Chronic Kidney Dis.2016231192810.1053/j.ackd.2015.08.004 26709059
    [Google Scholar]
  21. ZoccaliC. VanholderR. MassyZ.A. OrtizA. SarafidisP. DekkerF.W. FliserD. FouqueD. HeineG.H. JagerK.J. KanbayM. MallamaciF. ParatiG. RossignolP. WiecekA. LondonG. The systemic nature of CKD.Nat. Rev. Nephrol.201713634435810.1038/nrneph.2017.52 28435157
    [Google Scholar]
  22. NittaK. OkadaK. YanaiM. TakahashiS. Aging and chronic kidney disease.Kidney Blood Press. Res.201338110912010.1159/000355760 24642796
    [Google Scholar]
  23. VoutilainenA. BresterC. KolehmainenM. TuomainenT.P. Epidemiological analysis of coronary heart disease and its main risk factors: are their associations multiplicative, additive, or interactive?Ann. Med.20225411500151010.1080/07853890.2022.2078875 35603961
    [Google Scholar]
  24. SolievA.U. RajabovaG.X. DjumaevK.S. Risk factors for arterial hypertension in elderly patients.AJMR20198117580[AJMR].10.5958/2278‑4853.2019.00308.2
    [Google Scholar]
  25. GroenewegenA. RuttenF.H. MosterdA. HoesA.W. Epidemiology of heart failure.Eur. J. Heart Fail.20202281342135610.1002/ejhf.1858 32483830
    [Google Scholar]
  26. PoznyakA.V. SadykhovN.K. KartuesovA.G. BorisovE.E. MelnichenkoA.A. GrechkoA.V. OrekhovA.N. Hypertension as a risk factor for atherosclerosis: Cardiovascular risk assessment.Front. Cardiovasc. Med.2022995928510.3389/fcvm.2022.959285 36072873
    [Google Scholar]
  27. SchleicherE. FriessU. Oxidative stress, age, and atherosclerosis.Kidney Int.200772106S17S2610.1038/sj.ki.5002382 17653206
    [Google Scholar]
  28. EllingerI. EllingerA. Smallest unit of life: cell biology. Comparative medicine.Anat. Physiol.201420141933
    [Google Scholar]
  29. LemoineM. The evolution of the hallmarks of aging.Front. Genet.20211269307110.3389/fgene.2021.693071 34512720
    [Google Scholar]
  30. IakovouE. KourtiM. A comprehensive overview of the complex role of oxidative stress in aging, the contributing environmental stressors and emerging antioxidant therapeutic interventions.Front. Aging Neurosci.20221482790010.3389/fnagi.2022.827900 35769600
    [Google Scholar]
  31. SiesH. BerndtC. JonesD.P. Oxidative Stress.Annu. Rev. Biochem.201786171574810.1146/annurev‑biochem‑061516‑045037 28441057
    [Google Scholar]
  32. Del RioD. StewartA.J. PellegriniN. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress.Nutr. Metab. Cardiovasc. Dis.200515431632810.1016/j.numecd.2005.05.003 16054557
    [Google Scholar]
  33. VertuaniS. AngustiA. ManfrediniS. The antioxidants and pro-antioxidants network: An overview.Curr. Pharm. Des.200410141677169410.2174/1381612043384655 15134565
    [Google Scholar]
  34. BakırM. GeyikogluF. ColakS. TurkezH. BakırT.O. HosseinigouzdaganiM. The carvacrol ameliorates acute pancreatitis-induced liver injury via antioxidant response.Cytotechnology20166841131114610.1007/s10616‑015‑9871‑z 26350272
    [Google Scholar]
  35. GursulC. OzcicekA. OzkaracaM. MendilA.S. CobanT.A. ArslanA. OzcicekF. SuleymanH. Amelioration of oxidative damage parameters by carvacrol on methanol-induced liver injury in rats.Exp. Anim.202271222423010.1538/expanim.21‑0143 34911876
    [Google Scholar]
  36. MortazaviA. KargarH.M.P. BeheshtiF. AnaeigoudariA. VaeziG. HosseiniM. The effects of carvacrol on oxidative stress, inflammation, and liver function indicators in a systemic inflammation model induced by lipopolysaccharide in rats.Int. J. Vitam. Nutr. Res.2021932111121 34024144
