Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Brain ischemia occurs following heart failure, thromboembolism, and atherosclerosis, and it is characterized by the disturbance of blood flow resulting from the blockage of blood vessels. After a series of studies, it is deduced that various changes occur following stroke, including neural death and changes in plasticity. Studies have reported that neurotransmitters tend to change following stroke. These changes that occur surrounding the infarct area following stroke can be considered new therapeutic targets for stroke rehabilitation. Although various studies have reported that different neurotransmitters have a promising role in either the progression or the rehabilitation following stroke, they have not found any pharmacological interventions to help the previous rehabilitation therapeutics. Phytocompounds also offer potential therapeutic benefits in stroke management due to their antioxidative and anti-inflammatory properties. This article aimed to compile recent advancements in neurotransmitter research related to ischemia and explore the potential use of neurotransmitter agonists/antagonists in ischemic conditions to identify potential drug candidates for treating the severe and prolonged stages of stroke in the future.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249302594240801171612
2024-08-19
2025-09-18
Loading full text...

Full text loading...

References

  1. CurcioM. SalazarI.L. MeleM. CanzonieroL.M.T. DuarteC.B. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury.Prog. Neurobiol.201614313510.1016/j.pneurobio.2016.06.001 27283248
    [Google Scholar]
  2. MichinagaS. SonodaK. InazukiN. EzakiM. AwaneH. ShimizuK. HishinumaS. MizuguchiH. Selective histamine H2 receptor agonists alleviate blood-brain barrier disruption by promoting the expression of vascular protective factors following traumatic brain injury in mice.J. Pharmacol. Sci.2022150313514510.1016/j.jphs.2022.08.003 36184118
    [Google Scholar]
  3. PhebusL.A. ClemensJ.A. Effects of transient, global, cerebral ischemia on striatal extracellular dopamine, serotonin and their metabolites.Life Sci.198944191335134210.1016/0024‑3205(89)90390‑1 2469926
    [Google Scholar]
  4. MichalettosG. RuscherK. Crosstalk Between GABAergic Neurotransmission and Inflammatory Cascades in the Post-ischemic Brain: Relevance for Stroke Recovery.Front. Cell. Neurosci.20221680791110.3389/fncel.2022.807911 35401118
    [Google Scholar]
  5. CarterA.R. AstafievS.V. LangC.E. ConnorL.T. RengacharyJ. StrubeM.J. PopeD.L.W. ShulmanG.L. CorbettaM. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke.Ann. Neurol.201067336537510.1002/ana.21905 20373348
    [Google Scholar]
  6. MacKay-LyonsM.J. MakridesL. Longitudinal changes in exercise capacity after stroke11No commercial party having a direct interest in the results of the research supporting this article has or will confer a benefit on the author(s) or on any organization with which the author(s) is/are associated.Arch. Phys. Med. Rehabil.200485101608161210.1016/j.apmr.2004.01.027 15468019
    [Google Scholar]
  7. Bunketorp-KällL. Lundgren-NilssonÅ. SamuelssonH. PeknyT. BlomvéK. PeknaM. PeknyM. BlomstrandC. NilssonM. Long-term improvements after multimodal rehabilitation in late phase after stroke.Stroke20174871916192410.1161/STROKEAHA.116.016433 28619985
    [Google Scholar]
  8. RanjbaranM. ValiR. YaghoobiZ. SehatiF. JashnV. KolurS.M. AkhondzadehF. AshabiG. Adipose-derived mesenchymal stem cells reduced transient cerebral ischemia injury by modulation of inflammatory factors and AMPK signaling.Behav. Brain Res.202243311400110.1016/j.bbr.2022.114001 35809694
    [Google Scholar]
  9. KaviannejadR. KarimianS.M. RiahiE. AshabiG. Using dual polarities of transcranial direct current stimulation in global cerebral ischemia and its following reperfusion period attenuates neuronal injury.Metab. Brain Dis.20223751503151610.1007/s11011‑022‑00985‑8 35499797
    [Google Scholar]
  10. KaviannejadR. KarimianS.M. RiahiE. AshabiG. A single immediate use of the cathodal transcranial direct current stimulation induces neuroprotection of hippocampal region against global cerebral ischemia.J. Stroke Cerebrovasc. Dis.202231310624110.1016/j.jstrokecerebrovasdis.2021.106241 34983004
    [Google Scholar]
  11. CarmichaelS.T. Brain excitability in stroke: The yin and yang of stroke progression.Arch. Neurol.201269216116710.1001/archneurol.2011.1175 21987395
    [Google Scholar]
  12. GrigorasI.F. StaggC.J. Recent advances in the role of excitation–inhibition balance in motor recovery post-stroke.Fac. Rev.2021105810.12703/r/10‑58 34308424
    [Google Scholar]
  13. ChoiD.W. Ionic dependence of glutamate neurotoxicity.J. Neurosci.19877236937910.1523/JNEUROSCI.07‑02‑00369.1987 2880938
    [Google Scholar]
  14. Schwartz-BloomR.D. SahR. γ‐Aminobutyric acid A neurotransmission and cerebral ischemia.J. Neurochem.200177235337110.1046/j.1471‑4159.2001.00274.x 11299298
    [Google Scholar]
  15. LyJ.V. ZavalaJ.A. DonnanG.A. Neuroprotection and thrombolysis: Combination therapy in acute ischaemic stroke.Expert Opin. Pharmacother.20067121571158110.1517/14656566.7.12.1571 16872260
    [Google Scholar]
  16. MenaF.V. BaabP.J. ZielkeC.L. ZielkeH.R. In vivo glutamine hydrolysis in the formation of extracellular glutamate in the injured rat brain.J. Neurosci. Res.200060563264110.1002/(SICI)1097‑4547(20000601)60:5<632::AID‑JNR8>3.0.CO;2‑3 10820434
    [Google Scholar]
  17. GreenA.R. HainsworthA.H. JacksonD.M. GABA potentiation: A logical pharmacological approach for the treatment of acute ischaemic stroke.Neuropharmacology20003991483149410.1016/S0028‑3908(99)00233‑6 10854894
    [Google Scholar]
  18. GlobusM.Y.T. BustoR. MartinezE. ValdésI. DietrichW.D. GinsbergM.D. Comparative effect of transient global ischemia on extracellular levels of glutamate, glycine, and gamma-aminobutyric acid in vulnerable and nonvulnerable brain regions in the rat.J. Neurochem.199157247047810.1111/j.1471‑4159.1991.tb03775.x 2072098
    [Google Scholar]
  19. PhillisJ.W. Smith-BarbourM. PerkinsL.M. O’ReganM.H. Characterization of glutamate, aspartate, and GABA release from ischemic rat cerebral cortex.Brain Res. Bull.199434545746610.1016/0361‑9230(94)90019‑1 7915962
    [Google Scholar]
  20. AibaI. CarlsonA.P. ShelineC.T. ShuttleworthC.W. Synaptic release and extracellular actions of Zn 2+ limit propagation of spreading depression and related events in vitro and in vivo.J. Neurophysiol.201210731032104110.1152/jn.00453.2011 22131381
    [Google Scholar]
  21. AibaI. ShuttleworthC.W. Sustained NMDA receptor activation by spreading depolarizations can initiate excitotoxic injury in metabolically compromised neurons.J. Physiol.2012590225877589310.1113/jphysiol.2012.234476 22907056
    [Google Scholar]
  22. AllenN.J. KáradóttirR. AttwellD. Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy.Pflugers Arch.2004449213214210.1007/s00424‑004‑1318‑x 15338308
    [Google Scholar]
  23. MayorD. TymianskiM. Neurotransmitters in the mediation of cerebral ischemic injury.Neuropharmacology2018134Pt B178188
    [Google Scholar]
  24. AdachiN. Cerebral ischemia and brain histamine.Brain Res. Brain Res. Rev.200550227528610.1016/j.brainresrev.2005.08.002 16181682
    [Google Scholar]
  25. HuW.W. ChenZ. Role of histamine and its receptors in cerebral ischemia.ACS Chem. Neurosci.20123423824710.1021/cn200126p 22860191
    [Google Scholar]
  26. RodriguesF.T.S. de SousaC.N.S. XimenesN.C. AlmeidaA.B. CabralL.M. PatrocínioC.F.V. SilvaA.H. LealL.K.A.M. Honório JúniorJ.E.R. MacedoD. VasconcelosS.M.M. Effects of standard ethanolic extract from Erythrina velutina in acute cerebral ischemia in mice.Biomed. Pharmacother.2017961230123910.1016/j.biopha.2017.11.093 29174035
