Skip to content
2000
image of Exploring Pyranophenothiazines for Anti-Alzheimer’s Activity: Insights from Molecular Modeling Analysis

Abstract

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder. Obstructing AChE is a remedial strategy to increase ACh levels in the brain and potentially upgrade cognitive function. In the realm of anti-Alzheimer's agents, pyranophenothiazine has been a noteworthy compound that exhibits significant inhibitory activity toward relevant receptors.

Objectives

Novel analogs of pyranophenothiazine were intricately crafted, and their inhibitory potential against AChE enzyme (4EY7) and BuChE enzyme (4AQD) was thoroughly investigated through molecular modeling studies.

Methods

ADMET predictions were carried out by using the QikProp module. Docking studies were conducted by using the Glide module for two targets: AChE enzyme (PDB id: 4EY7) and BuChE enzyme(PDB id: 4AQD). Binding free energies were calculated by means of the Prime MM-GBSA module, and molecular dynamics (MD) simulation was performed by using the Desmond module.

Results and Discussion

These results of ADMET predictions indicated that the compounds possess drug-likeness properties, making them suitable candidates for further development and also having the ability to cross the BBB. The docking studies revealed the interaction between the designed ligands and cholinesterases. The results indicate that the ligands exhibit significant binding affinities, which was confirmed by MM-GBSA analysis and MD simulation study.

Conclusion

Conclusively, the study findings suggest that derivatives of pyranophenothiazine hold potential as inhibitors of AChE targeting AD.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249353128250901051741
2025-09-15
2025-12-04
Loading full text...

Full text loading...

