Skip to content
2000
image of Cerebroprotective Potential of Androgen Receptors in Ischemic Postconditioning against Cerebral Ischemia/Reperfusion-Induced Neurodegenerative Changes

Abstract

Background and Objective

In stroke, reperfusion of blood to the cerebral ischemic area following sustained ischemia further exacerbates tissue damage, identified as cerebral ischemia and reperfusion (I/R) insult. Ischemic post-conditioning (IPoC) appears to offer benefits against I/R injury. The cascade of androgen receptors (ARs) has a vital role in cerebral stroke; however, its neurodefensive function in IPoC is unclear. This investigation aimed to explore the involvement of ARs in IPoC in cerebral I/R insult in rats.

Methods

Global cerebral ischemia/reperfusion (GCI/R) insult in experimental animals was provoked by 10 minutes of obstruction of the bilateral carotid arteries after reperfusion for 24 hours. IPoC was carried out by providing a triad of I/R insults with a gap of 10 minutes of GCI after 24 hours of reperfusion. Lateral push, inclined beam, rota rod, hanging wire, and Morris-water maze experimentations were conducted on animals to determine motor control and cognitive functions (learning and memory). Cerebral oxidative damage markers (raised lipid peroxidation and reduced glutathione levels), acetylcholinesterase (AChE) activity, inflammatory indicators (interleukin-6, interleukin-10, tumor necrosis factor-α, and myeloperoxidase), infarction, and histopathological alterations were also assessed.

Results

Animals with I/R exhibited reduced motor function and memory along with raised cerebral oxidative damage, AChE activity, inflammation, infarction, and histopathological alterations. IPoC after ischemic events recuperated the damaging outcomes of I/R insult. 60 minutes before cerebral ischemia, pretreatment with testosterone mimicked the neurodefensive outcomes of IPoC. However, neuroprotective outcomes developed by IPoC were diminished by flutamide (ARs antagonist) pretreatment.

Conclusion

IPoC may offer neuroprotective outcomes in I/R insult by modulation of AR-mediated pathway.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249354207250429041513
2025-05-14
2025-08-19
Loading full text...

Full text loading...

References

  1. Singh N. Gulati P. Pharmacological evidence for connection of nitric oxide-mediated pathways in neuroprotective mechanism of ischemic postconditioning in mice. J. Pharm. Bioallied Sci. 2014 6 4 233 240 10.4103/0975‑7406.142951 25400405
    [Google Scholar]
  2. Virdi J.K. Bhanot A. Jaggi A.S. Agarwal N. Investigation on beneficial role of L -carnosine in neuroprotective mechanism of ischemic postconditioning in mice: Possible role of histidine histamine pathway. Int. J. Neurosci. 2020 130 10 983 998 10.1080/00207454.2020.1715393 31951767
    [Google Scholar]
  3. Qi Y. Xu Y. Wang H. Wang Q. Li M. Han B. Liu H. Network reorganization for neurophysiological and behavioral recovery following stroke. Cent. Nerv. Syst. Agents Med. Chem. 2024 24 2 117 128 10.2174/0118715249277597231226064144
    [Google Scholar]
  4. Singh P. Sharma B. Agonism of histaminergic-H1 receptors in ischemic postconditioning during cerebral ischemia-reperfusion injury is protective. Curr. Neurovasc. Res. 2021 17 5 686 699 10.2174/1567202617666201214105720 33319685