    [Google Scholar]
  27. BieX. ChenY. HanJ. DaiH. WanH. ZhaoT. Effects of gastrodin on amino acids after cerebral ischemia-reperfusion injury in rat striatum.Asia Pac. J. Clin. Nutr.200716Suppl. 1305308 17392124
    [Google Scholar]
  28. KatsuraM. IinoT. KuriyamaK. Changes in content of neuroactive amino acids and acetylcholine in the rat hippocampus following transient forebrain ischemia.Neurochem. Int.199221224324910.1016/0197‑0186(92)90154‑J 1363866
    [Google Scholar]
  29. ArakiT. KatoH. FujiwaraT. KogureK. ItoyamaY. Post-ischemic changes of [3H]glycine binding in the gerbil brain after cerebral ischemia.Eur. J. Pharmacol.19952782919610.1016/0014‑2999(95)00058‑S 7672005
    [Google Scholar]
  30. GlobusM.Y.T. GinsbergM.D. BustoR. Excitotoxic index — a biochemical marker of selective vulnerability.Neurosci. Lett.19911271394210.1016/0304‑3940(91)90889‑2 1679223
    [Google Scholar]
  31. CostaA. HaageV. YangS. WegnerS. ErsoyB. UgursuB. RexA. KronenbergG. GertzK. EndresM. WolfS.A. KettenmannH. Deletion of muscarinic acetylcholine receptor 3 in microglia impacts brain ischemic injury.Brain Behav. Immun.2021918910410.1016/j.bbi.2020.09.008 32927021
    [Google Scholar]
  32. NazariA. MohamadiA. ImaniA.R. FaghihiM. TarahiM.J. MoghimianM. CheraghiM. Effect of vasopressin on electrocardiographic changes produced by ischemia-reperfusion in rats.Pak. J. Pharm. Sci.202134414091414 34799315
    [Google Scholar]
  33. KleindienstA. DunbarJ.G. GlissonR. MarmarouA. The role of vasopressin V1A receptors in cytotoxic brain edema formation following brain injury.Acta Neurochir. (Wien)2013155115116410.1007/s00701‑012‑1558‑z 23188468
    [Google Scholar]
  34. KurataK. TakebayashiM. MorinobuS. YamawakiS. beta-estradiol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate protect against N-methyl-D-aspartate-induced neurotoxicity in rat hippocampal neurons by different mechanisms.J. Pharmacol. Exp. Ther.2004311123724510.1124/jpet.104.067629 15175425
    [Google Scholar]
  35. IadecolaC. Bright and dark sides of nitric oxide in ischemic brain injury.Trends Neurosci.199720313213910.1016/S0166‑2236(96)10074‑6 9061868
    [Google Scholar]
  36. ZhangJ. BenvenisteH. KlitzmanB. PiantadosiC.A. Nitric oxide synthase inhibition and extracellular glutamate concentration after cerebral ischemia/reperfusion.Stroke199526229830410.1161/01.STR.26.2.298 7530389
    [Google Scholar]
  37. MazerC. MuneyyirciJ. TahenyK. RaioN. BorellaA. Whitaker-AzmitiaP. Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat: A possible model of neurodevelopmental disorders with cognitive deficits.Brain Res.19977601-2687310.1016/S0006‑8993(97)00297‑7 9237519
    [Google Scholar]
  38. NedergaardS. EngbergI. FlatmanJ.A. The modulation of excitatory amino acid responses by serotonin in the cat neocortex in vitro.Cell. Mol. Neurobiol.19877436737910.1007/BF00733789 2897880
    [Google Scholar]
  39. HuangG-J. Interaction of serotonin and corticosterone on neurogenesis in the dentate gyrus of the hippocampus in the adult rat.CambridgeUniversity of Cambridge2005
    [Google Scholar]
  40. WelchK.M.A. GaudetR. WangT.P.F. ChabiE. Transient cerebral ischemia and brain serotonin: Relevance to migraine.Headache197717414514710.1111/j.1526‑4610.1977.hed1704145.x 893085
    [Google Scholar]
  41. MatsunagaK. KleinT.W. FriedmanH. YamamotoY. Involvement of nicotinic acetylcholine receptors in suppression of antimicrobial activity and cytokine responses of alveolar macrophages to Legionella pneumophila infection by nicotine.J. Immunol.2001167116518652410.4049/jimmunol.167.11.6518 11714820
    [Google Scholar]
  42. FurukawaS. SameshimaH. YangL. IkenoueT. Acetylcholine receptor agonist reduces brain damage induced by hypoxia-ischemia in newborn rats.Reprod. Sci.201118217217910.1177/1933719110385129 20959640
    [Google Scholar]
  43. WangQ. YuQ. WuM. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases.Front. Pharmacol.20221394888910.3389/fphar.2022.948889 36133823
    [Google Scholar]
  44. RománG.C. JacksonR.E. GadhiaR. RománA.N. ReisJ. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease.Rev. Neurol. (Paris)20191751072474110.1016/j.neurol.2019.08.005 31521398
    [Google Scholar]
  45. DuX. AminN. XuL. BotchwayB.O.A. ZhangB. FangM. Pharmacological intervention of curcumin via the NLRP3 inflammasome in ischemic stroke.Front. Pharmacol.202314124964410.3389/fphar.2023.1249644 37915409
    [Google Scholar]
  46. ZhouJ. SunF. ZhangW. FengZ. YangY. MeiZ. Novel insight into the therapeutical potential of flavonoids from traditional Chinese medicine against cerebral ischemia/reperfusion injury.Front. Pharmacol.202415135276010.3389/fphar.2024.1352760 38487170
    [Google Scholar]
  47. ZhuT. WangL. WangL.-P. WanQ. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs.Biomed Pharmacother2022148112719
    [Google Scholar]
  48. ChoiD. Glutamate neurotoxicity and diseases of the nervous system.Neuron19881862363410.1016/0896‑6273(88)90162‑6 2908446
    [Google Scholar]
  49. PapazianI. KyrargyriV. EvangelidouM. Voulgari-KokotaA. ProbertL. Mesenchymal stem cell protection of neurons against glutamate excitotoxicity involves reduction of NMDA-Triggered calcium responses and surface GluR1, and is partly mediated by TNF.Int. J. Mol. Sci.201819365110.3390/ijms19030651 29495345
    [Google Scholar]
  50. SattlerR. TymianskiM. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death.Mol. Neurobiol.2001241-310713010.1385/MN:24:1‑3:107 11831548
    [Google Scholar]
  51. Belov KirdajovaD. KriskaJ. TureckovaJ. AnderovaM. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells.Front. Cell. Neurosci.2020145110.3389/fncel.2020.00051 32265656
    [Google Scholar]
  52. BylickyM.A. MuellerG.P. DayR.M. Mechanisms of endogenous neuroprotective effects of astrocytes in brain injury.Oxid. Med. Cell. Longev.2018201811610.1155/2018/6501031 29805731
    [Google Scholar]
  53. AndersonC.M. SwansonR.A. Astrocyte glutamate transport: Review of properties, regulation, and physiological functions.Glia200032111410.1002/1098‑1136(200010)32:1<1::AID‑GLIA10>3.0.CO;2‑W 10975906
    [Google Scholar]
  54. StanimirovicD.B. WongJ. ShapiroA. DurkinJ.P. Increase in surface expression of ICAM-1, VCAM-1 and E-selectin in human cerebromicrovascular endothelial cells subjected to ischemia-like insults.Acta Neurochir. Suppl. (Wien)199770121610.1007/978‑3‑7091‑6837‑0_4 9416264
    [Google Scholar]
  55. TianW. SawyerA. KocaogluF.B. KyriakidesT.R. Astrocyte-derived thrombospondin-2 is critical for the repair of the blood-brain barrier.Am. J. Pathol.2011179286086810.1016/j.ajpath.2011.05.002 21704005
    [Google Scholar]
  56. Karimi-AbdolrezaeeS. BillakantiR. Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects.Mol. Neurobiol.201246225126410.1007/s12035‑012‑8287‑4 22684804
    [Google Scholar]
  57. ThulbornK.R. DavisD. SnyderJ. YonasH. KassamA. Sodium MR imaging of acute and subacute stroke for assessment of tissue viability.Neuroimaging Clin. N. Am.2005153639653, xi-xii10.1016/j.nic.2005.08.00316360594
    [Google Scholar]
  58. ZhangX. ShenX. DongJ. LiuW.C. SongM. SunY. ShuH. TowseC.L. LiuW. LiuC.F. JinX. Inhibition of reactive astrocytes with fluorocitrate ameliorates learning and memory impairment through upregulating CRTC1 and synaptophysin in ischemic stroke rats.Cell. Mol. Neurobiol.20193981151116310.1007/s10571‑019‑00709‑0 31270712
    [Google Scholar]
  59. AmanteaD. BagettaG. Excitatory and inhibitory amino acid neurotransmitters in stroke: From neurotoxicity to ischemic tolerance.Curr. Opin. Pharmacol.20173511111910.1016/j.coph.2017.07.014 28826602
