Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Multiple sclerosis (MS) is an unceasing, demyelinating, idiopathic inflammatory, and neurodegenerative disease of the Central Nervous System (CNS.) The disease is characterized by the occurrence of neurological symptoms over a period of days to weeks, abide by partial or absolute diminutions of various durations.

In this review, a concise outline on disease activity and progression of MS, pathogenesis with the special prominence on the biomarkers for the MS as therapeutic targets has been discussed by carrying out a comprehensive literature survey employing chief websites and search engines for investigation. Cortical inflammation, neurodegeneration, demyelination, axonal injury, axonal loss, oligodendrocytes, mitochondrial dysfunction, microglia activation, oxidative and nitrosative stress are the pathological hallmarks of the MS. CNS neurofilaments, chitinase and chitinase 3-like proteins, soluble circulating form (sCD163), Chemokine ligand 13 (CXCL13), immunoglobulin M, (miRNA) and messenger Ribonucleic Acid (mRNA), Glial fibrillary acidic protein (GFAP), serum osteopontin, 8-iso-prostaglandin F2α (8-iso-PGF α), apo-Lipoprotein E and myelin-reactive T cells are some of the therapeutically valuable biomarkers for such multifarious disorder.

MS is one of the chronic neurodegenerative diseases with undefined etiology. The study of the pathophysiology of the disease and the involvement of certain biomarkers can help identify new targets for therapeutic intercession, identify individuals at risk of developing the disease later in life, and allow more effective treatment of progressive diseases such as MS.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249307633240817160735
2024-09-04
2025-09-18
Loading full text...

Full text loading...

References

  1. CompstonA ColesA Multiple sclerosis.Lancet200235993131221123110.1016/S0140‑6736(02)08220‑X
    [Google Scholar]
  2. RingoldS. LynmC. GlassR.M. Neurological Disorders.JAMA200629623288010.1001/jama.296.23.2880
    [Google Scholar]
  3. TrappB.D. NaveK.A. Multiple sclerosis: An immune or neurodegenerative disorder?Annu. Rev. Neurosci.200831124726910.1146/annurev.neuro.30.051606.09431318558855
    [Google Scholar]
  4. BrückW. The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage.J. Neurol.2005252S5Suppl. 5v3v910.1007/s00415‑005‑5002‑716254699
    [Google Scholar]
  5. BagertB. CamplairP. BourdetteD. Cognitive dysfunction in multiple sclerosis: natural history, pathophysiology and management.CNS Drugs200216744545510.2165/00023210‑200216070‑0000212056920
    [Google Scholar]
  6. Bolanos-JimenezR. Arizmendi-VargasJ. Carrillo-RuizJ.D. Lopez-LizarragaM.E. Calderon Alvarez-TostadoJ.L. Martinez-MenchacaH. Leyva ResendizI. Serrato-AvilaJ.L. Rendon-MolinaA. Rivera-SilvaG. Multiple sclerosis: An overview of the disease and current concepts of its pathophysiology.J. Neurosci. Behav. Health201134445010.5897/JNBH.9000017
    [Google Scholar]
  7. FrohmanE.M. RackeM.K. RaineC.S. Multiple sclerosis--the plaque and its pathogenesis.N. Engl. J. Med.2006354994295510.1056/NEJMra05213016510748
    [Google Scholar]
  8. NylanderA. HaflerD.A. Multiple sclerosis.J. Clin. Invest.201212241180118810.1172/JCI5864922466660
    [Google Scholar]
  9. PittockS.J. RodriguezM. Benign Multiple Sclerosis: A Distinct Clinical Entity with Therapeutic Implications.Advances in multiple Sclerosis and Experimental Demyelinating Diseases. Current Topics in Microbiology and Immunology. RodriguezM. Berlin, HeidelbergSpringer2008Vol. 31810.1007/978‑3‑540‑73677‑6_1