References

  1. Wilson R.S. Segawa E. Boyle P.A. Anagnos S.E. Hizel L.P. Bennett D.A. The natural history of cognitive decline in Alzheimer’s disease. Psychol. Aging 2012 27 4 1008 1017 10.1037/a0029857 22946521
    [Google Scholar]
  2. Obulesu M. Introduction. In: Alzheimer’s Disease Theranostics. Elsevier 2019 1 6 10.1016/B978‑0‑12‑816412‑9.00001‑X
    [Google Scholar]
  3. Gómez-Ganau S. de Julián-Ortiz J.V. Gozalbes R. Recent advances in computational approaches for designing potential anti-alzheimer’s agents. In: Neuromethods. Humana Press Inc. 2018 25 59
    [Google Scholar]
  4. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  5. Simoni E. Daniele S. Bottegoni G. Pizzirani D. Trincavelli M.L. Goldoni L. Tarozzo G. Reggiani A. Martini C. Piomelli D. Melchiorre C. Rosini M. Cavalli A. Combining galantamine and memantine in multitargeted, new chemical entities potentially useful in Alzheimer’s disease. J. Med. Chem. 2012 55 22 9708 9721 10.1021/jm3009458 23033965
    [Google Scholar]
  6. Shi D.H. Tang Z. Liu Y.W. Harjani J.R. Zhu H.L. Ma X.D. Song X-K. Liu W-W. Lu C. Yang W-T. Song M-Q. Design, synthesis and biological evaluation of novel 2‐phenylthiazole derivatives for the treatment of Alzheimer’s disease. ChemistrySelect 2017 2 32 10572 10579 10.1002/slct.201702087
    [Google Scholar]
  7. Qiu C. Kivipelto M. Von Strauss E. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci. 2009 11 2 111 128 10.31887/DCNS.2009.11.2/cqiu
    [Google Scholar]
  8. Ali A. Asif M. Khanam H. Mashrai A. Sherwani M.A. Owais M. Shamsuzzaman S. Synthesis and characterization of steroidal heterocyclic compounds, DNA condensation and molecular docking studies and their in vitro anticancer and acetylcholinesterase inhibition activities. RSC Advances 2015 5 93 75964 75984 10.1039/C5RA11049A
    [Google Scholar]
  9. de Freitas Silva M. Tardelli Lima E. Pruccoli L. Castro N. Guimarães M. da Silva F. Fonseca Nadur N. de Azevedo L. Kümmerle A. Guedes I. Dardenne L. Gontijo V. Tarozzi A. Viegas C. Design, synthesis and biological evaluation of novel triazole N-acylhydrazone hybrids for Alzheimer’s disease. Molecules 2020 25 14 3165 10.3390/molecules25143165 32664425
    [Google Scholar]
  10. Maramai S. Benchekroun M. Gabr M.T. Yahiaoui S. Multitarget therapeutic strategies for Alzheimer’s disease: Review on emerging target combinations. In: BioMed Research International. Hindawi Limited 2020
    [Google Scholar]
  11. Pal T. Bhimaneni S. Sharma A. Flora S.J.S. Design, synthesis, biological evaluation and molecular docking study of novel pyridoxine–triazoles as anti-Alzheimer’s agents. RSC Advances 2020 10 44 26006 26021 10.1039/D0RA04942E 35519785
    [Google Scholar]
  12. Cummings J. Zhou Y. Lee G. Zhong K. Fonseca J. Cheng F. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement. 2023 9 2 12385 10.1002/trc2.12385 37251912
    [Google Scholar]
  13. Chen Z.R. Huang J.B. Yang S.L. Hong F.F. Role of cholinergic signaling in Alzheimer’s disease. In: Molecules; 2022 27, p. 6 1816. 10.3390/molecules27061816
    [Google Scholar]
  14. Costanzo P. Cariati L. Desiderio D. Sgammato R. Lamberti A. Arcone R. Salerno R. Nardi M. Masullo M. Oliverio M. Design, synthesis, and evaluation of donepezil-like compounds as AChE and BACE-1 inhibitors. ACS Med. Chem. Lett. 2016 7 5 470 475 10.1021/acsmedchemlett.5b00483 27190595
    [Google Scholar]