    [Google Scholar]
  60. MartinovM. GusevE. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke.J. Exp. Pharmacol.20157172810.2147/JEP.S63544 27186142
    [Google Scholar]
  61. ParkC.K. NehlsD.G. GrahamD.I. TeasdaleG.M. McCullochJ. The glutamate antagonist MK‐801 reduces focal ischemic brain damage in the rat.Ann. Neurol.198824454355110.1002/ana.410240411 2853604
    [Google Scholar]
  62. López-ValdésH.E. ClarksonA.N. AoY. CharlesA.C. CarmichaelS.T. SofroniewM.V. BrennanK.C. Memantine enhances recovery from stroke.Stroke20144572093210010.1161/STROKEAHA.113.004476 24938836
    [Google Scholar]
  63. WangY. Sanchez-MendozaE.H. DoeppnerT.R. HermannD.M. Post-acute delivery of memantine promotes post-ischemic neurological recovery, peri-infarct tissue remodeling, and contralesional brain plasticity.J. Cereb. Blood Flow Metab.201737398099310.1177/0271678X16648971 27170698
    [Google Scholar]
  64. BordiF. PietraC. ZivianiL. ReggianiA. The glycine antagonist GV150526 protects somatosensory evoked potentials and reduces the infarct area in the MCAo model of focal ischemia in the rat.Exp. Neurol.1997145242543310.1006/exnr.1997.6442 9217078
    [Google Scholar]
  65. KimK.T. ChungK.J. LeeH.S. KoI.G. KimC.J. NaY.G. KimK.H. Neuroprotective effects of tadalafil on gerbil dopaminergic neurons following cerebral ischemia.Neural Regen. Res.201388693701 25206715
    [Google Scholar]
  66. UoT. DworzakJ. KinoshitaC. InmanD.M. KinoshitaY. HornerP.J. MorrisonR.S. Drp1 levels constitutively regulate mitochondrial dynamics and cell survival in cortical neurons.Exp. Neurol.2009218227428510.1016/j.expneurol.2009.05.010 19445933
    [Google Scholar]
  67. GrohmJ. KimS-W. MamrakU. TobabenS. Cassidy-StoneA. NunnariJ. PlesnilaN. CulmseeC. Inhibition of Drp1 provides neuroprotection in vitro and in vivo.Cell Death Differ.20121991446145810.1038/cdd.2012.18 22388349
    [Google Scholar]
  68. ZhaoY.X. CuiM. ChenS.F. DongQ. LiuX.Y. Amelioration of ischemic mitochondrial injury and Bax-dependent outer membrane permeabilization by Mdivi-1.CNS Neurosci. Ther.201420652853810.1111/cns.12266 24712408
    [Google Scholar]
  69. VarmaN. CarlsonG.C. LedentC. AlgerB.E. Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus.J. Neurosci.20012124RC18810.1523/JNEUROSCI.21‑24‑j0003.2001 11734603
    [Google Scholar]
  70. HillardC. Role of cannabinoids and endocannabinoids in cerebral ischemia.Curr. Pharm. Des.200814232347236110.2174/138161208785740054 18781985
    [Google Scholar]
  71. ZrzavyT. Machado-SantosJ. ChristineS. BaumgartnerC. WeinerH.L. ButovskyO. LassmannH. Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts.Brain Pathol.201828679180510.1111/bpa.12583 29222823
    [Google Scholar]
  72. PiniA. MannaioniG. Pellegrini-GiampietroD. Beatrice PassaniM. MastroianniR. BaniD. MasiniE. The role of cannabinoids in inflammatory modulation of allergic respiratory disorders, inflammatory pain and ischemic stroke.Curr. Drug Targets201213798499310.2174/138945012800675786 22420307
    [Google Scholar]
  73. LanghauserF. GöbE. KraftP. GeisC. SchmittJ. BredeM. GöbelK. HelluyX. PhamM. BendszusM. JakobP. StollG. MeuthS.G. NieswandtB. McCraeK.R. KleinschnitzC. Kininogen deficiency protects from ischemic neurodegeneration in mice by reducing thrombosis, blood-brain barrier damage, and inflammation.Blood2012120194082409210.1182/blood‑2012‑06‑440057 22936662
    [Google Scholar]
  74. BovenziV. SavardM. MorinJ. CuerrierC.M. GrandboisM. GobeilF.Jr Bradykinin protects against brain microvascular endothelial cell death induced by pathophysiological stimuli.J. Cell. Physiol.2010222116817610.1002/jcp.21933 19780024
    [Google Scholar]
  75. KobayashiN. DeLanoF.A. Schmid-SchönbeinG.W. Oxidative stress promotes endothelial cell apoptosis and loss of microvessels in the spontaneously hypertensive rats.Arterioscler. Thromb. Vasc. Biol.200525102114212110.1161/01.ATV.0000178993.13222.f2 16037565
    [Google Scholar]
  76. MartinsA.H. AlvesJ.M. PerezD. CarrascoM. Torres-RiveraW. EterovićV.A. FerchminP.A. UlrichH. Kinin-B2 receptor mediated neuroprotection after NMDA excitotoxicity is reversed in the presence of kinin-B1 receptor agonists.PLoS One201272e3075510.1371/journal.pone.0030755 22348022
    [Google Scholar]
  77. YangZ.B. ZhangZ. LiT.B. LouZ. LiS.Y. YangH. YangJ. LuoX.J. PengJ. Up-regulation of brain-enriched miR-107 promotes excitatory neurotoxicity through down-regulation of glutamate transporter-1 expression following ischaemic stroke.Clin. Sci. (Lond.)20141271267968910.1042/CS20140084 24943094
    [Google Scholar]
  78. HarrazM.M. EackerS.M. WangX. DawsonT.M. DawsonV.L. MicroRNA-223 is neuroprotective by targeting glutamate receptors.Proc. Natl. Acad. Sci. USA201210946189621896710.1073/pnas.1121288109 23112146
    [Google Scholar]
  79. BicklerP.E. HansenB.M. α2-Adrenergic agonists reduce glutamate release and glutamate receptor-mediated calcium changes in hippocampal slices during hypoxia.Neuropharmacology199635667968710.1016/0028‑3908(96)84639‑9 8887976
    [Google Scholar]
  80. GoyagiT. NishikawaT. TobeY. MasakiY. The combined neuroprotective effects of lidocaine and dexmedetomidine after transient forebrain ischemia in rats.Acta Anaesthesiol. Scand.20095391176118310.1111/j.1399‑6576.2009.01976.x 19388884
    [Google Scholar]
  81. LiuL. LiuH. YangF. ChenG. ZhouH. TangM. ZhangR. DongQ. Tissue kallikrein protects cortical neurons against hypoxia/reoxygenation injury via the ERK1/2 pathway.Biochem. Biophys. Res. Commun.2011407228328710.1016/j.bbrc.2011.02.112 21376701
    [Google Scholar]
  82. LiuL. ZhangR. LiuK. ZhouH. YangX. LiuX. TangM. SuJ. DongQ. Tissue kallikrein protects cortical neurons against in vitro ischemia-acidosis/reperfusion-induced injury through the ERK1/2 pathway.Exp. Neurol.2009219245346510.1016/j.expneurol.2009.06.021 19576887
    [Google Scholar]
  83. Gürsoy-ÖzdemirY. CanA. DalkaraT. Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia.Stroke20043561449145310.1161/01.STR.0000126044.83777.f4 15073398
    [Google Scholar]
  84. SquadritoG.L. CuetoR. SplenserA.E. ValavanidisA. ZhangH. UppuR.M. PryorW.A. Reaction of uric acid with peroxynitrite and implications for the mechanism of neuroprotection by uric acid.Arch. Biochem. Biophys.2000376233333710.1006/abbi.2000.1721 10775420
    [Google Scholar]
  85. WuL. LiuZ.J. MiaoS. ZouL.B. CaiL. WuP. YeD.Y. WuQ. LiH.H. Lipoxin A 4 ameliorates cerebral ischaemia/reperfusion injury through upregulation of nuclear factor erythroid 2-related factor 2.Neurol. Res.201335996897510.1179/1743132813Y.0000000242 23880501
    [Google Scholar]
  86. RehncronaS. Brain acidosis.Ann. Emerg. Med.198514877077610.1016/S0196‑0644(85)80055‑X 3927794
    [Google Scholar]
  87. SwansonR.A. FarrellK. SimonR.P. Acidosis causes failure of astrocyte glutamate uptake during hypoxia.J. Cereb. Blood Flow Metab.199515341742410.1038/jcbfm.1995.52 7713999
    [Google Scholar]
  88. GaoJ. DuanB. WangD.G. DengX.H. ZhangG.Y. XuL. XuT.L. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death.Neuron200548463564610.1016/j.neuron.2005.10.011 16301179
    [Google Scholar]
  89. PignataroG. SimonR.P. XiongZ.G. Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia.Brain2007130Pt 1151158 17114797
    [Google Scholar]
  90. YangZ.J. NiX. CarterE.L. KiblerK. MartinL.J. KoehlerR.C. Neuroprotective effect of acid-sensing ion channel inhibitor psalmotoxin-1 after hypoxia–ischemia in newborn piglet striatum.Neurobiol. Dis.201143244645410.1016/j.nbd.2011.04.018 21558004
    [Google Scholar]
  91. WuX. LiuY. ChenX. SunQ. TangR. WangW. YuZ. XieM. Involvement of TREK-1 activity in astrocyte function and neuroprotection under simulated ischemia conditions.J. Mol. Neurosci.201349349950610.1007/s12031‑012‑9875‑5 22895843