    [Google Scholar]
  5. Sharma P. Kulkarni G.T. Sharma B. Possible involvement of D2/D3 receptor activation in ischemic preconditioning mediated protection of the brain. Brain Res. 2020 1748 147116 10.1016/j.brainres.2020.147116 32919985
    [Google Scholar]
  6. Rink C. Roy S. Khan M. Ananth P. Kuppusamy P. Sen C.K. Khanna S. Oxygen-sensitive outcomes and gene expression in acute ischemic stroke. J. Cereb. Blood Flow Metab. 2010 30 7 1275 1287 10.1038/jcbfm.2010.7 20145654
    [Google Scholar]
  7. Hu Y.Y. Li L. Xian X.H. Zhang M. Sun X.C. Li S.Q. Cui X. Qi J. Li W.B. GLT-1 upregulation as a potential therapeutic target for ischemic brain injury. Curr. Pharm. Des. 2017 23 33 5045 5055 28641538
    [Google Scholar]
  8. Hu Y. Deng H. Xu S. Zhang J. MicroRNAs regulate mitochondrial function in cerebral ischemia-reperfusion injury. Int. J. Mol. Sci. 2015 16 10 24895 24917 10.3390/ijms161024895 26492239
    [Google Scholar]
  9. Wang Y. Xiao G. He S. Liu X. Zhu L. Yang X. Zhang Y. Orgah J. Feng Y. Wang X. Zhang B. Zhu Y. Protection against acute cerebral ischemia/reperfusion injury by QiShenYiQi via neuroinflammatory network mobilization. Biomed. Pharmacother. 2020 125 109945 10.1016/j.biopha.2020.109945 32028240
    [Google Scholar]
  10. Rehni A.K. Singh N. Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice. Pharmacol. Rep. 2007 59 2 192 198 17556797
    [Google Scholar]
  11. Wang J. Shen J. Gao Q. Ye Z. Yang S. Liang H. Bruce I.C. Luo B. Xia Q. Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke 2008 39 3 983 990 10.1161/STROKEAHA.107.499079 18239163
    [Google Scholar]
  12. Yang F. Zhang X. Sun Y. Wang B. Zhou C. Luo Y. Ge P. Ischemic postconditioning decreases cerebral edema and brain blood barrier disruption caused by relief of carotid stenosis in a rat model of cerebral hypoperfusion. PLoS One 2013 8 2 e57869 10.1371/journal.pone.0057869 23469092
    [Google Scholar]
  13. Ben Haim L. Carrillo-de Sauvage M.A. Ceyzériat K. Escartin C. Elusive roles for reactive astrocytes in neurodegenerative diseases. Front. Cell. Neurosci. 2015 9 278 10.3389/fncel.2015.00278 26283915
    [Google Scholar]
  14. Esposito E. Hayakawa K. Ahn B.J. Chan S.J. Xing C. Liang A.C. Kim K.W. Arai K. Lo E.H. Effects of ischemic post‐conditioning on neuronal VEGF regulation and microglial polarization in a rat model of focal cerebral ischemia. J. Neurochem. 2018 146 2 160 172 10.1111/jnc.14337 29570780
    [Google Scholar]
  15. Kerstens T.P. Landman T.R.J. Schoon Y. Meijer F.J.A. Warlé M.C. de Leeuw F.E. Thijssen D.H.J. The effect of remote ischemic postconditioning on quality of life and clinical events after an ischemic stroke. Curr. Neurovasc. Res. 2023 20 4 472 479 10.2174/0115672026275008231120063757 38099530
    [Google Scholar]
  16. Deng J. He G. Yi T. Wei L. Lu H. Zhou Q. Yao Y. Zhu C. Levitt M.R. Mossa-Basha M. Yang H. Shen Y. Shi F. Wang D. Lin L. Parsons M. Chen W. Zhu Y. Neuroprotective effects of rapid local ischemic postconditioning in successful endovascular thrombectomy patients. Stroke 2024 55 12 2896 2900 10.1161/STROKEAHA.124.047674 39523943
    [Google Scholar]