  15. Sam C. Bordoni B. Physiology, acetylcholine. In: StatPearls. Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  16. Acetyl Choline Acetyl Choline. In:Neuroscience Second; Purves D. Augustine G. Fitzpatrick D. Sunderland, MA Sinauer Associates 2001
    [Google Scholar]
  17. Akocak S. Boga M. Lolak N. Tuneg M. Sanku R.K.K. Design, synthesis and biological evaluation of 1,3-diaryltriazenesubstituted sulfonamides as antioxidant, acetylcholinesterase and butyrylcholinesterase inhibitors. J. Turk Chem. Soc. Chem 2019 6 1 63 70 10.18596/jotcsa.516444
    [Google Scholar]
  18. Zhang X. Wang J. Hong C. Luo W. Wang C. Design, synthesis and evaluation of genistein-polyamine conjugates as multi-functional anti-Alzheimer agents. Acta Pharm. Sin. B 2015 5 1 67 73 10.1016/j.apsb.2014.12.008 26579427
    [Google Scholar]
  19. Kumar A. Pintus F. Di Petrillo A. Medda R. Caria P. Matos M.J. Viña D. Pieroni E. Delogu F. Era B. Delogu G.L. Fais A. Novel 2-pheynlbenzofuran derivatives as selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Sci. Rep. 2018 8 1 4424 10.1038/s41598‑018‑22747‑2 29535344
    [Google Scholar]
  20. Lalut J. Santoni G. Karila D. Lecoutey C. Davis A. Nachon F. Silman I. Sussman J. Weik M. Maurice T. Dallemagne P. Rochais C. Novel multitarget-directed ligands targeting acetylcholinesterase and σ1 receptors as lead compounds for treatment of Alzheimer’s disease: Synthesis, evaluation, and structural characterization of their complexes with acetylcholinesterase. Eur. J. Med. Chem. 2019 162 234 248 10.1016/j.ejmech.2018.10.064 30447434
    [Google Scholar]
  21. Nordberg A Ballard C Bullock R Darreh-Shori T Somogyi M. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim. Care Companion CNS Disord., 2013 15 2 PCC.12r01412. 10.4088/PCC.12r01412
    [Google Scholar]
  22. Zhao T. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β‐carboline and quinoline alkaloids derivatives from the plants of genus Peganum. J. Chem. 2013 2013 717232 10.1155/2013/717232
    [Google Scholar]
  23. Ragab H.M. Teleb M. Haidar H.R. Gouda N. Chlorinated tacrine analogs: Design, synthesis and biological evaluation of their anti-cholinesterase activity as potential treatment for Alzheimer’s disease. Bioorg. Chem. 2019 86 557 568 10.1016/j.bioorg.2019.02.033 30782574
    [Google Scholar]
  24. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. In: Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd 2006
    [Google Scholar]
  25. Hyde C. Peters J. Bond M. Rogers G. Hoyle M. Anderson R. Jeffreys M. Davis S. Thokala P. Moxham T. Evolution of the evidence on the effectiveness and cost-effectiveness of acetylcholinesterase inhibitors and memantine for Alzheimer’s disease: Systematic review and economic model. Age Ageing 2013 42 1 14 20 10.1093/ageing/afs165 23179169
    [Google Scholar]
  26. Bond M. Rogers G. Peters J. Anderson R. Hoyle M. Miners A. Moxham T. Davis S. Thokala P. Wailoo A. Jeffreys M. Hyde C. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of Technology Appraisal No. 111): A systematic review and economic model. Health Technol. Assess. 2012 16 21 1 470 10.3310/hta16210 22541366
    [Google Scholar]
  27. Kidron A. Nguyen H. Phenothiazine. Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  28. Sudeshna G. Parimal K. Multiple non-psychiatric effects of phenothiazines: A review. Eur. J. Pharmacol. 2010 648 1-3 6 14 10.1016/j.ejphar.2010.08.045 20828548
    [Google Scholar]
  29. Ohlow M.J. Moosmann B. Phenothiazine: The seven lives of pharmacology’s first lead structure. Drug Discov. Today 2011 16 3-4 119 131 10.1016/j.drudis.2011.01.001 21237283