    [Google Scholar]
  10. PalaciosN. MungerK.L. FitzgeraldK.C. HartJ.E. ChitnisT. AscherioA. LadenF. Exposure to particulate matter air pollution and risk of multiple sclerosis in two large cohorts of US nurses.Environ. Int.20171091647210.1016/j.envint.2017.07.01328938101
    [Google Scholar]
  11. TeunissenC.E. KhalilM. Neurofilaments as biomarkers in multiple sclerosis.Mult. Scler.201218555255610.1177/135245851244309222492131
    [Google Scholar]
  12. CompstonA. ColesA. Multiple sclerosis.Lancet200837296481502151710.1016/S0140‑6736(08)61620‑718970977
    [Google Scholar]
  13. HauserS.L. OksenbergJ.R. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration.Neuron2006521617610.1016/j.neuron.2006.09.01117015227
    [Google Scholar]
  14. WeinerH.L. Multiple sclerosis is an inflammatory T-cell-mediated autoimmune disease.Arch. Neurol.200461101613161510.1001/archneur.61.10.161315477521
    [Google Scholar]
  15. JohnstonR.B.Jr JoyJ.E. Multiple Sclerosis: Current Status and Strategies for the Future, by National Academy of Sciences.WashingtonCourtesy of National Academic Press200110.3109/9780203212974
    [Google Scholar]
  16. Pérez-CerdáF. Sánchez-GómezM.V. MatuteC. The link of inflammation and neurodegeneration in progressive multiple sclerosis.Mult. Scler. Demyelinating Disord.201611910.1186/s40893‑016‑0012‑0
    [Google Scholar]
  17. BerkovichR. Treatment of acute relapses in multiple sclerosis.Neurotherapeutics20131019710510.1007/s13311‑012‑0160‑723229226
    [Google Scholar]
  18. LublinF.D. BaierM. CutterG. Effect of relapses on development of residual deficit in multiple sclerosis.Neurology200361111528153210.1212/01.WNL.0000096175.39831.2114663037
    [Google Scholar]
  19. CutterG ChinP FrancisG MengX HashmonayR LublinF Relapse is associated with residual deficits in relapsing-remitting multiple sclerosis: analysis of FREEDOMS Data (P07.118).Neurology2013807P07118
    [Google Scholar]
  20. LearyS.M. PorterB. ThompsonA.J. Multiple sclerosis: diagnosis and the management of acute relapses.Postgrad. Med. J.20058195530230810.1136/pgmj.2004.02941315879043
    [Google Scholar]
  21. LuC LiZ XuY. [A study on acute multiple sclerosis].Chinese199625293959206213
    [Google Scholar]
  22. MillerD.H. LearyS.M. Primary-progressive multiple sclerosis.Lancet Neurol.200761090391210.1016/S1474‑4422(07)70243‑017884680
    [Google Scholar]
  23. SivaA. AsymptomaticM.S. Asymptomatic MS.Clin. Neurol. Neurosurg.2013115Suppl. 1S1S510.1016/j.clineuro.2013.09.01224321147
    [Google Scholar]
  24. ReyndersT. D’haeseleerM. De KeyserJ. NagelsG. D’hoogheM.B. Definition, prevalence and predictive factors of benign multiple sclerosis.eNeurologicalSci20177374310.1016/j.ensci.2017.05.00229260023
    [Google Scholar]
  25. MillerD.H. ChardD.T. CiccarelliO. Clinically isolated syndromes.Lancet Neurol.201211215716910.1016/S1474‑4422(11)70274‑522265211
    [Google Scholar]
  26. Guerrero-GarcíaJ.J. The role of astrocytes in multiple sclerosis pathogenesis.Neurología202035640040810.1016/j.nrleng.2017.07.01828958395
    [Google Scholar]
  27. LassmannH. BrückW. LucchinettiC.F. The immunopathology of multiple sclerosis: An overview.Brain Pathol.200717221021810.1111/j.1750‑3639.2007.00064.x17388952
    [Google Scholar]
  28. LassmannH. BrückW. LucchinettiC. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy.Trends Mol. Med.20017311512110.1016/S1471‑4914(00)01909‑211286782
    [Google Scholar]