  17. li, Y.; Liang, K.K.; Zhang, L.; Pan, R.; Hu, Y.; Zhao, J. Remote ischemic post-conditioning may improve post-stroke cognitive impairment: A pilot single center randomized controlled trial. J. Stroke Cerebrovasc. Dis. 2020 29 11 105217 10.1016/j.jstrokecerebrovasdis.2020.105217 33066895
    [Google Scholar]
  18. Lo E. Cizmeci M.N. Wilson D. Ly L.G. El-Shahed A. Offringa M. Pierro A. Kalish B.T. Remote ischemic post-conditioning for neonatal encephalopathy: A safety and feasibility trial. Pediatr. Res. 2024 1 0 10.1038/s41390‑024‑03625‑2 39396091
    [Google Scholar]
  19. Yan M.Y. Liu J.M. Wu J. Chang Q. Impact of remote ischemic postconditioning on acute ischemic stroke in China: A systematic review and meta-analysis of randomized controlled trials. Syst. Rev. 2024 13 1 141 10.1186/s13643‑024‑02568‑3 38816852
    [Google Scholar]
  20. Jiao C. Liu C. Yang Z. Jin C. Chen X. Xue J. Zhang G. Pan C. Jia J. Hou X. Brain protection effects of mild hypothermia combined with distant ischemic postconditioning and thrombolysis in patients with acute ischemic stroke. Ther. Hypothermia Temp. Manag. 2024 14 3 172 178 10.1089/ther.2023.0043 37668993
    [Google Scholar]
  21. Ayala P. Uchida M. Akiyoshi K. Cheng J. Hashimoto J. Jia T. Ronnekleiv O.K. Murphy S.J. Wiren K.M. Hurn P.D. Androgen receptor overexpression is neuroprotective in experimental stroke. Transl. Stroke Res. 2011 2 3 346 357 10.1007/s12975‑011‑0079‑z 24323653
    [Google Scholar]
  22. Moghadami S. Jahanshahi M. Sepehri H. Amini H. Gonadectomy reduces the density of androgen receptor-immunoreactive neurons in male rat’s hippocampus: Testosterone replacement compensates it. Behav. Brain Funct. 2016 12 1 5 10.1186/s12993‑016‑0089‑9 26822779
    [Google Scholar]
  23. Ohtsuki S. Tomi M. Hata T. Nagai Y. Hori S. Mori S. Hosoya K. Terasaki T. Dominant expression of androgen receptors and their functional regulation of organic anion transporter 3 in rat brain capillary endothelial cells; Comparison of gene expression between the blood–brain and ‐retinal barriers. J. Cell. Physiol. 2005 204 3 896 900 10.1002/jcp.20352 15795901
    [Google Scholar]
  24. Feng Y. Huang Z. Ma X. Zong X. Wu C.Y.C. Lee R.H.C. Lin H.W. Hamblin M.R. Zhang Q. Activation of testosterone‐androgen receptor mediates cerebrovascular protection by photobiomodulation treatment in photothrombosis‐induced stroke rats. CNS Neurosci. Ther. 2024 30 2 e14574 10.1111/cns.14574 38421088
    [Google Scholar]
  25. Zeller T. Schnabel R.B. Appelbaum S. Ojeda F. Berisha F. Schulte-Steinberg B. Brueckmann B.E. Kuulasmaa K. Jousilahti P. Blankenberg S. Palosaari T. Salomaa V. Karakas M. Low testosterone levels are predictive for incident atrial fibrillation and ischaemic stroke in men, but protective in women – results from the FINRISK study. Eur. J. Prev. Cardiol. 2018 25 11 1133 1139 10.1177/2047487318778346 29808758
    [Google Scholar]
  26. Ho C.H. Wu C.C. Lee M.C. Huang P.H. Chen J.T. Liu S.P. Liao P.W. The association of serum testosterone levels with recurrence and mortality after acute ischemic stroke in males. Am. J. Men Health 2019 13 3 1557988319847097 10.1177/1557988319847097 31109237
    [Google Scholar]