    [Google Scholar]
  37. CaiS. WuL. YuanS. LiuG. WangY. FangL. XuD. Carvacrol alleviates liver fibrosis by inhibiting TRPM7 and modulating the MAPK signaling pathway.Eur. J. Pharmacol.202189817398210.1016/j.ejphar.2021.173982 33647257
    [Google Scholar]
  38. MohseniR. KarimiJ. TavilaniH. KhodadadiI. HashemniaM. Carvacrol downregulates lysyl oxidase expression and ameliorates oxidative stress in the liver of rats with carbon tetrachloride‐induced liver fibrosis.Indian J. Clin. Biochem.202035445846410.1007/s12291‑019‑00845‑w 33013016
    [Google Scholar]
  39. CetikS. AyhanciA. SahinturkV. Protective effect of carvacrol against oxidative stress and heart injury in cyclophosphamide-induced cardiotoxicity in rat.Braz. Arch. Biol. Technol.201558456957610.1590/S1516‑8913201500022
    [Google Scholar]
  40. El-SayedE.S.M. MansourA.M. Abdul-HameedM.S. Thymol and carvacrol prevent doxorubicin‐induced cardiotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats.J. Biochem. Mol. Toxicol.2016301374410.1002/jbt.21740 26387986
    [Google Scholar]
  41. Ölmeztürk KarakurtT.C. Emirİ. BedirZ. Ozkaloglu ErdemK.T. SüleymanH. SarıgülC. Effects of carvacrol on ketamine-induced cardiac injury in rats: An experimental study.Drug Chem. Toxicol.202247216 36511184
    [Google Scholar]
  42. SadeghzadehS. HejazianS.H. JamhiriM. HafizibarjinZ. SadeghzadehS. SafariF. The effect of carvacrol on transcription levels of Bcl-2 family proteins in hypertrophied heart of rats.Physiol Pharmacol.20182215462
    [Google Scholar]
  43. ChenY. BaL. HuangW. LiuY. PanH. MingyaoE. ShiP. WangY. LiS. QiH. SunH. CaoY. Role of carvacrol in cardioprotection against myocardial ischemia/reperfusion injury in rats through activation of MAPK/ERK and Akt/eNOS signaling pathways.Eur. J. Pharmacol.20177969010010.1016/j.ejphar.2016.11.053 27916558
    [Google Scholar]
  44. JamhiriM. Safi DahajF. AstaniA. HejazianS.H. HafizibarjinZ. GhobadiM. MoradiA. KhoradmehrA. SafariF. Carvacrol ameliorates pathological cardiac hypertrophy in both in-vivo and in-vitro models.Iran. J. Pharm. Res.201918313801394 32641948
    [Google Scholar]
  45. AlmanaitytėM. JurevičiusJ. MačianskienėR. Effect of carvacrol, TRP channels modulator, on cardiac electrical activity.Biomed Res. Int.202020206456805
    [Google Scholar]
  46. OzturkH. CetinkayaA. DuzcuS.E. TekceB.K. OzturkH. Carvacrol attenuates histopathogic and functional impairments induced by bilateral renal ischemia/reperfusion in rats.Biomed. Pharmacother.20189865666110.1016/j.biopha.2017.12.060 29291552
    [Google Scholar]
  47. RamC. GairolaS. SyedA.M. VermaS. MugaleM.N. SahuB.D. Carvacrol preserves antioxidant status and attenuates kidney fibrosis via modulation of TGF-β1/Smad signaling and inflammation.Food Funct.20221320105871060010.1039/D2FO01384C 36156620
    [Google Scholar]
  48. El-FarA.H. MohamedH.H. ElsabaghD.A. MohamedS.A. NoreldinA.E. Al JaouniS.K. AlsenosyA.A. Eugenol and carvacrol attenuate brain d-galactose-induced aging-related oxidative alterations in rats.Environ. Sci. Pollut. Res. Int.20222931474364744710.1007/s11356‑022‑18984‑8 35182345
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249303906240729074821
Loading
/content/journals/cnsamc/10.2174/0118715249303906240729074821
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): aging; anti-inflammatory; Carvacrol; medicinal plants; oxidative stress; therapeutic agents
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test