    [Google Scholar]
  30. Pluta K. Morak-Młodawska B. Jeleń M. Recent progress in biological activities of synthesized phenothiazines. Eur. J. Med. Chem. 2011 46 8 3179 3189 10.1016/j.ejmech.2011.05.013 21620536
    [Google Scholar]
  31. Jaszczyszyn A. Zgłusiorowski K. Malinka W. Cieślik-Boczula K. Petrus J. Matusewicz B. Chemical structure of phenothiazines and their biological activity. Pharmacol. Rep. 2012 64 1 16 23 10.1016/s1734‑1140(12)70726‑0
    [Google Scholar]
  32. Varga B. Csonka Á. Csonka A. Molnár J. Amaral L. Spengler G. Possible biological and clinical applications of phenothiazines. Anticancer Res. 2017 37 11 5983 5993
    [Google Scholar]
  33. Sellamuthu S. Bhat M.F. Kumar A. Singh S.K. Phenothiazine: A better scaffold against tuberculosis. Mini Rev. Med. Chem. 2018 18 17 1442 1451 10.2174/1389557517666170220152651 28486909
    [Google Scholar]
  34. Jyothi B. Bhavanarushi P.V. Madhavi N. Efficient synthesis and characterization of some novel phenothiazine sulfonamides. Rasayan J. Chem. 2019 12 3 1426 1433 10.31788/RJC.2019.1235222
    [Google Scholar]
  35. Gopi C. Dhanaraju M.D. Recent progress in synthesis, structure and biological activities of phenothiazine derivatives. Rev. J. Chem. 2019 9 2 95 126 10.1134/S2079978019020018
    [Google Scholar]
  36. Swarnkar P.K. Kriplani P. Gupta G.N. Ojha K.G. Synthesis and antibacterial activity of some new phenothiazine derivatives. E-J. Chem. 2007 4 1 14 20
    [Google Scholar]
  37. Sarmiento G.P. Martini M.F. Vitale R.G. Fabian L.E. Afeltra J. Vega D. Moltrasio G.Y. Moglioni A.G. N-haloacetyl phenothiazines and derivatives: Preparation, characterization and structure-activity relationship for antifungal activity. Arab. J. Chem. 2019 12 1 21 32 10.1016/j.arabjc.2017.11.019
    [Google Scholar]
  38. Haralanova T. Marinov M. Kostova I. Nikolova I. Damyanova S. Stoyanov N. Synthesis, characterization, and activity of 6-(10H-phenothiazine-10-yl)-1H,3H-benzo[de]-isochromen-1,3-dione derivative of 4-aminophenylacetic acid IOP Conf Ser Mater. 2021 1031 1 01211 10.1088/1757‑899X/1031/1/012111
    [Google Scholar]
  39. Kalkanidis M. Klonis N. Tilley L. Deady L.W. Novel phenothiazine antimalarials: Synthesis, antimalarial activity, and inhibition of the formation of β-haematin. Biochem. Pharmacol. 2002 63 5 833 842 10.1016/S0006‑2952(01)00840‑1 11911834
    [Google Scholar]
  40. Motohashi N. Gollapudi S.R. Emrani J. Bhattiprolu K.R. Antitumor properties of phenothiazines. Cancer Invest. 1991 9 3 305 319 10.3109/07357909109021328 1913233
    [Google Scholar]
  41. Okumura H. Nakazawa J. Tsuganezawa K. Usui T. Osada H. Matsumoto T. Tanaka A. Yokoyama S. Phenothiazine and carbazole-related compounds inhibit mitotic kinesin Eg5 and trigger apoptosis in transformed culture cells. Toxicol. Lett. 2006 166 1 44 52 10.1016/j.toxlet.2006.05.011 16814965
    [Google Scholar]
  42. Prinz H. Chamasmani B. Vogel K. Böhm K.J. Aicher B. Gerlach M. Günther E.G. Amon P. Ivanov I. Müller K. N-benzoylated phenoxazines and phenothiazines: Synthesis, antiproliferative activity, and inhibition of tubulin polymerization. J. Med. Chem. 2011 54 12 4247 4263 10.1021/jm200436t 21563750
    [Google Scholar]
  43. Prinz H. Ridder A.K. Vogel K. Böhm K.J. Ivanov I. Ghasemi J.B. Aghaee E. Müller K. N -heterocyclic (4-Phenylpiperazin-1-yl)methanones derived from phenoxazine and phenothiazine as highly potent inhibitors of tubulin polymerization. J. Med. Chem. 2017 60 2 749 766 10.1021/acs.jmedchem.6b01591 28045256