  27. Ishihara Y. Fujitani N. Sakurai H. Takemoto T. Ikeda-Ishihara N. Mori-Yasumoto K. Nehira T. Ishida A. Yamazaki T. Effects of sex steroid hormones and their metabolites on neuronal injury caused by oxygen-glucose deprivation/reoxygenation in organotypic hippocampal slice cultures. Steroids 2016 113 71 77 10.1016/j.steroids.2016.06.004 27389922
    [Google Scholar]
  28. Son S.W. Lee J.S. Kim H.G. Kim D.W. Ahn Y.C. Son C.G. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model. J. Neurochem. 2016 136 1 106 117 10.1111/jnc.13371 26385432
    [Google Scholar]
  29. Gonzales R.J. Androgens and the cerebrovasculature: Modulation of vascular function during normal and pathophysiological conditions. Pflugers Arch. 2013 465 5 627 642 10.1007/s00424‑013‑1267‑3 23605065
    [Google Scholar]
  30. Hamson D.K. Wainwright S.R. Taylor J.R. Jones B.A. Watson N.V. Galea L.A.M. Androgens increase survival of adult-born neurons in the dentate gyrus by an androgen receptor-dependent mechanism in male rats. Endocrinology 2013 154 9 3294 3304 10.1210/en.2013‑1129 23782943
    [Google Scholar]
  31. Zhao C. Deng W. Gage F.H. Mechanisms and functional implications of adult neurogenesis. Cell 2008 132 4 645 660 10.1016/j.cell.2008.01.033 18295581
    [Google Scholar]
  32. Pan Y. Zhang H. Acharya A.B. Patrick P.H. Oliver D. Morley J.E. Effect of testosterone on functional recovery in a castrate male rat stroke model. Brain Res. 2005 1043 1-2 195 204 10.1016/j.brainres.2005.02.078 15862533
    [Google Scholar]
  33. Morgunov L.Iu. Denisova I.A. Rozhkova T.I. Stakhovskaia L.V. Skvortsova V.I. Androgenic deficit and its treatment in stroke male patients with diabetes mellitus type II. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova 2011 111 8 Pt 2 21 24 22224240
    [Google Scholar]
  34. Sharma R. Oni O.A. Gupta K. Chen G. Sharma M. Dawn B. Sharma R. Parashara D. Savin V.J. Ambrose J.A. Barua R.S. Normalization of testosterone level is associated with reduced incidence of myocardial infarction and mortality in men. Eur. Heart J. 2015 36 40 2706 2715 10.1093/eurheartj/ehv346 26248567
    [Google Scholar]
  35. Ali S.A. Rakhunde P.B. Saher S. Neuroprotective effect of Feronia limonia on ischemia reperfusion induced brain injury in rats. Indian J. Pharmacol. 2014 46 6 617 621 10.4103/0253‑7613.144920 25538333
    [Google Scholar]
  36. Singh P. Sharma B. Pharmacological connection of Histamine-1 (H1) Receptor Mediated Neuroprotective mechanism of Ischemic preconditioning in rat. Res. J. Pharm. Technol. 2021 14 5 2717 2722 10.52711/0974‑360X.2021.00479
    [Google Scholar]
  37. Gupta S. Singh P. Sharma B. Neuroprotective effects of nicorandil in chronic cerebral hypoperfusion-induced vascular dementia. J. Stroke Cerebrovasc. Dis. 2016 25 11 2717 2728 10.1016/j.jstrokecerebrovasdis.2016.07.023 27622862
    [Google Scholar]
  38. Gupta S. Sharma B. Pharmacological benefit of I1-imidazoline receptors activation and nuclear factor kappa-B (NF-κB) modulation in experimental Huntington’s disease. Brain Res. Bull. 2014 102 57 68 10.1016/j.brainresbull.2014.02.007 24582883
    [Google Scholar]
  39. Gupta S. Singh P. Sharma B. Montelukast ameliorates 2K1C-hypertension induced endothelial dysfunction and associated vascular dementia. Curr. Hypertens. Rev. 2024 20 1 23 35 10.2174/0115734021276985231204092425 38192137
