Skip to content
2000
image of A Comprehensive Theoretical Study of Anti-Epileptic Drug Design: DFT, TD-DFT, and Molecular Docking Approach

Abstract

Background

Epilepsy is a chronic neurological disease that affects around 50 million people globally. To cure this disorder, different antiepileptic drugs have been studied computational approaches.

Methods

Density functional theory (DFT) and time-dependent-density functional theory (TD-DFT) are employed to investigate the optoelectronic, photodynamic, and structural properties of antiepileptic drugs (). The B3LYP/6-311 G (d, p) was used for the computational simulations study. Further comparisons with reference drug phenobarbital () and () drugs, several geometrical variables, including frontier molecular orbitals (FMOs), excitation energy, hole-electron overlap, density of states, binding energy, molecular electrostatic potential, transition density matrix, and density of states were performed.

Results

Compared to () with antiepileptic drugs AEDs ) exhibited a bathochromic shift of the absorption spectrum, lower excitation energies, and comparable binding energies. The findings showed that the antiepileptic drugs had significantly lower HOMO-LUMO energy gaps (E = 1.89-1.98 eV), pointing to their higher charge-directing behavior from HOMO to LUMO. The molecule exhibited excellent HOMO (-7.17 eV), LUMO (-2.80 eV), lowest energy band gap (4.37 eV), and boosted DOS results, which strengthens the drug-protein interaction.

Conclusion

EP5 exhibited the enhanced performance due to the presence of the electron withdrawing group in the acceptor region, extended conjugation, and better charge transference could be the best drug efficiency. During molecular docking, the robust interactions in with the antiepileptic proteins (4EY7 and 7SK2) showed an excellent structural template among the designed drugs. Among them, has better structural properties as an antiepileptic drug for future drug discovery.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249350047250725120152
2025-08-11
2025-12-04
Loading full text...

Full text loading...

References

  1. French J.A. Faught E. Rational polytherapy. Epilepsia 2009 50 s8 Suppl. 8 63 68 10.1111/j.1528‑1167.2009.02238.x 19702736
    [Google Scholar]
  2. Surguchov A. Surgucheva I. Sharma M. Sharma R. Singh V. Pore-forming proteins as mediators of novel epigenetic mechanism of epilepsy. Front. Neurol. 2017 8 3 10.3389/fneur.2017.00003 28149289
    [Google Scholar]
  3. Löscher W. Schmidt D. Modern antiepileptic drug development has failed to deliver: Ways out of the current dilemma. Epilepsia 2011 52 4 657 678 10.1111/j.1528‑1167.2011.03024.x 21426333
    [Google Scholar]
  4. Wei C. Zhang J. Yin W. Jiang A. Liu Y. Wu B. A real-world pharmacovigilance study of severe cutaneous adverse reactions associated with antiepileptic drug combination therapy: Data mining of FDA adverse event reporting system. Expert Opin. Drug Saf. 2022 ••• 1 7 36373417
    [Google Scholar]
  5. Inada A. Oyama S. Niinomi I. Wakabayashi T. Iwanaga K. Hosohata K. Association of Stevens‐Johnson syndrome and toxic epidermal necrolysis with antiepileptic drugs in pediatric patients: Subgroup analysis based on a Japanese spontaneous database. J. Clin. Pharm. Ther. 2019 44 5 775 779 10.1111/jcpt.13001 31231846