    [Google Scholar]
  44. Brem B. Gal E. Găină L. Silaghi-Dumitrescu L. Fischer-Fodor E. Tomuleasa C.I. Grozav A. Zaharia V. Filip L. Cristea C. Novel Thiazolo[5,4-b]phenothiazine derivatives: Synthesis, structural characterization, and in vitro evaluation of antiproliferative activity against human leukaemia. Int. J. Mol. Sci. 2017 18 7 1365 10.3390/ijms18071365 28672876
    [Google Scholar]
  45. Morak-Młodawska B. Pluta K. Latocha M. Jeleń M. Kuśmierz D. Suwińska K. Shkurenko A. Czuba Z. Jurzak M. 10 H -1,9-diazaphenothiazine and its 10-derivatives: Synthesis, characterisation and biological evaluation as potential anticancer agents. J. Enzyme Inhib. Med. Chem. 2019 34 1 1298 1306 10.1080/14756366.2019.1639695 31307242
    [Google Scholar]
  46. Gao Y. Sun T.Y. Bai W.F. Bai C.G. Design, synthesis and evaluation of novel phenothiazine derivatives as inhibitors of breast cancer stem cells. Eur. J. Med. Chem. 2019 183 111692 10.1016/j.ejmech.2019.111692 31541872
    [Google Scholar]
  47. Luan Y. Liu J. Gao J. Wang J. The design and synthesis of novel phenothiazine derivatives as potential cytotoxic agents. Lett. Drug Des. Discov. 2019 17 1 57 67 10.2174/1570180816666181115112236
    [Google Scholar]
  48. Venkatesan K. Satyanarayana V.S.V. Sivakumar A. Ramamurthy C. Thirunavukkarusu C. Synthesis, spectral characterization and antitumor activity of phenothiazine derivatives. J. Heterocycl. Chem. 2020 57 7 2722 2728 10.1002/jhet.3980
    [Google Scholar]
  49. Krishnan K.G. Kumar C.U. Lim W.M. Mai C.W. Thanikachalam P.V. Ramalingan C. Novel cyanoacetamide integrated phenothiazines: Synthesis, characterization, computational studies and in vitro antioxidant and anticancer evaluations. J. Mol. Struct. 2020 1199 127037 10.1016/j.molstruc.2019.127037
    [Google Scholar]
  50. Morak‐młodawska B. Jeleń M. Pluta K. Phenothiazines modified with the pyridine ring as promising anticancer agents. Life 2021 11 3 206 10.3390/life11030206
    [Google Scholar]
  51. Ayogu J.I. Nwoba S.T. Phenothiazine derivatives as potential antiproliferative agents: A mini- review. Mini Rev. Org. Chem. 2022 19 3 272 292 10.2174/1570193X18666210712112129
    [Google Scholar]
  52. Ibeanu F.N. Onoabedje E.A. Ibezim A. Okoro U.C. Synthesis, characterization, computational and biological study of novel azabenzo[a]phenothiazine and azabenzo[b]phenoxazine heterocycles as potential antibiotic agent. Med. Chem. Res. 2018 27 4 1093 1102 10.1007/s00044‑017‑2131‑3
    [Google Scholar]
  53. Padmavathy K. Krishnan K.G. Kumar C.U. Sutha P. Sivaramakarthikeyan R. Ramalingan C. Synthesis, antioxidant evaluation, density functional theory study of dihydropyrimidine festooned phenothiazines. ChemistrySelect 2018 3 21 5965 5974 10.1002/slct.201800748
    [Google Scholar]
  54. Al Zahrani N.A. El-Shishtawy R.M. Elaasser M.M. Asiri A.M. Synthesis of novel chalcone-based phenothiazine derivatives as antioxidant and anticancer agents. Molecules 2020 25 19 4566 10.3390/molecules25194566 33036301
    [Google Scholar]
  55. Sharma S. Singh A. Phenothiazines as anti-tubercular agents: Mechanistic insights and clinical implications. Expert Opin. Investig. Drugs 2011 20 12 1665 1676 10.1517/13543784.2011.628657 22014039
    [Google Scholar]
  56. Kristiansen J.E. Dastidar S.G. Palchoudhuri S. Roy D.S. Das S. Hendricks O. Phenothiazines as a solution for multidrug resistant tuberculosis: From the origin to present. Int. Microbiol. 2015 18 1 1 12 10.2436/20.1501.01.229