    [Google Scholar]
  40. Gupta S. Singh P. Sharma B. Sharma B. Neuroprotective effects of agomelatine and vinpocetine against chronic cerebral hypoperfusion induced vascular dementia. Curr. Neurovasc. Res. 2015 12 3 240 252 10.2174/1567202612666150603130235 26036976
    [Google Scholar]
  41. Saad M.A. Abdelsalam R.M. Kenawy S.A. Attia A.S. Ischemic preconditioning and postconditioning alleviates hippocampal tissue damage through abrogation of apoptosis modulated by oxidative stress and inflammation during transient global cerebral ischemia–reperfusion in rats. Chem. Biol. Interact. 2015 232 21 29 10.1016/j.cbi.2015.03.007 25794855
    [Google Scholar]
  42. Chen X. Liu Y. Zhu J. Lei S. Dong Y. Li L. Jiang B. Tan L. Wu J. Yu S. Zhao Y. GSK-3β downregulates Nrf2 in cultured cortical neurons and in a rat model of cerebral ischemia-reperfusion. Sci. Rep. 2016 6 1 20196 10.1038/srep20196 28442764
    [Google Scholar]
  43. Sveinsson O.A. Kjartansson Ó. Valdimarsson E.M. Cerebral ischemia/infarction - diagnosis and treatment. Laeknabladid 2014 100 7-8 393 401 10.17992/lbl.2014.0708.553 25125437
    [Google Scholar]
  44. Chen Y. Liu S. Chen G. Aggravation of cerebral ischemia/reperfusion injury by peroxisome proliferator-activated receptor-gamma deficiency via endoplasmic reticulum stress. Med. Sci. Monit. 2019 25 7518 7526 10.12659/MSM.915914 31588926
    [Google Scholar]
  45. Koepsell H. Glucose transporters in brain in health and disease. Pflugers Arch. 2020 472 9 1299 1343 10.1007/s00424‑020‑02441‑x 32789766
    [Google Scholar]
  46. Rink C. Khanna S. Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid. Redox Signal. 2011 14 10 1889 1903 10.1089/ars.2010.3474 20673202
    [Google Scholar]
  47. Dadsetan S. Balzano T. Forteza J. Agusti A. Cabrera-Pastor A. Taoro-Gonzalez L. Hernandez-Rabaza V. Gomez-Gimenez B. ElMlili N. Llansola M. Felipo V. Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. J. Neuroinflammation 2016 13 1 245 10.1186/s12974‑016‑0710‑8 27623772
    [Google Scholar]
  48. Garcia J.M. Stillings S.A. Leclerc J.L. Phillips H. Edwards N.J. Robicsek S.A. Hoh B.L. Blackburn S. Doré S. Role of interleukin-10 in acute brain injuries. Front. Neurol. 2017 8 244 10.3389/fneur.2017.00244 28659854
    [Google Scholar]
  49. Liu G. Wang T. Wang T. Song J. Zhou Z. Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats. Biomed. Rep. 2013 1 6 861 867 10.3892/br.2013.153 24649043
    [Google Scholar]
  50. Zhang Q.G. Wang R.M. Han D. Yang L.C. Li J. Brann D.W. Preconditioning neuroprotection in global cerebral ischemia involves NMDA receptor-mediated ERK-JNK3 crosstalk. Neurosci. Res. 2009 63 3 205 212 10.1016/j.neures.2008.12.010 19373993
    [Google Scholar]
  51. Hu W.W. Chen Z. Role of histamine and its receptors in cerebral ischemia. ACS Chem. Neurosci. 2012 3 4 238 247 10.1021/cn200126p 22860191
    [Google Scholar]
  52. Li C.Y. Ma W. Liu K.P. Yang J.W. Wang X.B. Wu Z. Zhang T. Wang J.W. Liu W. Liu J. Liang Y. Zhang X.K. Li J.J. Guo J.H. Li L.Y. Different ischemic duration and frequency of ischemic postconditioning affect neuroprotection in focal ischemic stroke. J. Neurosci. Methods 2020 346 108921 10.1016/j.jneumeth.2020.108921 32888963
    [Google Scholar]