    [Google Scholar]
  6. Perucca E. Pharmacological and therapeutic properties of valproate: A summary after 35 years of clinical experience. CNS Drugs 2002 16 10 695 714 10.2165/00023210‑200216100‑00004 12269862
    [Google Scholar]
  7. Lezaic N. Gore G. Josephson C.B. Wiebe S. Jetté N. Keezer M.R. The medical treatment of epilepsy in the elderly: A systematic review and meta‐analysis. Epilepsia 2019 60 7 1325 1340 10.1111/epi.16068 31185130
    [Google Scholar]
  8. Byun J.I. Kim D.W. Kim K.T. Yang K.I. Lee S.T. Seo J.G. No Y.J. Kang K.W. Kim D. Kim J.M. Cho Y.W. Treatment of epilepsy in adults: Expert opinion in South Korea. Epilepsy Behav. 2020 105 106942 10.1016/j.yebeh.2020.106942 32163888
    [Google Scholar]
  9. Mody I. Pearce R.A. Diversity of inhibitory neurotransmission through GABAA receptors. Trends Neurosci. 2004 27 9 569 575 10.1016/j.tins.2004.07.002 15331240
    [Google Scholar]
  10. Sallard E. Letourneur D. Legendre P. Electrophysiology of ionotropic GABA receptors. Cell. Mol. Life Sci. 2021 78 13 5341 5370 10.1007/s00018‑021‑03846‑2 34061215
    [Google Scholar]
  11. Solomon V.R. Tallapragada V.J. Chebib M. Johnston G.A.R. Hanrahan J.R. GABA allosteric modulators: An overview of recent developments in non-benzodiazepine modulators. Eur. J. Med. Chem. 2019 171 434 461 10.1016/j.ejmech.2019.03.043 30928713
    [Google Scholar]
  12. Olsen R.W. Sieghart W. GABAA receptors: Subtypes provide diversity of function and pharmacology. Neuropharmacology 2009 56 1 141 148 10.1016/j.neuropharm.2008.07.045 18760291
    [Google Scholar]
  13. Bruni O. Ferini-Strambi L. Giacomoni E. Pellegrino P. Herbal remedies and their possible effect on the GABAergic system and sleep. Nutrients 2021 13 2 530 10.3390/nu13020530 33561990
    [Google Scholar]
  14. Rogawski M.A. Revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Curr. 2011 11 2 56 63 10.5698/1535‑7511‑11.2.56 21686307
    [Google Scholar]
  15. Belete T.M. Recent progress in the development of new antiepileptic drugs with novel targets. Ann. Neurosci. 2023 30 4 262 276 10.1177/09727531231185991 38020406
    [Google Scholar]
  16. Johnson J. Focken T. Tari P.K. Dube C. Goodchild S.J. Andrez J-C. Bankar G. Burford K. Chang E. Chowdhury S. NaV1. 6 inhibition drives the efficacy of voltage-gated sodium channel inhibitors to prevent electrically induced seizures in both wild type and Scn8aN1768D/+ gain-of-function mice. bioRxiv 2023
    [Google Scholar]
  17. Nakatani Y. Masuko H. Amano T. Effect of lamotrigine on Na(v)1.4 voltage-gated sodium channels. J. Pharmacol. Sci. 2013 123 2 203 206 10.1254/jphs.13116SC 24096830
    [Google Scholar]
  18. Stephen L.J. Kwan P. Brodie M.J. Does the cause of localisation-related epilepsy influence the response to antiepileptic drug treatment? Epilepsia 2001 42 3 357 362 10.1046/j.1528‑1157.2001.29000.x 11442153
    [Google Scholar]
  19. Löscher W. Schmidt D. New horizons in the development of antiepileptic drugs: the search for new targets. Epilepsy Res. 2004 60 2-3 77 159 15540387
    [Google Scholar]
  20. Perucca E. Bialer M. White H.S. New GABA-targeting therapies for the treatment of seizures and epilepsy: I. Role of GABA as a modulator of seizure activity and recently approved medications acting on the GABA system. CNS Drugs 2023 37 9 755 779 10.1007/s40263‑023‑01027‑2 37603262