  29. LucchinettiC.F. PopescuB.F.G. BunyanR.F. MollN.M. RoemerS.F. LassmannH. BrückW. ParisiJ.E. ScheithauerB.W. GianniniC. WeigandS.D. MandrekarJ. RansohoffR.M. Inflammatory cortical demyelination in early multiple sclerosis.N. Engl. J. Med.2011365232188219710.1056/NEJMoa110064822150037
    [Google Scholar]
  30. StysP.K. ZamponiG.W. van MinnenJ. GeurtsJ.J.G. Will the real multiple sclerosis please stand up?Nat. Rev. Neurosci.201213750751410.1038/nrn327522714021
    [Google Scholar]
  31. FletcherJ.M. LalorS.J. SweeneyC.M. TubridyN. MillsK.H.G. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis.Clin. Exp. Immunol.2010162111110.1111/j.1365‑2249.2010.04143.x20682002
    [Google Scholar]
  32. FranklinR.J.M. Why does remyelination fail in multiple sclerosis?Nat. Rev. Neurosci.20023970571410.1038/nrn91712209119
    [Google Scholar]
  33. KuhlmannT. LingfeldG. BitschA. SchuchardtJ. BrückW. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time.Brain2002125102202221210.1093/brain/awf23512244078
    [Google Scholar]
  34. SchirmerL. AlbertM. BussA. Schulz-SchaefferW.J. AntelJ.P. BrückW. StadelmannC. Substantial early, but nonprogressive neuronal loss in multiple sclerosis (ms) spinal cord.Ann. Neurol.200966569870410.1002/ana.2179919938172
    [Google Scholar]
  35. FurlanR. BrambillaE. RuffiniF. PolianiP.L. BergamiA. MarconiP.C. FranciottaD.M. PennaG. ComiG. AdoriniL. MartinoG. Intrathecal delivery of IFN-gamma protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalomyelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes.J. Immunol.200116731821182910.4049/jimmunol.167.3.182111466408
    [Google Scholar]
  36. MahadD.H. TrappB.D. LassmannH. Pathological mechanisms in progressive multiple sclerosis.Lancet Neurol.201514218319310.1016/S1474‑4422(14)70256‑X25772897
    [Google Scholar]
  37. CiccarelliO BarkhofF BodiniB StefanoND GolayX NicolayK PelletierD PouwelsPJW SmithSA Wheeler-KingshottCAM StankoffB YousryT MillerDH Pathogenesis of multiple sclerosis: Insights from molecular and metabolic imaging.Lancet Neurol20141380782210.1016/S1474‑4422(14)70101‑2
    [Google Scholar]
  38. HaiderL. SimeonidouC. SteinbergerG. HametnerS. GrigoriadisN. DeretziG. KovacsG.G. KutzelniggA. LassmannH. FrischerJ.M. Multiple sclerosis deep grey matter: The relation between demyelination, neurodegeneration, inflammation and iron.J. Neurol. Neurosurg. Psychiatry201485121386139510.1136/jnnp‑2014‑30771224899728
    [Google Scholar]
  39. SaravaniM. RokniM. MehrbaniM. AmirkhosraviA. FaramarzS. FatemiI. Esmaeili TarziM. NematollahiM.H. The evaluation of VEGF and HIF‐1α gene polymorphisms and multiple sclerosis susceptibility.J. Gene Med.20192112e313210.1002/jgm.313231652374
    [Google Scholar]
  40. JuybariK.B. EbrahimiG. Momeni MoghaddamM.A. AsadikaramG. Torkzadeh-MahaniM. AkbariM. MirzamohammadiS. KarimiA. NematollahiM.H. Evaluation of serum arsenic and its effects on antioxidant alterations in relapsing-remitting multiple sclerosis patients.Mult. Scler. Relat. Disord.201819798410.1016/j.msard.2017.11.01029156301
    [Google Scholar]
  41. PinteacR. MontalbanX. ComabellaM. Chitinases and chitinase-like proteins as biomarkers in neurologic disorders.Neurol. Neuroimmunol. Neuroinflamm.202181e92110.1212/NXI.000000000000092133293459
    [Google Scholar]
  42. CastellaniR. SiedlakS. FortinoA. PerryG. GhettiB. SmithM. Chitin-like polysaccharides in Alzheimer’s disease brains.Curr. Alzheimer Res.20052441942310.2174/15672050577433055516248847
    [Google Scholar]
  43. MalmeströmC. HaghighiS. RosengrenL. AndersenO. LyckeJ. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS.Neurology200361121720172510.1212/01.WNL.0000098880.19793.B614694036