    [Google Scholar]
  57. Kang S. Lee J.M. Jeon B. Elkamhawy A. Paik S. Hong J. Oh S.J. Paek S.H. Lee C.J. Hassan A.H.E. Kang S.S. Roh E.J. Repositioning of the antipsychotic trifluoperazine: Synthesis, biological evaluation and in-silico study of trifluoperazine analogs as anti-glioblastoma agents. Eur. J. Med. Chem. 2018 151 186 198 10.1016/j.ejmech.2018.03.055 29614416
    [Google Scholar]
  58. Debord J. Merle L. Bollinger J.C. Dantoine T. Inhibition of butyrylcholinesterase by phenothiazine derivatives. J. Enzyme Inhib. Med. Chem. 2002 17 3 197 202 10.1080/1475636021000003165 12443046
    [Google Scholar]
  59. Darvesh S. Pottie I.R. Darvesh K.V. McDonald R.S. Walsh R. Conrad S. Penwell A. Mataija D. Martin E. Differential binding of phenothiazine urea derivatives to wild-type human cholinesterases and butyrylcholinesterase mutants. Bioorg. Med. Chem. 2010 18 6 2232 2244 10.1016/j.bmc.2010.01.066 20181484
    [Google Scholar]
  60. Ferreira J.P.S. Albuquerque H.M.T. Cardoso S.M. Silva A.M.S. Silva V.L.M. Dual-target compounds for Alzheimer’s disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur. J. Med. Chem. 2021 221 113492 10.1016/j.ejmech.2021.113492 33984802
    [Google Scholar]
  61. v, P.; A, M.; N, R. A computational study of phenothiazine derivatives as acetylcholinesterase inhibitors targeting Alzheimer’s disease. Cent. Nerv. Syst. Agents Med. Chem. 2025 25 1 68 82 10.2174/0118715249300784240430110628 38757327
    [Google Scholar]
  62. Dimić DS. Marković ZS. Saso L. Avdović EH. Dorović JR. Petrović IP. Synthesis and characterization of 3-(1-((3,4-dihydroxyphenethyl)amino)ethylidene)-chroman-2,4-dione as a potential antitumor agent. Oxid. Med. Cell. Longev. 2019 2019 2069250 10.1155/2019/2069250
    [Google Scholar]
  63. Przybyłowska M. Kowalski S. Dzierzbicka K. Inkielewicz-Stepniak I. Therapeutic potential of multifunctional tacrine analogues. Curr. Neuropharmacol. 2019 17 5 472 490 10.2174/1570159X16666180412091908 29651948
    [Google Scholar]
  64. Madhavi Sastry G. Adzhigirey M. Day T. Annabhimoju R. Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013 27 3 221 234 10.1007/s10822‑013‑9644‑8 23579614
    [Google Scholar]
  65. Lengauer T. Rarey M. Computational methods for biomolecular docking. Curr. Opin. Struct. Biol. 1996 6 3 402 406 10.1016/S0959‑440X(96)80061‑3 8804827
    [Google Scholar]
  66. Halperin I. Ma B. Wolfson H. Nussinov R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 2002 47 4 409 443 10.1002/prot.10115 12001221
    [Google Scholar]
  67. Kumar V. Computer aided design of selective calcium channel blockers: Using pharmacophore-based and docking simulations. Int. J. Pharm. Sci. Res. 2012 3 3 805 810 10.13040/IJPSR.0975‑8232.3(3).805‑10
    [Google Scholar]
  68. Tripuraneni N.S. Azam M.A. Pharmacophore modeling, 3D-QSAR and docking study of 2-phenylpyrimidine analogues as selective PDE4B inhibitors. J. Theor. Biol. 2016 394 117 126 10.1016/j.jtbi.2016.01.007 26804643
    [Google Scholar]
  69. Kalirajan R. Pandiselvi M. Sankar S. Gowramma B. Topoisomerase II inhibitors. SF J. Pharm. Anal. Chem. 2018 1 1 1004
    [Google Scholar]
  70. Friesner R.A. Murphy R.B. Repasky M.P. Frye L.L. Greenwood J.R. Halgren T.A. Sanschagrin P.C. Mainz D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006 49 21 6177 6196 10.1021/jm051256o 17034125
    [Google Scholar]