    [Google Scholar]
  21. Bang F. Birket-Smith E. Mikkelsen B. Clonazepam in the treatment of epilepsy. A clinical long-term follow-up study. Epilepsia 1976 17 3 321 324 10.1111/j.1528‑1157.1976.tb03410.x 824124
    [Google Scholar]
  22. Pinder R.M. Brogden R.N. Speight T.M. Avery G.S. Clonazepam. Drugs 1976 12 5 321 361 10.2165/00003495‑197612050‑00001 976134
    [Google Scholar]
  23. Alrashood S. Profiles of drug substances, excipients, and related methodology. Cambridge, MA, USA Academic Press 2016
    [Google Scholar]
  24. Fu K. Zhou D. Tang X. Chen L. Clonazepam needs to be taken care for refractory epilepsy: A rare case and review. J. Neuropsychiatry Clin. Neurosci. 2015 27 2 e143 e145 10.1176/appi.neuropsych.13120361 25923860
    [Google Scholar]
  25. Leppik I.E. Zonisamide: chemistry, mechanism of action, and pharmacokinetics. Seizure 2004 13 Suppl. 1 S5 S9 10.1016/j.seizure.2004.04.016 15511691
    [Google Scholar]
  26. Kwan P. Brodie M.J. Phenobarbital for the treatment of epilepsy in the 21st century: A critical review. Epilepsia 2004 45 9 1141 1149 10.1111/j.0013‑9580.2004.12704.x 15329080
    [Google Scholar]
  27. Punia K. Scott W. Manuja K. Campbell K. Balodis I. M. MacKillop J. Phenobarbital for alcohol withdrawal management in the emergency department: A systematic review of direct evidence for the SAEM GRACE initiative J. Acad. Emerg. Med. 2023
    [Google Scholar]
  28. Trinka E. Phenobarbital in Status epilepticus – Rediscovery of an effective drug. Epilepsy Behav. 2023 141 109104 10.1016/j.yebeh.2023.109104 36807987
    [Google Scholar]
  29. Deighton J.C. Physician assisted dying (PAD): An investigation into the mechanistic action of opioid, benzodiazepine, and barbiturate administration as an alternative measure to forgoing life-sustaining treatment and aggressive palliation. CMC Senior Theses 2022
    [Google Scholar]
  30. Nantachit K. Santiarworn D. Kumdech N. Luecha N. Synthesis of phenobarbital, an anticonvulsant drug. CMUJ. Nat. Sci. 2007 6 1 49 55
    [Google Scholar]
  31. Stefan H. Epilepsy in the elderly: Facts and challenges. Acta Neurol. Scand. 2011 124 4 223 237 10.1111/j.1600‑0404.2010.01464.x 21143593
    [Google Scholar]
  32. Löscher W. Rogawski M.A. How theories evolved concerning the mechanism of action of barbiturates. Epilepsia 2012 53 s8 Suppl. 8 12 25 10.1111/epi.12025 23205959
    [Google Scholar]
  33. Rad M. Ebrahimipour G. Bandehpour M. Akhavan O. Yarian F. SOEing PCR/docking optimization of protein AG/scFv-Fc-Bioconjugated Au nanoparticles for interaction with meningitis bacterial antigen. Catalysts 2023 13 5 790 10.3390/catal13050790
    [Google Scholar]
  34. Alimirzaei F. Kieslich C.A. Machine learning models for predicting membranolytic anticancer peptides. Computer-Aided Chem. Eng. 2023 52 2691 2696 10.1016/B978‑0‑443‑15274‑0.50428‑5
    [Google Scholar]
  35. Maghsoudi S. Taghavi Shahraki B. Rameh F. Nazarabi M. Fatahi Y. Akhavan O. Rabiee M. Mostafavi E. Lima E.C. Saeb M.R. Rabiee N. A review on computer‐aided chemogenomics and drug repositioning for rational COVID ‐19 drug discovery. Chem. Biol. Drug Des. 2022 100 5 699 721 10.1111/cbdd.14136 36002440
    [Google Scholar]