    [Google Scholar]
  92. FranksN.P. HonoréE. The TREK K2P channels and their role in general anaesthesia and neuroprotection.Trends Pharmacol. Sci.2004251160160810.1016/j.tips.2004.09.003 15491783
    [Google Scholar]
  93. LeeB.K. LeeD.H. ParkS. ParkS.L. YoonJ.S. LeeM.G. LeeS. YiK.Y. YooS.E. LeeK.H. KimY.S. LeeS.H. BaikE.J. MoonC.H. JungY.S. Effects of KR-33028, a novel Na+/H+ exchanger-1 inhibitor, on glutamate-induced neuronal cell death and ischemia-induced cerebral infarct.Brain Res.20091248223010.1016/j.brainres.2008.10.061 19022230
    [Google Scholar]
  94. LengT. ShiY. XiongZ.G. SunD. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: New therapeutic targets for stroke?Prog. Neurobiol.201411518920910.1016/j.pneurobio.2013.12.008 24467911
    [Google Scholar]
  95. MatsumotoY. YamamotoS. SuzukiY. TsuboiT. TerakawaS. OhashiN. UmemuraK. Na+/H+ exchanger inhibitor, SM-20220, is protective against excitotoxicity in cultured cortical neurons.Stroke200435118519010.1161/01.STR.0000106910.42815.C2 14671239
    [Google Scholar]
  96. KintnerD.B. SuG. LenartB. BallardA.J. MeyerJ.W. NgL.L. ShullG.E. SunD. Increased tolerance to oxygen and glucose deprivation in astrocytes from Na(+)/H(+) exchanger isoform 1 null mice.Am. J. Physiol. Cell Physiol.20042871C12C21
    [Google Scholar]
  97. ButenkoO. DzambaD. BenesovaJ. HonsaP. BenfenatiV. RusnakovaV. FerroniS. AnderovaM. The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia.PLoS One201276e3995910.1371/journal.pone.0039959 22761937
    [Google Scholar]
  98. GaoZ.B. ChenX.Q. HuG.Y. Inhibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampus.Brain Res.200611111414710.1016/j.brainres.2006.06.096 16876771
    [Google Scholar]
  99. LiZ. PangL. FangF. ZhangG. ZhangJ. XieM. WangL. Resveratrol attenuates brain damage in a rat model of focal cerebral ischemia via up-regulation of hippocampal Bcl-2.Brain Res.2012145011612410.1016/j.brainres.2012.02.019 22410291
    [Google Scholar]
  100. AartsM. IiharaK. WeiW.L. XiongZ.G. ArundineM. CerwinskiW. MacDonaldJ.F. TymianskiM. A key role for TRPM7 channels in anoxic neuronal death.Cell2003115786387710.1016/S0092‑8674(03)01017‑1 14697204
    [Google Scholar]
  101. LinJ. XiongZ.G. TRPM7 is a unique target for therapeutic intervention of stroke.Int. J. Physiol. Pathophysiol. Pharmacol.201796211216 29348798
    [Google Scholar]
  102. PaikN.J. YangE. Role of GABA plasticity in stroke recovery.Neural Regen. Res.20149232026202810.4103/1673‑5374.147920 25657711
    [Google Scholar]
  103. PhillipsS.J. Pathophysiology and management of hypertension in acute ischemic stroke.Hypertension199423113113610.1161/01.HYP.23.1.131 8282324
    [Google Scholar]
  104. NitschC. GopingG. KlatzoI. Preservation of GABAergic perikarya and boutons after transient ischemia in the gerbil hippocampal CA1 field.Brain Res.1989495224325210.1016/0006‑8993(89)90218‑7 2765929
    [Google Scholar]
  105. GonzalesC. LinR.C.S. ChesseletM.F. Relative sparing of GABAergic interneurons in the striatum of gerbils with ischemia-induced lesions.Neurosci. Lett.19921351535810.1016/0304‑3940(92)90134‑S 1542438
    [Google Scholar]
  106. MittmannT. QüM. ZillesK. LuhmannH.J. Long-term cellular dysfunction after focal cerebral ischemia: In vitro analyses.Neuroscience1998851152710.1016/S0306‑4522(97)00638‑6 9607699
    [Google Scholar]
  107. BazanN.G. Naural Responses to Injury: Prevention, Protection, and Repair. Revised. Volume 4. Neurochemical Protection of the Brain, Neural Plasticity and RepairSchool of Medicine - LSU Health New OrleansNew Orleans1997212
    [Google Scholar]
  108. SahR. Schwartz-BloomR.D. Optical imaging reveals elevated intracellular chloride in hippocampal pyramidal neurons after oxidative stress.J. Neurosci.199919219209921710.1523/JNEUROSCI.19‑21‑09209.1999 10531424
    [Google Scholar]
  109. RegoA.C. SantosM.S. OliveiraC.R. Oxidative stress, hypoxia, and ischemia-like conditions increase the release of endogenous amino acids by distinct mechanisms in cultured retinal cells.J. Neurochem.19966662506251610.1046/j.1471‑4159.1996.66062506.x 8632176
    [Google Scholar]
  110. SchwartzR.D. YuX. WagnerJ. EhrmannM. MilesonB.E. Cellular regulation of the benzodiazepine/GABA receptor: Arachidonic acid, calcium, and cerebral ischemia.Neuropsychopharmacology199262119125 1319167
    [Google Scholar]
  111. Schwartz-BloomR.D. CookT.A. YuX. Inhibition of GABA-gated chloride channels in brain by the arachidonic acid metabolite, thromboxane A2.Neuropharmacology1996359-101347135310.1016/S0028‑3908(96)00059‑7 9014151
    [Google Scholar]
  112. KittlerJ.T. ChenG. HoningS. BogdanovY. McAinshK. Arancibia-CarcamoI.L. JovanovicJ.N. PangalosM.N. HauckeV. YanZ. MossS.J. Phospho-dependent binding of the clathrin AP2 adaptor complex to GABA A receptors regulates the efficacy of inhibitory synaptic transmission.Proc. Natl. Acad. Sci. USA200510241148711487610.1073/pnas.0506653102 16192353
    [Google Scholar]
  113. MontoriS. Dos AnjosS. PooleA. Regueiro-PurriñosM.M. LlorenteI.L. DarlisonM.G. Fernández-LópezA. Martínez-VillayandreB. Differential effect of transient global ischaemia on the levels of γ-aminobutyric acid type A (GABA(A)) receptor subunit mRNAs in young and older rats.Neuropathol. Appl. Neurobiol.201238771072210.1111/j.1365‑2990.2012.01254.x 22289121
    [Google Scholar]
  114. GhitA. AssalD. Al-ShamiA.S. HusseinD.E.E. GABAA receptors: Structure, function, pharmacology, and related disorders.J. Genet. Eng. Biotechnol.202119112310.1186/s43141‑021‑00224‑0 34417930
    [Google Scholar]
  115. WalkerM.C. GABA A receptor subunit specificity: A tonic for the excited brain.J. Physiol.2008586492192210.1113/jphysiol.2007.150581 18287385
    [Google Scholar]
  116. ClarksonA.N. HuangB.S. MacIsaacS.E. ModyI. CarmichaelS.T. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke.Nature2010468732130530910.1038/nature09511 21048709
    [Google Scholar]
  117. GlykysJ. ModyI. Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABA A receptor alpha5 subunit-deficient mice.J. Neurophysiol.20069552796280710.1152/jn.01122.2005 16452257
    [Google Scholar]
  118. LiepertJ. GraefS. UhdeI. LeidnerO. WeillerC. Training-induced changes of motor cortex representations in stroke patients.Acta Neurol. Scand.2000101532132610.1034/j.1600‑0404.2000.90337a.x 10987321
    [Google Scholar]
  119. LazarR.M. BermanM.F. FestaJ.R. GellerA.E. MatejovskyT.G. MarshallR.S. GABAergic but not anti-cholinergic agents re-induce clinical deficits after stroke.J. Neurol. Sci.20102921-2727610.1016/j.jns.2010.01.024 20172537
    [Google Scholar]
  120. SchwartzR.D. YuX. KatzmanM.R. Hayden-HixsonD.M. PerryJ.M. Diazepam, given postischemia, protects selectively vulnerable neurons in the rat hippocampus and striatum.J. Neurosci.199515152953910.1523/JNEUROSCI.15‑01‑00529.1995 7823161
    [Google Scholar]
  121. PhillisJ.W. A “radical” view of cerebral ischemic injury.Prog. Neurobiol.199442444144810.1016/0301‑0082(94)90046‑9 8090929
    [Google Scholar]
  122. NakataN. KatoH. KogureK. Effects of repeated cerebral ischemia on extracellular amino acid concentrations measured with intracerebral microdialysis in the gerbil hippocampus.Stroke199324345846310.1161/01.STR.24.3.458 8446983
    [Google Scholar]
  123. VemugantiR. Decreased expression of vesicular GABA transporter, but not vesicular glutamate, acetylcholine and monoamine transporters in rat brain following focal ischemia.Neurochem. Int.2005471-213614210.1016/j.neuint.2005.04.015 15936116
    [Google Scholar]
  124. GaleffiF. SinnarS. Schwartz-BloomR.D. Diazepam promotes ATP recovery and prevents cytochrome c release in hippocampal slices after in vitro ischemia.J. Neurochem.20007531242124910.1046/j.1471‑4159.2000.0751242.x 10936207