  71. Vediappan P. Arumugam M. Natarajan R. In-silico design, ADMET screening, prime MM-GBSA binding free energy calculation and md simulation of some novel phenothiazines as 5HT 6 R antagonists targeting Alzheimer’s disease. Curr. Computeraided Drug Des. 2025 21 4 487 502 10.2174/0115734099282836231212064925
    [Google Scholar]
  72. Barros R.O. Junior F.L.C.C. Pereira W.S. Oliveira N.M.N. Ramos R.M. Interaction of drug candidates with various SARS-CoV-2 receptors: An in-silico study to combat covid-19. J. Proteome Res. 2020 19 11 4567 4575 10.1021/acs.jproteome.0c00327 32786890
    [Google Scholar]
  73. Chaves S. Resta S. Rinaldo F. Costa M. Josselin R. Gwizdala K. Piemontese L. Capriati V. Pereira-Santos A.R. Cardoso S.M. Santos M.A. Design, synthesis, and in vitro evaluation of hydroxybenzimidazole-donepezil analogues as multitarget-directed ligands for the treatment of Alzheimer’s disease. Molecules 2020 25 4 985 10.3390/molecules25040985 32098407
    [Google Scholar]
  74. Shivakumar D. Williams J. Wu Y. Damm W. Shelley J. Sherman W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput. 2010 6 5 1509 1519 10.1021/ct900587b 26615687
    [Google Scholar]
  75. Li J. Abel R. Zhu K. Cao Y. Zhao S. Friesner R.A. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins 2011 79 10 2794 2812 10.1002/prot.23106 21905107
    [Google Scholar]
  76. Leach A.R. Molecular modelling Principle and Application. 2nd ed Harlow, England Pearson Education Limited 2001
    [Google Scholar]
  77. Frenkel D. Smit B. Understanding molecular simulation: From Algorithms to Applications. 2nd ed California Academic Press 2002
    [Google Scholar]
  78. Leimkuhler B. Matthews C. Molecular Dynamics. Cham Springer International Publishing 2015 10.1007/978‑3‑319‑16375‑8
    [Google Scholar]
  79. Allen M.P. TComputer simulation of liquids. Oxford, United Kingdom Oxford University Press 2017 10.1093/oso/9780198803195.001.0001
    [Google Scholar]
  80. Bowers K.J. Chow E. Xu H. Dror R.O. Eastwood M.P. Gregersen B.A. Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06 Tampa, FL, USA 11-17 November 2006 43 10.1109/SC.2006.54
    [Google Scholar]
  81. Jorgensen W.L. Chandrasekhar J. Madura J.D. Impey R.W. Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983 79 2 926 935 10.1063/1.445869
    [Google Scholar]
  82. Mark P. Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 2001 105 43 9954 9960 10.1021/jp003020w
    [Google Scholar]
  83. Harder E. Damm W. Maple J. Wu C. Reboul M. Xiang J.Y. Wang L. Lupyan D. Dahlgren M.K. Knight J.L. Kaus J.W. Cerutti D.S. Krilov G. Jorgensen W.L. Abel R. Friesner R.A. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput. 2016 12 1 281 296 10.1021/acs.jctc.5b00864 26584231
    [Google Scholar]
  84. Rogge S.M.J. Vanduyfhuys L. Ghysels A. Waroquier M. Verstraelen T. Maurin G. Van Speybroeck V. A comparison of barostats for the mechanical characterization of metal–organic frameworks. J. Chem. Theory Comput. 2015 11 12 5583 5597 10.1021/acs.jctc.5b00748 26642981
    [Google Scholar]
  85. Martyna G.J. Tobias D.J. Klein M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994 101 5 4177 4189 10.1063/1.467468
    [Google Scholar]
  86. Martyna G.J. Klein M.L. Tuckerman M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992 97 4 2635 2643 10.1063/1.463940
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249353128250901051741
Loading
/content/journals/cnsamc/10.2174/0118715249353128250901051741
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test