  36. Rabiee N. Akhavan O. Fatahi Y. Ghadiri A.M. Kiani M. Makvandi P. Rabiee M. Nicknam M.H. Saeb M.R. Varma R.S. Ashrafizadeh M. Zare E.N. Sharifi E. Lima E.C. CaZnO-based nanoghosts for the detection of ssDNA, pCRISPR and recombinant SARS-CoV-2 spike antigen and targeted delivery of doxorubicin. Chemosphere 2022 306 135578 10.1016/j.chemosphere.2022.135578 35798154
    [Google Scholar]
  37. Chakravarthi C.H.M. Mulpuru V. Mishra N. Artificial intelligence and bioinformatics: a powerful synergy for drug design and discovery.Artificial Intelligence: A Multidisciplinary Approach towards Teaching and Learning. Bentham Science Publishers 2024 26 79
    [Google Scholar]
  38. Agu P.C. Afiukwa C.A. Orji O.U. Ezeh E.M. Ofoke I.H. Ogbu C.O. Ugwuja E.I. Aja P.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci. Rep. 2023 13 1 13398 10.1038/s41598‑023‑40160‑2 37592012
    [Google Scholar]
  39. Agamah F.E. Mazandu G.K. Hassan R. Bope C.D. Thomford N.E. Ghansah A. Chimusa E.R. Computational/in silico methods in drug target and lead prediction. Brief. Bioinform. 2020 21 5 1663 1675 10.1093/bib/bbz103 31711157
    [Google Scholar]
  40. Rahimnejad M. Rabiee N. Ahmadi S. Jahangiri S. Sajadi S.M. Akhavan O. Saeb M.R. Kwon W. Kim M. Hahn S.K. Emerging phospholipid nanobiomaterials for biomedical applications to lab-on-a-chip, drug delivery, and cellular engineering. ACS Appl. Bio Mater. 2021 4 12 8110 8128 10.1021/acsabm.1c00932 35005915
    [Google Scholar]
  41. Rahimnejad M. Rasouli F. Jahangiri S. Ahmadi S. Rabiee N. Ramezani Farani M. Akhavan O. Asadnia M. Fatahi Y. Hong S. Lee J. Lee J. Hahn S.K. Engineered biomimetic membranes for organ-on-a-chip. ACS Biomater. Sci. Eng. 2022 8 12 5038 5059 10.1021/acsbiomaterials.2c00531 36347501
    [Google Scholar]
  42. Trucks G. Schlegel H. Scuseria G. Robb M. Cheeseman J. Scalmani G. Barone V. Mennucci B. Petersson G. Nakatsuji H. Gaussian; Wallingford CT 2009
    [Google Scholar]
  43. Frisch M.e. Trucks G. Schlegel H. Scuseria G. Robb M. Cheeseman J. Scalmani G. Barone V. Petersson G. Nakatsuji H. Gaussian 16, revision C. 01. Wallingford, CT Gaussian, Inc. 2016
    [Google Scholar]
  44. Dennington R. Keith T. Millam J. GaussView 5.0. Wallingford Gaussian 2008
    [Google Scholar]
  45. Khan S. Hussain R. Sattar A. Assiri M.A. Imran M. Ajaz Hussain; Yawer, M.A.; Hussain, R.; Mehboob, M.Y.; Sumrra, S.H.; Khalid, M.; Ayub, K. Quantum chemical designing of novel fullerene-free acceptor molecules for organic solar cell applications. J. Mol. Model. 2022 28 3 67 10.1007/s00894‑022‑05062‑6 35201436
    [Google Scholar]
  46. Ishfaq T. Ahmad Khera R. Zahid S. Yaqoob U. Aqil Shehzad R. Ayub K. Iqbal J. Enhancement in non-linear optical properties of carbon nitride (C2N) by doping superalkali (Li3O): A DFT study. Comput. Theor. Chem. 2022 1211 113654 10.1016/j.comptc.2022.113654
    [Google Scholar]
  47. Kosar N. Ayub K. Gilani M.A. Muhammad S. Mahmood T. Benchmark density functional theory approach for the calculation of bond dissociation energies of the m–o 2 bond: A key step in water splitting reactions. ACS Omega 2022 7 24 20800 20808 10.1021/acsomega.2c01331 35935283
    [Google Scholar]
  48. Rahman T.U. Arfan M. Mahmood T. Liaqat W. Gilani M.A. Uddin G. Ludwig R. Zaman K. Choudhary M.I. Khattak K.F. Ayub K. Isolation, spectroscopic and density functional theory studies of 7-(4-methoxyphenyl)-9H-furo[2,3-f]chromen-9-one: A new flavonoid from the bark of Millettia ovalifolia. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015 146 24 32 10.1016/j.saa.2015.03.061 25804510