    [Google Scholar]
  44. Mane MartinezMA OlssonB BauL MatasE CalvoAC Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis.MultScler201521555056110.1177/1352458514549397
    [Google Scholar]
  45. KuhleJ. DisantoG. LorscheiderJ. StitesT. ChenY. DahlkeF. FrancisG. ShrinivasanA. RadueE.W. GiovannoniG. KapposL. Fingolimod and CSF neurofilament light chain levels in relapsing-remitting multiple sclerosis.Neurology201584161639164310.1212/WNL.000000000000149125809304
    [Google Scholar]
  46. PetzoldA. The prognostic value of CSF neurofilaments in multiple sclerosis at 15-year follow-up.J. Neurol. Neurosurg. Psychiatry201586121388139010.1136/jnnp‑2014‑30982725616604
    [Google Scholar]
  47. AbdelhakA. JunkerA. BrettschneiderJ. KassubekJ. LudolphA. OttoM. TumaniH. Brain-specific cytoskeletal damage markers in cerebrospinal fluid: Is there a common pattern between amyotrophic lateral sclerosis and primary progressive multiple sclerosis?Int. J. Mol. Sci.2015168175651758810.3390/ijms16081756526263977
    [Google Scholar]
  48. HinsingerG GaleottiN NabholzN Chitinase 3-like proteins as diagnostic and prognostic biomarkers of multiple sclerosis.MultScler201521101251126110.1177/1352458514561906
    [Google Scholar]
  49. Bonneh-BarkayD. WangG. StarkeyA. HamiltonR.L. WileyC.A. In vivo CHI3L1 (YKL-40) expression in astrocytes in acute and chronic neurological diseases.J. Neuroinflammation2010713410.1186/1742‑2094‑7‑3420540736
    [Google Scholar]
  50. CantoE Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes.Brain2015138491893110.1093/brain/awv017
    [Google Scholar]
  51. ComabellaM FernandezM MartinR Rivera-VallveS BorrasE ChivaC JuliaE Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis.Brain201013341082109310.1093/brain/awq035
    [Google Scholar]
  52. De FlonP GunnarssonM LaurellK SoderstromL BirganderR LindqvistT KraussW DringA BergmanJ SundstromP SvenningssonA Reduced inflammation in relapsing-remitting multiple sclerosis after therapy switch to rituximab.Neurology201687214114710.1212/WNL.0000000000002832
    [Google Scholar]
  53. ConfavreuxC. VukusicS. MoreauT. AdeleineP. Relapses and progression of disability in multiple sclerosis.N. Engl. J. Med.2000343201430143810.1056/NEJM20001116343200111078767
    [Google Scholar]
  54. BurmanJ. RaininkoR. BlennowK. ZetterbergH. AxelssonM. MalmeströmC. YKL-40 is a CSF biomarker of intrathecal inflammation in secondary progressive multiple sclerosis.J. Neuroimmunol.2016292525710.1016/j.jneuroim.2016.01.01326943959
    [Google Scholar]
  55. VillarL.M. CasanovaB. OuamaraN. ComabellaM. JaliliF. LeppertD. de AndrésC. IzquierdoG. ArroyoR. AvşarT. LapinS.V. JohnsonT. MontalbánX. FernándezO. Álvarez-LafuenteR. MastermanD. García-SánchezM.I. CoretF. SivaA. EvdoshenkoE. Álvarez-CermeñoJ.C. Bar-OrA. Immunoglobulin M oligoclonal bands: Biomarker of targetable inflammation in primary progressive multiple sclerosis.Ann. Neurol.201476223124010.1002/ana.2419024909126
    [Google Scholar]
  56. DavisB.H. ZarevP.V. Human monocyte CD163 expression inversely correlates with soluble CD163 plasma levels.Cytometry B Clin. Cytom.200563B1162210.1002/cyto.b.2003115624200
    [Google Scholar]
  57. StilundM. ReuschleinA.K. ChristensenT. MøllerH.J. RasmussenP.V. PetersenT. Soluble CD163 as a marker of macrophage activity in newly diagnosed patients with multiple sclerosis.PLoS One201496e9858810.1371/journal.pone.009858824886843
    [Google Scholar]
  58. FabriekBO MollerHJ Proteolytic shedding of the macrophage scavenger receptor CD163 in multiple sclerosis.JNeuroimmunol20071871-217918810.1016/j.jneuroim.2007.04.016