    [Google Scholar]
  125. MacGregorD.G. GrahamD.I. StoneT.W. The attenuation of kainate-induced neurotoxicity by chlormethiazole and its enhancement by dizocilpine, muscimol, and adenosine receptor agonists.Exp. Neurol.1997148111012310.1006/exnr.1997.6625 9398454
    [Google Scholar]
  126. LiuJ. WangL.N. MaX. JiX. Gamma aminobutyric acid (GABA) receptor agonists for acute stroke.Cochrane Libr.20161010CD00962210.1002/14651858.CD009622.pub4 27701753
    [Google Scholar]
  127. OnoderaH. SatoG. KogureK. GABA and benzodiazepine receptors in the gerbil brain after transient ischemia: Demonstration by quantitative receptor autoradiography.J. Cereb. Blood Flow Metab.198771828810.1038/jcbfm.1987.12 3027112
    [Google Scholar]
  128. SydserffS.G. CrossA.J. WestK.J. GreenA.R. The effect of chlormethiazole on neuronal damage in a model of transient focal ischaemia.Br. J. Pharmacol.199511481631163510.1111/j.1476‑5381.1995.tb14950.x 7599933
    [Google Scholar]
  129. CrossA.J. JonesJ.A. SnaresM. JostellK.G. BredbergU. GreenA.R. The protective action of chlormethiazole against ischaemia‐induced neurodegeneration in gerbils when infused at doses having little sedative or anticonvulsant activity.Br. J. Pharmacol.199511481625163010.1111/j.1476‑5381.1995.tb14949.x 7599932
    [Google Scholar]
  130. LiangS.P. KanthanR. ShuaibA. WishartT. Effects of clomethiazole on radial-arm maze performance following global forebrain ischemia in gerbils.Brain Res.1997751218919510.1016/S0006‑8993(96)01292‑9 9099805
    [Google Scholar]
  131. Schwartz-BloomR.D. McDonoughK.J. ChaseP.J. ChadwickL.E. InglefieldJ.R. LevinE.D. Long-term neuroprotection by benzodiazepine full versus partial agonists after transient cerebral ischemia in the gerbil [corrected].J. Cereb. Blood Flow Metab.199818554855810.1097/00004647‑199805000‑00010 9591847
    [Google Scholar]
  132. InglefieldJ.R. PerryJ.M. SchwartzR.D. Postischemic inhibition of GABA reuptake by tiagabine slows neuronal death in the gerbil hippocampus.Hippocampus19955546046810.1002/hipo.450050508 8773258
    [Google Scholar]
  133. HallE.D. AndrusP.K. FleckT.J. OostveenJ.A. CarterD.B. JacobsenE.J. Neuroprotective properties of the benzodiazepine receptor, partial agonist PNU-101017 in the gerbil forebrain ischemia model.J. Cereb. Blood Flow Metab.199717887588310.1097/00004647‑199708000‑00006 9290585
    [Google Scholar]
  134. Bell-HornerC.L. DohiA. NguyenQ. DillonG.H. SinghM. ERK/MAPK pathway regulates GABAA receptors.J. Neurobiol.200666131467147410.1002/neu.20327 17013930
    [Google Scholar]
  135. LiW. HuangR. ShettyR.A. ThangthaengN. LiuR. ChenZ. SumienN. RutledgeM. DillonG.H. YuanF. ForsterM.J. SimpkinsJ.W. YangS.H. Transient focal cerebral ischemia induces long-term cognitive function deficit in an experimental ischemic stroke model.Neurobiol. Dis.201359182510.1016/j.nbd.2013.06.014 23845275
    [Google Scholar]
  136. MeythalerJ.M. Guin-RenfroeS. BrunnerR.C. HadleyM.N. Intrathecal baclofen for spastic hypertonia from stroke.Stroke20013292099210910.1161/hs0901.095682 11546903
    [Google Scholar]
  137. XuZ.C. PulsinelliW.A. Responses of CA1 pyramidal neurons in rat hippocampus to transient forebrain ischemia: An in vivo intracellular recording study.Neurosci. Lett.19941711-218719110.1016/0304‑3940(94)90636‑X 8084488
    [Google Scholar]
  138. CorbettD. LarsenJ. LangdonK.D. Diazepam delays the death of hippocampal CA1 neurons following global ischemia.Exp. Neurol.2008214230931410.1016/j.expneurol.2008.08.018 18834881
    [Google Scholar]
  139. KanekoY. PappasC. TajiriN. BorlonganC.V. Oxytocin modulates GABAAR subunits to confer neuroprotection in stroke in vitro.Sci. Rep.2016613565910.1038/srep35659 27767042
    [Google Scholar]
  140. JuenemannM. BraunT. SchleicherN. YeniguenM. SchrammP. GerrietsT. RitschelN. BachmannG. ObertM. SchoenburgM. KapsM. TschernatschM. Neuroprotective mechanisms of erythropoietin in a rat stroke model.Transl. Neurosci.2020111485910.1515/tnsci‑2020‑0008 33312715
    [Google Scholar]
  141. JensenM.L. WaffordK.A. BrownA.R. BelelliD. LambertJ.J. MirzaN.R. A study of subunit selectivity, mechanism and site of action of the delta selective compound 2 (DS2) at human recombinant and rodent native GABA A receptors.Br. J. Pharmacol.201316851118113210.1111/bph.12001 23061935
    [Google Scholar]
  142. NeumannS. Boothman-BurrellL. GowingE.K. JacobsenT.A. AhringP.K. YoungS.L. Sandager-NielsenK. ClarksonA.N. The Delta-Subunit Selective GABAA Receptor Modulator, DS2, Improves Stroke Recovery via an Anti-inflammatory Mechanism.Front. Neurosci.201913113310.3389/fnins.2019.01133 31736685
    [Google Scholar]
  143. Becerra-CalixtoA. Cardona-GómezG.P. The role of astrocytes in neuroprotection after brain stroke: potential in cell therapy.Front. Mol. Neurosci.2017108810.3389/fnmol.2017.00088 28420961
    [Google Scholar]
  144. LydenP. WahlgrenN.G. Mechanisms of action of neuroprotectants in stroke.J. Stroke Cerebrovasc. Dis.20009691410.1053/jscd.2000.19316 17895214
    [Google Scholar]
  145. JohnstoneA. LevensteinJ.M. HinsonE.L. StaggC.J. Neurochemical changes underpinning the development of adjunct therapies in recovery after stroke: A role for GABA?J. Cereb. Blood Flow Metab.20183891564158310.1177/0271678X17727670 28929902
    [Google Scholar]
  146. CirilloJ. MooneyR.A. AckerleyS.J. BarberP.A. BorgesV.M. ClarksonA.N. MangoldC. RenA. SmithM.C. StinearC.M. ByblowW.D. Neurochemical balance and inhibition at the subacute stage after stroke.J. Neurophysiol.202012351775179010.1152/jn.00561.2019 32186435
    [Google Scholar]
  147. TalhadaD. SantosC.R.A. GonçalvesI. RuscherK. Thyroid Hormones in the Brain and Their Impact in Recovery Mechanisms After Stroke.Front. Neurol.201910110310.3389/fneur.2019.01103 31681160
    [Google Scholar]
  148. FangQ. HuW.W. WangX.F. YangY. LouG.D. JinM.M. YanH.J. ZengW.Z. ShenY. ZhangS.H. XuT.L. ChenZ. Histamine up-regulates astrocytic glutamate transporter 1 and protects neurons against ischemic injury.Neuropharmacology20147715616610.1016/j.neuropharm.2013.06.012 23791559
    [Google Scholar]
  149. HiragaN. AdachiN. LiuK. NagaroT. AraiT. Suppression of inflammatory cell recruitment by histamine receptor stimulation in ischemic rat brains.Eur. J. Pharmacol.20075572-323624410.1016/j.ejphar.2006.11.020 17169356
    [Google Scholar]
  150. JiangL. ChengL. ChenH. DaiH. AnD. MaQ. ZhengY. ZhangX. HuW. ChenZ. Histamine H2 receptor negatively regulates oligodendrocyte differentiation in neonatal hypoxic-ischemic white matter injury.J. Exp. Med.20212181e2019136510.1084/jem.20191365 32991666
    [Google Scholar]
  151. HamamiG. AdachiN. LiuK. AraiT. Alleviation of ischemic neuronal damage by histamine H2 receptor stimulation in the rat striatum.Eur. J. Pharmacol.20044842-316717310.1016/j.ejphar.2003.11.006 14744600
    [Google Scholar]
  152. NicolettiC. TemblayJ.N. IvoryK. The immune system and allergic responses to food.Managing Allergens in Food MillsC. WichersH. Hoffmann-SommergruberK. Woodhead Publishing Sawston, United Kingdom2007294610.1533/9781845692278.1.29
    [Google Scholar]
  153. VirdiJ.K. BhanotA. JaggiA.S. AgarwalN. Investigation on beneficial role of L -carnosine in neuroprotective mechanism of ischemic postconditioning in mice: possible role of histidine histamine pathway.Int. J. Neurosci.20201301098399810.1080/00207454.2020.1715393 31951767
    [Google Scholar]
  154. YanH. ZhangX. HuW. MaJ. HouW. ZhangX. WangX. GaoJ. ShenY. LvJ. OhtsuH. HanF. WangG. ChenZ. Histamine H3 receptors aggravate cerebral ischaemic injury by histamine-independent mechanisms.Nat. Commun.201451333410.1038/ncomms4334 24566390