  53. Kotorová K. Končeková J. Bona M. Bonová P. New alternative approaches to stroke treatment: The blood cell–derived secretome shows promise in individuals with obesity. Metab. Brain Dis. 2024 40 1 56 10.1007/s11011‑024‑01491‑9 39641824
    [Google Scholar]
  54. Bagheri S.M. Allahtavakoli M. Hakimizadeh E. Neuroprotective effect of ischemic postconditioning against hyperperfusion and its mechanisms of neuroprotection. J. Res. Med. Sci. 2024 29 1 31 10.4103/jrms.jrms_341_22 39239075
    [Google Scholar]
  55. Ramagiri S. Taliyan R. Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3β/CREB/BDNF pathway. Eur. J. Pharmacol. 2017 803 84 93 10.1016/j.ejphar.2017.03.028 28341347
    [Google Scholar]
  56. Weng H. Shen C. Hirokawa G. Ji X. Takahashi R. Shimada K. Kishimoto C. Iwai N. Plasma miR-124 as a biomarker for cerebral infarction. Biomed. Res. 2011 32 2 135 141 10.2220/biomedres.32.135 21551949
    [Google Scholar]
  57. Zhou Y. Wang S. Li Y. Yu S. Zhao Y. SIRT1/PGC-1α signaling promotes mitochondrial functional recovery and reduces apoptosis after intracerebral hemorrhage in rats. Front. Mol. Neurosci. 2018 10 443 10.3389/fnmol.2017.00443 29375306
    [Google Scholar]
  58. Jiang L. Zhang T. Zhang Y. Yu D. Zhang Y. Dexmedetomidine postconditioning provides renal protection in patients undergoing laparoscopic partial nephrectomy: A randomized controlled trial. Front. Pharmacol. 2022 13 988254 10.3389/fphar.2022.988254 36267269
    [Google Scholar]
  59. Kaljusto M.L. Bautin A. Jakobsen Ø. Wilimski R. Brunborg C. Wennemo M. Karpova L. Nergaard Aas K. Arendarczyk A. Landsverk S.A. Galagudza M. Næsheim T. Czub P. Gordeev M. Vaage J. Effects of ischaemic postconditioning in aortic valve replacement: A multicenter randomized controlled trial. Eur. J. Cardiothorac. Surg. 2022 61 5 1144 1152 10.1093/ejcts/ezab500 34849659
    [Google Scholar]
  60. Xu H. Wang M. Zhao T. Yu X. Wang F. Protective effects of fructose-1,6-bisphosphate postconditioning on myocardial ischaemia-reperfusion injury in patients undergoing valve replacement: A randomized, double-blind, placebo-controlled clinical trial. Eur. J. Cardiothorac. Surg. 2024 66 2 ezae306 10.1093/ejcts/ezae306 39120890
    [Google Scholar]
  61. Esmaeeli-Nadimi A. Kennedy D. Allahtavakoli M. Opening the window: Ischemic postconditioning reduces the hyperemic response of delayed tissue plasminogen activator and extends its therapeutic time window in an embolic stroke model. Eur. J. Pharmacol. 2015 764 55 62 10.1016/j.ejphar.2015.06.043 26123846
    [Google Scholar]
  62. Yunoki M. Kanda T. Suzuki K. Uneda A. Hirashita K. Yoshino K. Ischemic tolerance of the brain and spinal cord: A review. Neurol. Med. Chir. (Tokyo) 2017 57 11 590 600 10.2176/nmc.ra.2017‑0062 28954945
    [Google Scholar]
  63. Zhang J. Xiao F. Zhang L. Wang X. Lai X. Shen Y. Zhang M. Zhou B. Lang H. Yu P. Hua F. Alpha-lipoic acid preconditioning and ischaemic postconditioning synergistically protect rats from cerebral injury induced by ischemia and reperfusion partly via inhibition TLR4/MyD88/NF-κB signaling pathway. Cell. Physiol. Biochem. 2018 51 3 1448 1460 10.1159/000495593 30485844
    [Google Scholar]