    [Google Scholar]
  59. StilundM. GjelstrupM.C. PetersenT. MøllerH.J. RasmussenP.V. ChristensenT. Biomarkers of inflammation and axonal degeneration/damage in patients with newly diagnosed multiple sclerosis: contributions of the soluble CD163 CSF/serum ratio to a biomarker panel.PLoS One2015104e011968110.1371/journal.pone.011968125860354
    [Google Scholar]
  60. KammC.P. UitdehaagB.M. PolmanC.H. Multiple sclerosis: Current knowledge and future outlook.Eur. Neurol.2014723-413214110.1159/00036052825095894
    [Google Scholar]
  61. WingerRC ZamvilSS Antibodies in multiple sclerosis oligoclonal bands target debris.PNAS2016113287696769810.1073/pnas.1609246113
    [Google Scholar]
  62. PaulA. ComabellaM. GandhiR. Biomarkers in multiple sclerosis.Cold Spring Harb. Perspect. Med.201993a02905810.1101/cshperspect.a02905829500303
    [Google Scholar]
  63. BergmanP PiketE KhademiM JamesT BrundinL OlssonT PiehlF JagodicM Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis.NeurolNeuroimmunol201633e21910.1212/NXI.0000000000000219
    [Google Scholar]
  64. CatalanottoC. CogoniC. ZardoG. MicroRNA in control of gene expression: an overview of nuclear functions.Int. J. Mol. Sci.20161710171210.3390/ijms1710171227754357
    [Google Scholar]
  65. FriedmanR.C. FarhK.K.H. BurgeC.B. BartelD.P. Most mammalian mRNAs are conserved targets of microRNAs.Genome Res.20091919210510.1101/gr.082701.10818955434
    [Google Scholar]
  66. FenoglioC CantoniC De RizM RidolfiE CortiniF SerpenteM VillaC ComiC MonacoF MellesiL ValzelliS Expression and genetic analysis of miRNAs involved in CD4+ cell activation in patients with multiple sclerosis.Neuroscilett2011504191210.1016/j.neulet.2011.08.021
    [Google Scholar]
  67. LindbergR.L.P. HoffmannF. MehlingM. KuhleJ. KapposL. Altered expression of miR-17-5p in CD4 + lymphocytes of relapsing–remitting multiple sclerosis patients.Eur. J. Immunol.201040388889810.1002/eji.20094003220148420
    [Google Scholar]
  68. NorgrenN SundströmP SvenningssonA RosengrenL StigbrandT GunnarssonM Neurofilament and glial fibrillary acidic protein in multiple sclerosis.Neurology20046391586159010.1212/01.WNL.0000142988.49341.D1
    [Google Scholar]
  69. RosengrenL.E. LyckeJ. AndersenO. Glial fibrillary acidic protein in CSF of multiple sclerosis patients: relation to neurological deficit.J. Neurol. Sci.19951331-2616510.1016/0022‑510X(95)00152‑R8583233
    [Google Scholar]
  70. SunM LiuN XieQ LiX SunJ WangH WangM A candidate biomarker of glial fibrillary acidic protein in CSF and blood in differentiating multiple sclerosis and its subtypes: A systematic review and meta-analysis.MultSclerRelatDisord20215110287010.1016/j.msard.2021.102870
    [Google Scholar]
  71. MillerE. MrowickaM. Saluk-JuszczakJ. IreneuszM. The level of isoprostanes as a non-invasive marker for in vivo lipid peroxidation in secondary progressive multiple sclerosis.Neurochem. Res.20113661012101610.1007/s11064‑011‑0442‑121399906
    [Google Scholar]
  72. TeunissenC.E. SombekkeM. van WinsenL. KillesteinJ. BarkhofF. PolmanC.H. DijkstraC.D. BlankensteinM.A. PraticoD. Increased plasma 8,12-iso-iPF2alpha- VI levels in relapsing multiple sclerosis patients are not predictive of disease progression.Mult. Scler.20121881092109810.1177/135245851143330622695538
    [Google Scholar]
  73. ElovaaraI. UkkonenM. LeppäkynnäsM. LehtimäkiT. LuomalaM. PeltolaJ. DastidarP. Adhesion molecules in multiple sclerosis: Relation to subtypes of disease and methylprednisolone therapy.Arch. Neurol.200057454655110.1001/archneur.57.4.54610768630