    [Google Scholar]
  155. FanL. ChenY. LiaoR. ZhaoY. ZhangX. ChenZ. JiangL. HuW. Antagonism of histamine H3 receptor promotes angiogenesis following focal cerebral ischemia.Acta Pharmacol. Sin.202243112807281610.1038/s41401‑022‑00916‑4 35581293
    [Google Scholar]
  156. BaeO.N. MajidA. Role of histidine/histamine in carnosine-induced neuroprotection during ischemic brain damage.Brain Res.2013152724625410.1016/j.brainres.2013.07.004 23850642
    [Google Scholar]
  157. DettoriI. GavianoL. MelaniA. LucariniL. DuranteM. MasiniE. PedataF. A selective histamine H4 receptor antagonist, JNJ7777120, is protective in a rat model of transient cerebral ischemia.Front. Pharmacol.20189123110.3389/fphar.2018.01231 30420807
    [Google Scholar]
  158. LiuX. [An experimental study of arginine vasopressin on acute ischemic brain edema in gerbils (1)].Zhonghua Shen Jing Jing Shen Ke Za Zhi1992254232254
    [Google Scholar]
  159. VakiliA. KataokaH. PlesnilaN. Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia.J. Cereb. Blood Flow Metab.20052581012101910.1038/sj.jcbfm.9600097 15744246
    [Google Scholar]
  160. AmeliP.A. AmeliN.J. GubernickD.M. AnsariS. MohanS. SatriotomoI. BuckleyA.K. MaxwellC.W.Jr NayakV.H. Shushrutha HednaV. Role of vasopressin and its antagonism in stroke related edema.J. Neurosci. Res.20149291091109910.1002/jnr.23407 24823792
    [Google Scholar]
  161. LiuX. NakayamaS. Amiry-MoghaddamM. OttersenO.P. BhardwajA. Arginine-vasopressin V1 but not V2 receptor antagonism modulates infarct volume, brain water content, and aquaporin-4 expression following experimental stroke.Neurocrit. Care201012112413110.1007/s12028‑009‑9277‑x 19806476
    [Google Scholar]
  162. DickinsonL.D. BetzA.L. Attenuated development of ischemic brain edema in vasopressin-deficient rats.J. Cereb. Blood Flow Metab.199212468169010.1038/jcbfm.1992.93 1618946
    [Google Scholar]
  163. ZeynalovE. JonesS.M. SeoJ.W. SnellL.D. ElliottJ.P. Arginine-Vasopressin Receptor Blocker Conivaptan Reduces Brain Edema and Blood-Brain Barrier Disruption after Experimental Stroke in Mice.PLoS One2015108e013612110.1371/journal.pone.0136121 26275173
    [Google Scholar]
  164. TraboldR. KriegS. SchöllerK. PlesnilaN. Role of vasopressin V(1a) and V2 receptors for the development of secondary brain damage after traumatic brain injury in mice.J. Neurotrauma200825121459146510.1089/neu.2008.0597 19118456
    [Google Scholar]
  165. YamagataK. YamamotoM. KawakamiK. OharaH. NabikaT. Arginine vasopressin regulated ASCT1 expression in astrocytes from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats.Neuroscience201426727728510.1016/j.neuroscience.2014.02.039 24613720
    [Google Scholar]
  166. ZhaoX.Y. WuC.F. YangJ. GaoY. SunF.J. WangD.X. WangC.H. LinB.C. Effect of arginine vasopressin on the cortex edema in the ischemic stroke of Mongolian gerbils.Neuropeptides201551556210.1016/j.npep.2015.01.003 25843346
    [Google Scholar]
  167. IkedaY. TodaS. KawamotoT. TeramotoA. Arginine vasopressin release inhibitor RU51599 attenuates brian oedema following transient forebrain ischaemia in rats.Acta Neurochir. (Wien)1997139121166117210.1007/BF01410978 9479424
    [Google Scholar]
  168. ShuaibA. Xu WangC. YangT. NoorR. Effects of nonpeptide V(1) vasopressin receptor antagonist SR-49059 on infarction volume and recovery of function in a focal embolic stroke model.Stroke200233123033303710.1161/01.STR.0000039405.31526.06 12468809
    [Google Scholar]
  169. CuiD. JiaS. LiT. LiD. WangX. LiuX. WangY.F. Alleviation of brain injury by applying TGN-020 in the supraoptic nucleus via inhibiting vasopressin neurons in rats of focal ischemic stroke.Life Sci.202126411868310.1016/j.lfs.2020.118683 33127515
    [Google Scholar]
  170. MohammadiM.T. DehghaniG.A. Nitric oxide as a regulatory factor for aquaporin-1 and 4 gene expression following brain ischemia/reperfusion injury in rat.Pathol. Res. Pract.20152111434910.1016/j.prp.2014.07.014 25441658
    [Google Scholar]
  171. LapchakP.A. ChapmanD.F. NunezS.Y. ZivinJ.A. Dehydroepiandrosterone sulfate is neuroprotective in a reversible spinal cord ischemia model: Possible involvement of GABA(A) receptors.Stroke20003181953195710.1161/01.STR.31.8.1953 10926963
    [Google Scholar]
  172. LiZ. CuiS. ZhangZ. ZhouR. GeY. SokabeM. ChenL. DHEA-neuroprotection and -neurotoxicity after transient cerebral ischemia in rats.J. Cereb. Blood Flow Metab.200929228729610.1038/jcbfm.2008.118 18854841
    [Google Scholar]
  173. YabukiY. ShinodaY. IzumiH. IkunoT. ShiodaN. FukunagaK. Dehydroepiandrosterone administration improves memory deficits following transient brain ischemia through sigma-1 receptor stimulation.Brain Res.2015162210211310.1016/j.brainres.2015.05.006 26119915
    [Google Scholar]
  174. LiH. KleinG. SunP. BuchanA.M. Dehydroepiandrosterone (DHEA) reduces neuronal injury in a rat model of global cerebral ischemia.Brain Res.2001888226326610.1016/S0006‑8993(00)03077‑8 11150483
    [Google Scholar]
  175. LiZ. ZhouR. CuiS. XieG. CaiW. SokabeM. ChenL. Dehydroepiandrosterone sulfate prevents ischemia-induced impairment of long-term potentiation in rat hippocampal CA1 by up-regulating tyrosine phosphorylation of NMDA receptor.Neuropharmacology200651595896610.1016/j.neuropharm.2006.06.007 16895729
    [Google Scholar]
  176. ZaricM. DrakulicD. DragicM. Gusevac StojanovicI. MitrovicN. GrkovicI. MartinovicJ. Molecular Alterations and Effects of Acute Dehydroepiandrosterone Treatment Following Brief Bilateral Common Carotid Artery Occlusion: Relevance to Transient Ischemic Attack.Neuroscience201941012813910.1016/j.neuroscience.2019.05.006 31095985
    [Google Scholar]
  177. MalikA.S. NarayanR.K. WendlingW.W. ColeR.W. PashkoL.L. SchwartzA.G. StraussK.I. A novel dehydroepiandrosterone analog improves functional recovery in a rat traumatic brain injury model.J. Neurotrauma200320546347610.1089/089771503765355531 12803978
    [Google Scholar]
  178. SakrH.F. KhalilK.I. HusseinA.M. ZakiM.S. EidR.A. AlkhateebM. Effect of dehydroepiandrosterone (DHEA) on memory and brain derived neurotrophic factor (BDNF) in a rat model of vascular dementia.J. Physiol. Pharmacol.20146514153 24622829
    [Google Scholar]
  179. BuissonA. MargaillI. CallebertJ. PlotkineM. BouluR.G. Mechanisms involved in the neuroprotective activity of a nitric oxide synthase inhibitor during focal cerebral ischemia.J. Neurochem.199361269069610.1111/j.1471‑4159.1993.tb02174.x 7687658
    [Google Scholar]
  180. ZhangZ.G. ChoppM. ZalogaC. PollockJ.S. FörstermannU. Cerebral endothelial nitric oxide synthase expression after focal cerebral ischemia in rats.Stroke199324122016202110.1161/01.STR.24.12.2016 7504335
    [Google Scholar]
  181. FukuyamaN. TakizawaS. IshidaH. HoshiaiK. ShinoharaY. NakazawaH. Peroxynitrite formation in focal cerebral ischemia-reperfusion in rats occurs predominantly in the peri-infarct region.J. Cereb. Blood Flow Metab.199818212312910.1097/00004647‑199802000‑00001 9469153
    [Google Scholar]
  182. Gang ZhangZ. ChoppM. GautmanS. ZalogaC. Lan ZhangR. SchmidtH.H.H.W. PollackJ.S. FörstermannU. Upregulation of neuronal nitric oxide synthase and mRNA, and selective sparing of nitric oxide synthase-containing neurons after local cerebral ischemia in rat.Brain Res.19946541859510.1016/0006‑8993(94)91574‑1 7526966
    [Google Scholar]
  183. HuangZ. HuangP.L. PanahianN. DalkaraT. FishmanM.C. MoskowitzM.A. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase.Science199426551801883188510.1126/science.7522345 7522345
    [Google Scholar]
  184. DalkaraT. YoshidaT. IrikuraK. MoskowitzM.A. Dual role of nitric oxide in focal cerebral ischemia.Neuropharmacology199433111447145210.1016/0028‑3908(94)90048‑5 7532828
    [Google Scholar]