    [Google Scholar]
  49. Zahid S. Rasool A. Ayub A.R. Ayub K. Iqbal J. Al-Buriahi M.S. Alwadai N. Somaily H.H. Silver cluster doped graphyne (GY) with outstanding non-linear optical properties. RSC Advances 2022 12 9 5466 5482 10.1039/D1RA08117A 35425557
    [Google Scholar]
  50. Moberly J.G. Bernards M.T. Waynant K.V. Key features and updates for Origin 2018. J. Cheminform. 2018 10 1 5 10.1186/s13321‑018‑0259‑x 29427195
    [Google Scholar]
  51. Hussain R. Khan M.U. Mehboob M.Y. Khalid M. Iqbal J. Ayub K. Adnan M. Ahmed M. Atiq K. Mahmood K. Enhancement in photovoltaic properties of N, N‐diethylaniline based donor materials by bridging core modifications for efficient solar cells. ChemistrySelect 2020 5 17 5022 5034 10.1002/slct.202000096
    [Google Scholar]
  52. Tang S. Zhang J. Design of donors with broad absorption regions and suitable frontier molecular orbitals to match typical acceptors via substitution on oligo(thienylenevinylene) toward solar cells. J. Comput. Chem. 2012 33 15 1353 1363 10.1002/jcc.22966 22488353
    [Google Scholar]
  53. Khan M.U. Khalid M. Ibrahim M. Braga A.A.C. Safdar M. Al-Saadi A.A. Janjua M.R.S.A. First theoretical framework of triphenylamine–dicyanovinylene-based nonlinear optical dyes: structural modification of π-linkers. J. Phys. Chem. C 2018 122 7 4009 4018 10.1021/acs.jpcc.7b12293
    [Google Scholar]
  54. Janjua M.R.S.A. Khan M.U. Bashir B. Iqbal M.A. Song Y. Naqvi S.A.R. Khan Z.A. Effect of π-conjugation spacer (CC) on the first hyperpolarizabilities of polymeric chain containing polyoxometalate cluster as a side-chain pendant: A DFT study. Comput. Theor. Chem. 2012 994 34 40 10.1016/j.comptc.2012.06.011
    [Google Scholar]
  55. Khan M.U. Ibrahim M. Khalid M. Jamil S. Al-Saadi A.A. Janjua M.R.S.A. Quantum chemical designing of indolo[3,2,1-jk]carbazole-based dyes for highly efficient nonlinear optical properties. Chem. Phys. Lett. 2019 719 59 66 10.1016/j.cplett.2019.01.043
    [Google Scholar]
  56. Khan M.U. Ibrahim M. Khalid M. Braga A.A.C. Ahmed S. Sultan A. Prediction of second-order nonlinear optical properties of D–π–A compounds containing novel fluorene derivatives: A promising route to giant hyperpolarizabilities. J. Cluster Sci. 2019 30 2 415 430 10.1007/s10876‑018‑01489‑1
    [Google Scholar]
  57. Ohta N. Yamashita K. Muraoka A. Mechanism of charge transfer and separation in polymer/nonfullerene acceptor organic solar cells. Bull. Am. Phys. Soc. 2020 65
    [Google Scholar]
  58. Mehboob M.Y. Hussain F. Hussain R. Ali S. Irshad Z. Adnan M. Ayub K. Designing of inorganic Al 12 N 12 nanocluster with Fe, Co, Ni, Cu and Zn metals for efficient hydrogen storage materials. J. Comput. Biophys. Chem. 2021 20 4 359 375 10.1142/S2737416521500186
    [Google Scholar]
  59. Younas F. Mehboob M.Y. Ayub K. Hussain R. Umar A. Khan M.U. Irshad Z. Adnan M. Efficient Cu decorated inorganic B12P12 nanoclusters for sensing toxic COCl2 gas: A detailed DFT study. J. Comput. Biophys. Chem. 2021 20 1 85 97 10.1142/S273741652150006X
    [Google Scholar]
  60. Mehboob M.Y. Hussain R. Adnan M. Irshad Z. End‐capped molecular engineering of S‐shaped hepta‐ring‐containing fullerene‐free acceptor molecules with remarkable photovoltaic characteristics for highly efficient organic solar cells. Energy Technol. 2021 9 5 2001090 10.1002/ente.202001090