    [Google Scholar]
  74. MisslerU Acute exacerbation of multiple sclerosis increases plasma levels of S-100 protein.ActaNeurolScand199796314214410.1111/j.1600‑0404.1997.tb00256.x
    [Google Scholar]
  75. SørensenP.S. Biological markers in body fluids for activity and progression in multiple sclerosis.Mult. Scler.19995428729010.1191/13524589967884623010467390
    [Google Scholar]
  76. MénardA. AmouriR. DobránskyT. Charriaut-MarlangueC. PierigR. Cifuentes-DiazC. GhandourS. BelliveauJ. GascanH. HentatiF. Lyon-CaenO. PerronH. RiegerF. A gliotoxic factor and multiple sclerosis.J. Neurol. Sci.1998154220922110.1016/S0022‑510X(97)00231‑19562313
    [Google Scholar]
  77. KhademiM. KockumI. AnderssonM.L. IacobaeusE. BrundinL. SellebjergF. HillertJ. PiehlF. OlssonT. Cerebrospinal fluid CXCL13 in multiple sclerosis: A suggestive prognostic marker for the disease course.Mult. Scler.201117333534310.1177/135245851038910221135023
    [Google Scholar]
  78. KrumbholzM. TheilD. CepokS. HemmerB. KivisäkkP. RansohoffR.M. HofbauerM. FarinaC. DerfussT. HartleC. NewcombeJ. HohlfeldR. MeinlE. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment.Brain2006129120021110.1093/brain/awh68016280350
    [Google Scholar]
  79. RoscheB. LaurentS. ConradiS. HofmannJ. RuprechtK. HarmsL. Measles IgG antibody index correlates with T2 lesion load on MRI in patients with early multiple sclerosis.PLoS One201271e2809410.1371/journal.pone.002809422276094
    [Google Scholar]
  80. RaghebS. LiY. SimonK. VanHaerentsS. GalimbertiD. De RizM. FenoglioC. ScarpiniE. LisakR. Multiple sclerosis: BAFF and CXCL13 in cerebrospinal fluid.Mult. Scler.201117781982910.1177/135245851139888721372118
    [Google Scholar]
  81. BrettschneiderJ. CzerwoniakA. SenelM. FangL. KassubekJ. PinkhardtE. LaudaF. KapferT. JesseS. LehmensiekV. LudolphA.C. OttoM. TumaniH. The chemokine CXCL13 is a prognostic marker in clinically isolated syndrome (CIS).PLoS One201058e1198610.1371/journal.pone.001198620700489
    [Google Scholar]
  82. HarrisVK SadiqSA Biomarkers of therapeutic response in multiple sclerosis: status.Mole DiagTher201418660561710.1007/s40291‑014‑0117‑0
    [Google Scholar]
  83. MarckmannS WiesemannE HilseR TrebstC StangelM WindhagenA Interferon–β-up-regulates the expression of co-stimulatory molecules CD80, CD86 and CD40 on monocytes: Significance for treatment of multiple sclerosis.ClinExpImmunol2004138349950610.1111/j.1365‑2249.2004.02624.x
    [Google Scholar]
  84. SteinmanL MartinR BernardC ConlonP OksenbergJR Multiple sclerosis: Deeper understanding of its pathogenesis reveals new targets for therapy.AnnuRevNeurosci200225149150510.1146/annurev.neuro.25.112701.142913
    [Google Scholar]
  85. AgahE. ZardouiA. SaghazadehA. AhmadiM. TafakhoriA. RezaeiN. Osteopontin (OPN) as a CSF and blood biomarker for multiple sclerosis: A systematic review and meta-analysis.PLoS One2018131e019025210.1371/journal.pone.019025229346446
    [Google Scholar]
  86. JafariniaM. SadeghiE. AlsahebfosoulF. EtemadifarM. Jahanbani-ArdakaniH. Evaluation of plasma Osteopontin level in relapsing- remitting multiple sclerosis patients compared to healthy subjects in Isfahan Province.Int. J. Neurosci.2020130549349810.1080/00207454.2019.169492531795798
    [Google Scholar]
  87. GeurtsJ.J.G. CalabreseM. FisherE. RudickR.A. Measurement and clinical effect of grey matter pathology in multiple sclerosis.Lancet Neurol.201211121082109210.1016/S1474‑4422(12)70230‑223153407
    [Google Scholar]