  185. Gürsoy-ÖzdemirY. BolayH. SaribaşO. DalkaraT. Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia.Stroke20003181974198110.1161/01.STR.31.8.1974 10926966
    [Google Scholar]
  186. JiangZ. LiC. ArrickD.M. YangS. BalunaA.E. SunH. Role of nitric oxide synthases in early blood-brain barrier disruption following transient focal cerebral ischemia.PLoS One201493e9313410.1371/journal.pone.0093134 24671193
    [Google Scholar]
  187. EndresM. ScottG. NamuraS. SalzmanA.L. HuangP.L. MoskowitzM.A. SzabóC. Role of peroxynitrite and neuronal nitric oxide synthase in the activation of poly(ADP-ribose) synthetase in a murine model of cerebral ischemia-reperfusion.Neurosci. Lett.19982481414410.1016/S0304‑3940(98)00224‑9 9665659
    [Google Scholar]
  188. KamiiH. MikawaS. MurakamiK. KinouchiH. YoshimotoT. ReolaL. CarlsonE. EpsteinC.J. ChanP.H. Effects of nitric oxide synthase inhibition on brain infarction in SOD-1-transgenic mice following transient focal cerebral ischemia.J. Cereb. Blood Flow Metab.19961661153115710.1097/00004647‑199611000‑00009 8898687
    [Google Scholar]
  189. MoroM.A. CárdenasA. HurtadoO. LezaJ.C. LizasoainI. Role of nitric oxide after brain ischaemia.Cell Calcium2004363-426527510.1016/j.ceca.2004.02.011 15261482
    [Google Scholar]
  190. ZhuD.Y. DengQ. YaoH.H. WangD.C. DengY. LiuG.Q. Inducible nitric oxide synthase expression in the ischemic core and penumbra after transient focal cerebral ischemia in mice.Life Sci.200271171985199610.1016/S0024‑3205(02)01970‑7 12175893
    [Google Scholar]
  191. IadecolaC. ZhangF. CaseyR. NagayamaM. RossM.E. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene.J. Neurosci.199717239157916410.1523/JNEUROSCI.17‑23‑09157.1997 9364062
    [Google Scholar]
  192. IadecolaC. ZhangF. XuX. Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage.Am. J. Physiol.19952681 Pt 2R286R292 7530927
    [Google Scholar]
  193. TsaiS.K. HungL.M. FuY.T. ChengH. NienM.W. LiuH.Y. ZhangF.B.Y. HuangS.S. Resveratrol neuroprotective effects during focal cerebral ischemia injury via nitric oxide mechanism in rats.J. Vasc. Surg.200746234635310.1016/j.jvs.2007.04.044 17600658
    [Google Scholar]
  194. ZhangF. WhiteJ.G. IadecolaC. Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia: Evidence that nitric oxide is beneficial in the early stages of cerebral ischemia.J. Cereb. Blood Flow Metab.199414221722610.1038/jcbfm.1994.28 8113318
    [Google Scholar]
  195. NogawaS. ForsterC. ZhangF. NagayamaM. RossM.E. IadecolaC. Interaction between inducible nitric oxide synthase and cyclooxygenase-2 after cerebral ischemia.Proc. Natl. Acad. Sci. USA19989518109661097110.1073/pnas.95.18.10966 9724813
    [Google Scholar]
  196. ZhuD.Y. LiuS.H. SunH.S. LuY.M. Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus.J. Neurosci.200323122322910.1523/JNEUROSCI.23‑01‑00223.2003 12514219
    [Google Scholar]
  197. ZhangY. LuJ. ShiJ. LinX. DongJ. ZhangS. LiuY. TongQ. Central administration of angiotensin-(1–7) stimulates nitric oxide release and upregulates the endothelial nitric oxide synthase expression following focal cerebral ischemia/reperfusion in rats.Neuropeptides2008425-659360010.1016/j.npep.2008.09.005 18990443
    [Google Scholar]
  198. PengB. GuoQ. HeZ. YeZ. YuanY. WangN. ZhouJ. Remote ischemic postconditioning protects the brain from global cerebral ischemia/reperfusion injury by up-regulating endothelial nitric oxide synthase through the PI3K/Akt pathway.Brain Res.201214459210210.1016/j.brainres.2012.01.033 22325092
    [Google Scholar]
  199. GrecoR. DemartiniC. ZanaboniA.M. BlandiniF. AmanteaD. TassorelliC. Modulation of cerebral RAGE expression following nitric oxide synthase inhibition in rats subjected to focal cerebral ischemia.Eur. J. Pharmacol.2017800162210.1016/j.ejphar.2017.02.008 28188764
    [Google Scholar]
  200. ZhouC. LiC. YuH.M. ZhangF. HanD. ZhangG.Y. Neuroprotection of γ‐aminobutyric acid receptor agonists via enhancing neuronal nitric oxide synthase (Ser847) phosphorylation through increased neuronal nitric oxide synthase and PSD95 interaction and inhibited protein phosphatase activity in cerebral ischemia.J. Neurosci. Res.200886132973298310.1002/jnr.21728 18512761
    [Google Scholar]
  201. PeiD.S. SongY.J. YuH.M. HuW.W. DuY. ZhangG.Y. Exogenous nitric oxide negatively regulates c‐Jun N‐terminal kinase activation via inhibiting endogenous NO‐induced S‐nitrosylation during cerebral ischemia and reperfusion in rat hippocampus.J. Neurochem.200810641952196310.1111/j.1471‑4159.2008.05531.x 18565207
    [Google Scholar]
  202. GibsonC.L. ConstantinD. PriorM.J.W. BathP.M.W. MurphyS.P. Progesterone suppresses the inflammatory response and nitric oxide synthase-2 expression following cerebral ischemia.Exp. Neurol.2005193252253010.1016/j.expneurol.2005.01.009 15869954
    [Google Scholar]
  203. GouldE. Serotonin and hippocampal neurogenesis.Neuropsychopharmacology1999212Suppl26S51S
    [Google Scholar]
  204. GlobusM.Y. WesterP. BustoR. DietrichW.D. Ischemia-induced extracellular release of serotonin plays a role in CA1 neuronal cell death in rats.Stroke199223111595160110.1161/01.STR.23.11.1595 1279842
    [Google Scholar]
  205. NakataN. KatoH. KogureK. Protective effects of serotonin reuptake inhibitors, citalopram and clomipramine, against hippocampal CA1 neuronal damage following transient ischemia in the gerbil.Brain Res.19925901-2485210.1016/0006‑8993(92)91080‑X 1422846
    [Google Scholar]
  206. SchneiderC.L. MajewskaA.K. BuszaA. WilliamsZ.R. MahonB.Z. SahinB. Selective serotonin reuptake inhibitors for functional recovery after stroke: Similarities with the critical period and the role of experience-dependent plasticity.J. Neurol.202126841203120910.1007/s00415‑019‑09480‑0 31346698
    [Google Scholar]
  207. AguiarR.P. Newman-TancrediA. PrickaertsJ. OliveiraR.M.W. The 5-HT1A receptor as a serotonergic target for neuroprotection in cerebral ischemia.Prog. Neuropsychopharmacol. Biol. Psychiatry202110911021010.1016/j.pnpbp.2020.110210 33333136
    [Google Scholar]
  208. PrehnJ.H.M. WelschM. BackhaußC. NuglischJ. AusmeierF. KarkoutlyC. KrieglsteinJ. Effects of serotonergic drugs in experimental brain ischemia: Evidence for a protective role of serotonin in cerebral ischemia.Brain Res.19936301-2102010.1016/0006‑8993(93)90636‑2 8118677
    [Google Scholar]
  209. MarcoI. ValhondoM. Martín-FontechaM. Vázquez-VillaH. Del RíoJ. PlanasA. SagredoO. RamosJ.A. TorrecillasI.R. PardoL. FrechillaD. BenhamúB. López-RodríguezM.L. New serotonin 5-HT(1A) receptor agonists with neuroprotective effect against ischemic cell damage.J. Med. Chem.201154237986799910.1021/jm2007886 22029386
    [Google Scholar]
  210. BadyalP. KaurJ. KuhadA. Role of 5-HT in Cerebral Edema after Traumatic.Brain Inj.2021
    [Google Scholar]
  211. LiuR. LiaoX.Y. PanM.X. TangJ.C. ChenS.F. ZhangY. LuP.X. LuL.J. ZouY.Y. QinX.P. BuL.H. WanQ. Glycine exhibits neuroprotective effects in ischemic stroke in rats through the inhibition of M1 microglial polarization via the NF-κB p65/Hif-1α signaling pathway.J. Immunol.201920261704171410.4049/jimmunol.1801166 30710045
    [Google Scholar]
  212. LuY. ZhangJ. MaB. LiK. LiX. BaiH. YangQ. ZhuX. BenJ. ChenQ. Glycine attenuates cerebral ischemia/reperfusion injury by inhibiting neuronal apoptosis in mice.Neurochem. Int.201261564965810.1016/j.neuint.2012.07.005 22796215
    [Google Scholar]
  213. CappelliJ. KhachoP. WangB. SokolovskiA. BakkarW. RaymondS. AhlskogN. PitneyJ. WuJ. ChudalayandiP. WongA.Y.C. BergeronR. Glycine-induced NMDA receptor internalization provides neuroprotection and preserves vasculature following ischemic stroke.iScience202225110353910.1016/j.isci.2021.103539 34977503
    [Google Scholar]