    [Google Scholar]
  61. Baloach R. Ayub K. Mahmood T. Asif A. Tabassum S. Gilani M.A. A new strategy of bi-alkali metal doping to design boron phosphide nanocages of high nonlinear optical response with better thermodynamic stability. J. Inorg. Organomet. Polym. Mater. 2021 31 7 3062 3076 10.1007/s10904‑021‑02000‑6
    [Google Scholar]
  62. Hagar M. Ahmed H.A. Aljohani G. Alhaddad O.A. Investigation of some antiviral N-heterocycles as COVID 19 drug: Molecular docking and DFT calculations. Int. J. Mol. Sci. 2020 21 11 3922 10.3390/ijms21113922 32486229
    [Google Scholar]
  63. Ullah H. Zada H. Khan F. Hayat S. Rahim F. Hussain A. Manzoor A. Wadood A. Ayub K. Rehman A.U. Sarfaraz S. Benzimidazole bearing thiourea analogues: Synthesis, β-glucuronidase inhibitory potential and their molecular docking study. J. Mol. Struct. 2022 1270 133941 10.1016/j.molstruc.2022.133941
    [Google Scholar]
  64. Politzer P. Murray J.S. An overview of strengths and directionalities of noncovalent interactions: σ-holes and π-holes. Crystals 2019 9 3 165 10.3390/cryst9030165
    [Google Scholar]
  65. Liu C. Liu L. Qiu N. Wan X. Li C. Lu Y. A novel chlorinated small molecule donor for efficient binary and ternary all-small-molecule organic solar cells. Org. Electron. 2022 106 106532 10.1016/j.orgel.2022.106532
    [Google Scholar]
  66. Arkhipov V.I. Heremans P. Emelianova E.V. Bässler H. Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors. Phys. Rev. B Condens. Matter Mater. Phys. 2005 71 4 045214 10.1103/PhysRevB.71.045214
    [Google Scholar]
  67. Hartenstein B. Bässler H. Transport energy for hopping in a Gaussian density of states distribution. J. Non-Cryst. Solids 1995 190 1-2 112 116 10.1016/0022‑3093(95)00263‑4
    [Google Scholar]
  68. Mehboob M.Y. Hussain R. Asif Iqbal M.M. Irshad Z. Adnan M. First principle theoretical designing of W-shaped Dithienosilole-based acceptor materials having efficient photovoltaic properties for high-performance organic solar cells. J. Phys. Chem. Solids 2021 157 110202 10.1016/j.jpcs.2021.110202
    [Google Scholar]
  69. Mehboob M.Y. Adnan M. Hussain R. Farhad A. Irshad Z. Butterfly-shaped hole transport materials with outstanding photovoltaic properties for organic solar cells. Opt. Quantum Electron. 2021 53 9 517 10.1007/s11082‑021‑03162‑w
    [Google Scholar]
  70. Mehboob M.Y. Hussain R. Irshad Z. Adnan M. Role of acceptor guests in tuning optoelectronic properties of benzothiadiazole core based non-fullerene acceptors for high-performance bulk-heterojunction organic solar cells. J. Mol. Model. 2021 27 8 226 10.1007/s00894‑021‑04843‑9 34259943
    [Google Scholar]
  71. Ans M. Iqbal J. Ahmad Z. Muhammad S. Hussain R. Eliasson B. Ayub K. Designing three‐dimensional (3D) non‐fullerene small molecule acceptors with efficient photovoltaic parameters. ChemistrySelect 2018 3 45 12797 12804 10.1002/slct.201802732
    [Google Scholar]
  72. Li Y. Ullrich C.A. Time-dependent transition density matrix. Chem. Phys. 2011 391 1 157 163 10.1016/j.chemphys.2011.02.001
    [Google Scholar]
  73. Malmqvist P.Å. Calculation of transition density matrices by nonunitary orbital transformations. Int. J. Quantum Chem. 1986 30 4 479 494 10.1002/qua.560300404