  64. Zhang W. Miao Y. Zhou S. Wang B. Luo Q. Qiu Y. Involvement of Glutamate transporter-1 in neuroprotection against global brain ischemia-reperfusion injury induced by postconditioning in rats. Int. J. Mol. Sci. 2010 11 11 4407 4416 10.3390/ijms11114407 21151445
    [Google Scholar]
  65. Ma X.D. Song J.N. Zhang M. An J.Y. Zhao Y.L. Zhang B. Advances in research of the neuroprotective mechanisms of cerebral ischemic postconditioning. Int. J. Neurosci. 2015 125 3 161 169 10.3109/00207454.2014.917413 24754439
    [Google Scholar]
  66. Miao W. Yan Y. Bao T. Jia W. Yang F. Wang Y. Zhu Y. Yin M. Han J. Ischemic postconditioning exerts neuroprotective effect through negatively regulating PI3K/Akt2 signaling pathway by microRNA-124. Biomed. Pharmacother. 2020 126 109786 10.1016/j.biopha.2019.109786 32113052
    [Google Scholar]
  67. Ding Z.M. Wu B. Zhang W.Q. Lu X.J. Lin Y.C. Geng Y.J. Miao Y.F. Neuroprotective effects of ischemic preconditioning and postconditioning on global brain ischemia in rats through the same effect on inhibition of apoptosis. Int. J. Mol. Sci. 2012 13 5 6089 6101 10.3390/ijms13056089 22754351
    [Google Scholar]
  68. Zhao B.H. Guo Y.Q. Li H.Z. Liu J.T. Wu D. Yuan X.H. Li R.W. Guan L.X. Alterations in gene expression and steroidogenesis in the testes of transient cerebral ischemia in male rats. Chin. Med. J. (Engl.) 2012 125 12 2168 2172 22884148
    [Google Scholar]
  69. Hatanaka Y. Wada K. Kabuta T. Abnormal instability, excess density, and aberrant morphology of dendritic spines in prenatally testosterone-exposed mice. Neurochem. Int. 2015 85-86 53 58 10.1016/j.neuint.2015.04.008 25953664
    [Google Scholar]
  70. Jeppesen L.L. Jørgensen H.S. Nakayama H. Raaschou H.O. Olsen T.S. Winther K. Decreased serum testosterone in men with acute ischemic stroke. Arterioscler. Thromb. Vasc. Biol. 1996 16 6 749 754 10.1161/01.ATV.16.6.749 8640402
    [Google Scholar]
  71. Kumas M. Altintas O. Esrefoglu M. Protective effect of ischemic preconditioning on testis injury following transient focal cerebral ischemia in diabetic rats. Bratisl. Med. J. 2017 118 9 557 563 10.4149/BLL_2017_107 29061064
    [Google Scholar]
  72. Zhang X. Lv F. Tang J. Protection from ischemia by preconditioning, postconditioning, and combined treatment in rabbit testicular ischemia reperfusion injury. Arch. Biochem. Biophys. 2016 608 1 7 10.1016/j.abb.2016.08.020 27586089
    [Google Scholar]
  73. Pan W. Han S. Kang L. Li S. Du J. Cui H. Effects of dihydrotestosterone on synaptic plasticity of the hippocampus in mild cognitive impairment male SAMP8 mice. Exp. Ther. Med. 2016 12 3 1455 1463 10.3892/etm.2016.3470 27588067
    [Google Scholar]
  74. Abi-Ghanem C. Robison L.S. Zuloaga K.L. Androgens’ effects on cerebrovascular function in health and disease. Biol. Sex Differ. 2020 11 1 35 10.1186/s13293‑020‑00309‑4 32605602
    [Google Scholar]
  75. Leonard S.T. Moerschbaecher J.M. Winsauer P.J. Estradiol replacement in gonadectomized male rats alters scopolamine-induced disruptions of nonspatial learning. Exp. Clin. Psychopharmacol. 2008 16 6 532 546 10.1037/a0013718 19086774
    [Google Scholar]
  76. Zup S.L. Edwards N.S. McCarthy M.M. Sex- and age-dependent effects of androgens on glutamate-induced cell death and intracellular calcium regulation in the developing hippocampus. Neuroscience 2014 281 77 87 10.1016/j.neuroscience.2014.09.040 25264034