  88. FisherE LeeJC NakamuraK RudickRA Gray matter atrophy in multiple sclerosis: A longitudinal study.AnnNeurol200864325526510.1002/ana.21436
    [Google Scholar]
  89. DaltonC.M. ChardD.T. DaviesG.R. MiszkielK.A. AltmannD.R. FernandoK. PlantG.T. ThompsonA.J. MillerD.H. Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes.Brain200412751101110710.1093/brain/awh12614998914
    [Google Scholar]
  90. ZhangH.L. WuJ. ZhuJ. The immune-modulatory role of apolipoprotein E with emphasis on multiple sclerosis and experimental autoimmune encephalomyelitis.J. Immunol. Res.20102010118681310.1155/2010/18681320613949
    [Google Scholar]
  91. OtaK MatsuiM MilfordEL MackinGA WeinerHL HaflerDA T-cell recognition of an immuno-dominant myelin basic protein epitope in multiple sclerosis.Nature1990346628018318710.1038/346183a0
    [Google Scholar]
  92. ComabellaM. PericotI. GoertschesR. NosC. CastilloM. Blas NavarroJ. RíoJ. MontalbanX. Plasma osteopontin levels in multiple sclerosis.J. Neuroimmunol.20051581-223123910.1016/j.jneuroim.2004.09.00415589058
    [Google Scholar]
  93. BorràsE. CantóE. ChoiM. Maria VillarL. Álvarez-CermeñoJ.C. ChivaC. MontalbanX. VitekO. ComabellaM. SabidóE. Protein-based classifier to predict conversion from clinically isolated syndrome to multiple sclerosis.Mol. Cell. Proteomics201615131832810.1074/mcp.M115.05325626552840
    [Google Scholar]
  94. RuniaTF Van MeursM NasserinejadK HintzenRQ No evidence for an association of osteopontin plasma levels with disease activity in multiple sclerosis.MultScler201420121670110.1177/1352458514528765
    [Google Scholar]
  95. Romme ChristensenJ CSF inflammation and axonal damage are increased and correlate in progressive multiple sclerosis. MultScler201319787788410.1177/1352458512466929
    [Google Scholar]
  96. KomoriM BlakeA GreenwoodM LinYC KosaP GhazaliD WinokurP NatrajanM WuestSC RoomE PanackalAA Cerebrospinal fluid markers reveal intrathecal inflammation in progressive multiple sclerosis.AnnNeurol201578132010.1002/ana.24408
    [Google Scholar]
  97. ÖhrfeltA. AxelssonM. MalmeströmC. NovakovaL. HeslegraveA. BlennowK. LyckeJ. ZetterbergH. Soluble TREM-2 in cerebrospinal fluid from patients with multiple sclerosis treated with natalizumab or mitoxantrone.Mult. Scler.201622121587159510.1177/135245851562455826754805
    [Google Scholar]
  98. FerraroD. SimoneA.M. BedinR. GalliV. VitettaF. FederzoniL. D’AmicoR. MerelliE. NichelliP.F. SolaP. Cerebrospinal fluid oligoclonal IgM bands predict early conversion to clinically definite multiple sclerosis in patients with Clinically Isolated Syndrome.J. Neuroimmunol.20132571-2768110.1016/j.jneuroim.2013.01.01123434160
    [Google Scholar]
  99. YunJ.W. CvekU. KilgoreP.C.S.R. TsunodaI. OmuraS. SatoF. ZivadinovR. RamanathanM. MinagarA. AlexanderJ.S. Neurolymphatic biomarkers of brain endothelial inflammatory activation: Implications for multiple sclerosis diagnosis.Life Sci.201922911612310.1016/j.lfs.2019.05.02131082401
    [Google Scholar]
  100. GaetaniL. Di CarloM. BrachelenteG. VallettaF. EusebiP. ManciniA. GentiliL. BorrelliA. CalabresiP. SarchielliP. FerriC. VillaA. Di FilippoM. Cerebrospinal fluid free light chains compared to oligoclonal bands as biomarkers in multiple sclerosis.J. Neuroimmunol.202033957710810.1016/j.jneuroim.2019.57710831743879
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249307633240817160735
Loading
/content/journals/cnsamc/10.2174/0118715249307633240817160735
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarkers; brain; CNS; immune system; Multiple sclerosis; neurodegeneration
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test