    [Google Scholar]
  74. Adnan M. Iqbal J. BiBi, S.; Hussain, R.; Akhtar, M.N.; Rashid, M.A.; Eliasson, B.; Ayub, K. Fine tuning the optoelectronic properties of triphenylamine based donor molecules for organic solar cells. Z. Phys. Chem. 2017 231 6 1127 1139 10.1515/zpch‑2016‑0790
    [Google Scholar]
  75. Adnan M. Irshad Z. Lee J.K. Facile all-dip-coating deposition of highly efficient (CH 3) 3 NPbI 3−x Cl x perovskite materials from aqueous non-halide lead precursor. RSC Advances 2020 10 48 29010 29017 10.1039/D0RA06074G 35547867
    [Google Scholar]
  76. Adnan M. Lee J.K. Highly efficient planar heterojunction perovskite solar cells with sequentially dip-coated deposited perovskite layers from a non-halide aqueous lead precursor. RSC Advances 2020 10 9 5454 5461 10.1039/C9RA09607H 35498289
    [Google Scholar]
  77. Hussain S. Hussain R. Mehboob M.Y. Chatha S.A.S. Hussain A.I. Umar A. Khan M.U. Ahmed M. Adnan M. Ayub K. Adsorption of phosgene gas on pristine and copper-decorated B12N12 nanocages: A comparative DFT study. ACS Omega 2020 5 13 7641 7650 10.1021/acsomega.0c00507 32280908
    [Google Scholar]
  78. Dkhissi A. Excitons in organic semiconductors. Synth. Met. 2011 161 13-14 1441 1443 10.1016/j.synthmet.2011.04.003
    [Google Scholar]
  79. Hussain R. Mehboob M.Y. Khan M.U. Khalid M. Irshad Z. Fatima R. Anwar A. Nawab S. Adnan M. Efficient designing of triphenylamine-based hole transport materials with outstanding photovoltaic characteristics for organic solar cells. J. Mater. Sci. 2021 56 8 5113 5131 10.1007/s10853‑020‑05567‑6
    [Google Scholar]
  80. Mehboob M.Y. Hussain R. Irshad Z. Adnan M. Enhancement in the photovoltaic properties of hole transport materials by end‐capped donor modifications for solar cell applications. Bull. Korean Chem. Soc. 2021 42 4 597 610 10.1002/bkcs.12238
    [Google Scholar]
  81. Hussain S. Shahid Chatha S.A. Hussain A.I. Hussain R. Mehboob M.Y. Gulzar T. Mansha A. Shahzad N. Ayub K. Designing novel Zn-decorated inorganic B12P12 nanoclusters with promising electronic properties: A step forward toward efficient CO2 sensing materials. ACS Omega 2020 5 25 15547 15556 10.1021/acsomega.0c01686 32637830
    [Google Scholar]
  82. Liang N. Sun K. Zheng Z. Yao H. Gao G. Meng X. Wang Z. Ma W. Hou J. Perylene diimide trimers based bulk heterojunction organic solar cells with efficiency over 7%. Adv. Energy Mater. 2016 6 11 1600060 10.1002/aenm.201600060
    [Google Scholar]
  83. Hussain S. Chatha S.A.S. Hussain A.I. Hussain R. Mehboob M.Y. Muhammad S. Ahmad Z. Ayub K. Zinc-doped boron phosphide nanocluster as efficient sensor for SO2. J. Chem. 2020 2020 2629596 10.1155/2020/2629596
    [Google Scholar]
  84. Mehboob M.Y. Hussain R. Khan M.U. Adnan M. Ehsan M.A. Rehman A. Janjua M.R.S.A. Quantum chemical design of near‐infrared sensitive fused ring electron acceptors containing selenophene as π‐bridge for high‐performance organic solar cells. J. Phys. Org. Chem. 2021 34 8 e4204 10.1002/poc.4204
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249350047250725120152
Loading
/content/journals/cnsamc/10.2174/0118715249350047250725120152
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: band gap ; photodynamic properties ; DFT ; docking ; TDM analysis ; Antiepileptic drugs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test