    [Google Scholar]
  77. Pintana H. Pongkan W. Pratchayasakul W. Chattipakorn N. Chattipakorn S.C. Testosterone replacement attenuates cognitive decline in testosterone-deprived lean rats, but not in obese rats, by mitigating brain oxidative stress. Age (Omaha) 2015 37 5 84 10.1007/s11357‑015‑9827‑4 26277724
    [Google Scholar]
  78. Azad N. Pitale S. Barnes W.E. Friedman N. Testosterone treatment enhances regional brain perfusion in hypogonadal men. J. Clin. Endocrinol. Metab. 2003 88 7 3064 3068 10.1210/jc.2002‑020632 12843144
    [Google Scholar]
  79. Zhang G. Wang W. Kang Y. Xue Y. Yang H. Zhou C. Shi G. Chronic testosterone propionate supplement could activated the Nrf2-ARE pathway in the brain and ameliorated the behaviors of aged rats. Behav. Brain Res. 2013 252 388 395 10.1016/j.bbr.2013.05.063 23756138
    [Google Scholar]
  80. Yang T. Sun Y. Li Q. Li S. Shi Y. Leak R.K. Chen J. Zhang F. Ischemic preconditioning provides long-lasting neuroprotection against ischemic stroke: The role of Nrf2. Exp. Neurol. 2020 325 113142 10.1016/j.expneurol.2019.113142 31812555
    [Google Scholar]
  81. Lee S.H. Heo J.S. Lee M.Y. Han H.J. Effect of dihydrotestosterone on hydrogen peroxide‐induced apoptosis of mouse embryonic stem cells. J. Cell. Physiol. 2008 216 1 269 275 10.1002/jcp.21402 18330893
    [Google Scholar]
  82. Chen T. Yao Q. Wang W. Ye Z. Huang Y. Wu M. Xi X. Involvement of androgen receptor (AR)/microRNA-21 axis in hypoxia/reoxygenation-induced apoptosis of mouse renal tubular epithelial cells. Am. J. Transl. Res. 2019 11 9 5611 5622 31632533
    [Google Scholar]
  83. Huang S. Liu L. Tang X. Xie S. Li X. Kang X. Zhu S. Research progress on the role of hormones in ischemic stroke. Front. Immunol. 2022 13 1062977 10.3389/fimmu.2022.1062977 36569944
    [Google Scholar]
  84. Normann S. de Veber G. Fobker M. Langer C. Kenet G. Bernard T.J. Fiedler B. Sträter R. Goldenberg N.A. Nowak-Göttl U. Role of endogenous testosterone concentration in pediatric stroke. Ann. Neurol. 2009 66 6 754 758 10.1002/ana.21840 20033984
    [Google Scholar]
  85. Cheng J. Hu W. Toung T.J. Zhang Z. Parker S.M. Roselli C.E. Hurn P.D. Age-dependent effects of testosterone in experimental stroke. J. Cereb. Blood Flow Metab. 2009 29 3 486 494 10.1038/jcbfm.2008.138 19002196
    [Google Scholar]
  86. Persky R.W. Liu F. Xu Y. Weston G. Levy S. Roselli C.E. McCullough L.D. Neonatal testosterone exposure protects adult male rats from stroke. Neuroendocrinology 2013 97 3 271 282 10.1159/000343804 23051877
    [Google Scholar]
  87. Cheng J. Alkayed N.J. Hurn P.D. Deleterious effects of dihydrotestosterone on cerebral ischemic injury. J. Cereb. Blood Flow Metab. 2007 27 9 1553 1562 10.1038/sj.jcbfm.9600457 17311081
    [Google Scholar]
  88. Uchida M. Palmateer J.M. Herson P.S. DeVries A.C. Cheng J. Hurn P.D. 2009
/content/journals/cnsamc/10.2174/0118715249354207250429041513
Loading
/content/journals/cnsamc/10.2174/0118715249354207250429041513
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: testosterone ; flutamide ; Cerebral ischemia ; cognitive dysfunction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test