  214. PingS. QiuX. KyleM. ZhaoL.R. Brain-derived CCR5 Contributes to Neuroprotection and Brain Repair after Experimental Stroke.Aging Dis.2021121729210.14336/AD.2020.0406 33532129
    [Google Scholar]
  215. YaoW. JiF. ChenZ. ZhangN. RenS.Q. ZhangX.Y. LiuS.Y. LuW. Glycine exerts dual roles in ischemic injury through distinct mechanisms.Stroke20124382212222010.1161/STROKEAHA.111.645994 22693133
    [Google Scholar]
  216. ChenJ. HuR. LiaoH. ZhangY. LeiR. ZhangZ. ZhuangY. WanY. JinP. FengH. WanQ. A non-ionotropic activity of NMDA receptors contributes to glycine-induced neuroprotection in cerebral ischemia-reperfusion injury.Sci. Rep.201771357510.1038/s41598‑017‑03909‑0 28620235
    [Google Scholar]
  217. ChenZ. HuB. WangF. DuL. HuangB. LiL. QiJ. WangX. Glycine bidirectionally regulates ischemic tolerance via different mechanisms including NR2A‐dependent CREB phosphorylation.J. Neurochem.2015133339740810.1111/jnc.12994 25418841
    [Google Scholar]
  218. WoodE.R. BusseyT.J. PhillipsA.G. A glycine antagonist reduces ischemia-induced CA1 cell loss in vivo.Neurosci. Lett.19921451101410.1016/0304‑3940(92)90191‑9 1334240
    [Google Scholar]
  219. BakerA.J. ZornowM.H. SchellerM.S. YakshT.L. SkillingS.R. SmullinD.H. LarsonA.A. KuczenskiR. Changes in extracellular concentrations of glutamate, aspartate, glycine, dopamine, serotonin, and dopamine metabolites after transient global ischemia in the rabbit brain.J. Neurochem.19915741370137910.1111/j.1471‑4159.1991.tb08303.x 1895110
    [Google Scholar]
  220. NewellD.W. BarthA. MaloufA.T. Glycine site NMDA receptor antagonists provide protection against ischemia-induced neuronal damage in hippocampal slice cultures.Brain Res.19956751-2384410.1016/0006‑8993(95)00039‑S 7796152
    [Google Scholar]
  221. FengR.F. LiW.B. LiuH.Q. LiQ.J. ChenX.L. ZhouA.M. ZhaoH.G. AiJ. [Effects of alpha-methyl-(4-tetrazolyl-phenyl) glycine on the induction of hippocampal ischemic tolerance in the rat].Sheng Li Xue Bao2003553303310 12817298
    [Google Scholar]
  222. NiJ.W. MatsumotoK. LiH.B. MurakamiY. WatanabeH. Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat.Brain Res.1995673229029610.1016/0006‑8993(94)01436‑L 7606443
    [Google Scholar]
  223. ScreminO.U. LiM.G. RochM. BoothR. JendenD.J. Acetylcholine and choline dynamics provide early and late markers of traumatic brain injury.Brain Res.20061124115516610.1016/j.brainres.2006.09.062 17084821
    [Google Scholar]
  224. SeyedaghamiriF. MahmoudiJ. HosseiniL. Sadigh-EteghadS. FarhoudiM. Possible Engagement of Nicotinic Acetylcholine Receptors in Pathophysiology of Brain Ischemia-Induced Cognitive Impairment.J. Mol. Neurosci.202272364265210.1007/s12031‑021‑01917‑4 34596872
    [Google Scholar]
  225. MartínA. DomercqM. MatuteC. Inflammation in stroke: The role of cholinergic, purinergic and glutamatergic signaling.Ther. Adv. Neurol. Disord.20181110.1177/1756286418774267 29774059
    [Google Scholar]
  226. FurukawaS. SameshimaH. YangL. IkenoueT. Activation of acetylcholine receptors and microglia in hypoxic-ischemic brain damage in newborn rats.Brain Dev.201335760761310.1016/j.braindev.2012.10.006 23141185
    [Google Scholar]
  227. HanT. WangQ. LaiR. ZhangD. DiaoY. YinY. Nicotine Induced Neurocognitive Protection and Anti-inflammation Effect by Activating α 4β 2 Nicotinic Acetylcholine Receptors in Ischemic Rats.Nicotine Tob. Res.202022691992410.1093/ntr/ntz126 31403667
    [Google Scholar]
  228. FujikiM. KobayashiH. UchidaS. InoueR. IshiiK. Neuroprotective effect of donepezil, a nicotinic acetylcholine-receptor activator, on cerebral infarction in rats.Brain Res.200510431-223624110.1016/j.brainres.2005.02.063 15862539
    [Google Scholar]
  229. LuX. HongZ. TanZ. SuiM. ZhuangZ. LiuH. ZhengX. YanT. GengD. JinD. Nicotinic Acetylcholine Receptor Alpha7 Subunit Mediates Vagus Nerve Stimulation-Induced Neuroprotection in Acute Permanent Cerebral Ischemia by a7nAchR/JAK2 Pathway.Med. Sci. Monit.2017236072608110.12659/MSM.907628 29274273
    [Google Scholar]
  230. JinX. WangR. WangH. LongC. WangH. Brain protection against ischemic stroke using choline as a new molecular bypass treatment.Acta Pharmacol. Sin.201536121416142510.1038/aps.2015.104 26567726
    [Google Scholar]
  231. XuZ.Q. ZhangJ.J. KongN. ZhangG.Y. KeP. HanT. SuD.F. LiuC. Autophagy is Involved in Neuroprotective Effect of Alpha7 Nicotinic Acetylcholine Receptor on Ischemic Stroke.Front. Pharmacol.20211267658910.3389/fphar.2021.676589 33995108
    [Google Scholar]
  232. KondoY. OgawaN. AsanumaM. NishibayashiS. IwataE. MoriA. Cyclosporin A prevents ischemia-induced reduction of muscarinic acetylcholine receptors with suppression of microglial activation in gerbil hippocampus.Neurosci. Res.199522112312710.1016/0168‑0102(95)00878‑W 7792077
    [Google Scholar]
  233. PicconiB. BaroneI. PisaniA. NicolaiR. BenattiP. BernardiG. CalvaniM. CalabresiP. Acetyl-l-carnitine protects striatal neurons against in vitro ischemia: The role of endogenous acetylcholine.Neuropharmacology200650891792310.1016/j.neuropharm.2006.01.002 16500685
    [Google Scholar]
  234. LekliI. RayD. DasD.K. Longevity nutrients resveratrol, wines and grapes.Genes Nutr.201051556010.1007/s12263‑009‑0145‑2 19730919
    [Google Scholar]
  235. LiZ. FangF. WangY. WangL. Resveratrol protects CA1 neurons against focal cerebral ischemic reperfusion-induced damage via the ERK-CREB signaling pathway in rats.Pharmacol. Biochem. Behav.2016146-147212710.1016/j.pbb.2016.04.007 27143440
    [Google Scholar]
  236. PangC. CaoL. WuF. WangL. WangG. YuY. ZhangM. ChenL. WangW. LvW. ChenL. ZhuJ. PanJ. ZhangH. XuY. DingL. The effect of trans-resveratrol on post-stroke depression via regulation of hypothalamus–pituitary–adrenal axis.Neuropharmacology20159744745610.1016/j.neuropharm.2015.04.017 25937213
    [Google Scholar]
  237. HuangL. ChenC. ZhangX. LiX. ChenZ. YangC. LiangX. ZhuG. XuZ. Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation.J. Mol. Neurosci.201864112913910.1007/s12031‑017‑1006‑x 29243061
    [Google Scholar]
  238. HeF.J. NowsonC.A. MacGregorG.A. Fruit and vegetable consumption and stroke: Meta-analysis of cohort studies.Lancet2006367950732032610.1016/S0140‑6736(06)68069‑0 16443039
    [Google Scholar]
  239. PacificiF. RovellaV. PastoreD. BelliaA. AbeteP. DonadelG. SantiniS. BeckH. RicordiC. DanieleN.D. LauroD. Della-MorteD. Polyphenols and Ischemic Stroke: Insight into One of the Best Strategies for Prevention and Treatment.Nutrients2021136196710.3390/nu13061967 34201106
    [Google Scholar]
  240. LiM.-Z. ZhangY. ZouH.-Y. OuyangJ.-Y. ZhanY. YangL. ChengB.C.-Y. WangL. ZhangQ.-X. LeiJ.-F. Investigation of Ginkgo biloba extract (EGb 761) promotes neurovascular restoration and axonal remodeling after embolic stroke in rat using magnetic resonance imaging and histopathological analysis.Biomed. Pharmacother.20181039891001
    [Google Scholar]
  241. LiuY. WangS. KanJ. ZhangJ. ZhouL. HuangY. ZhangY. Chinese Herbal Medicine Interventions in Neurological Disorder Therapeutics by Regulating Glutamate Signaling.Curr. Neuropharmacol.202018426027610.2174/1570159X17666191101125530 31686629
    [Google Scholar]
  242. GrainB.J. WesterkamW.D. HarrisonA.H. NadlerJ.V. Selective neuronal death after transient forebrain ischemia in the mongolian gerbil: A silver impregnation study.Neuroscience198827238740210.1016/0306‑4522(88)90276‑X 2464145
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249302594240801171612
Loading
/content/journals/cnsamc/10.2174/0118715249302594240801171612
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cerebral ischemia; GABA; glutamate; glycine; histamine; neurotransmitters
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test