Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Mild Cognitive Impairment (MCI) is swiftly emerging as a prevalent clinical concern within the elderly demographic. Willoughby spearheaded the pioneering investigation into the evolution of memory decline spanning from the age of 20 to 70. Employing a computerized substitution examination, he pinpointed a zenith in memory prowess at the age of 22, signifying the shift from infancy, succeeded by a gradual decline in later years in 1929. Cognitive impairment impacts various facets, encompassing cognition, memory, perceptual acuity, and linguistic proficiency. Compelling evidence indicates that genetic, dietary, and metabolic factors influence the trajectory of cognitive decline in this patient cohort. In addition to the widely recognized influence of the Mediterranean diet on cognitive function, numerous studies have delved into the potential impact of diverse phytochemicals on cognitive deterioration. Many of these compounds are renowned for their inflammation reducer or free-radical scavenger properties, coupled with their commendable acceptability and defense profiles. Phytochemicals sourced from medicinal plants play an essential role in upholding the intricate chemical equilibrium of the brain by modulating receptors linked to crucial inhibitory neurotransmitters. Across the annals of historical medicinal traditions, a multitude of plants have been cataloged for their efficacy in mitigating cognitive disorders. This study presents a concise examination of distinct medicinal herbs, highlighting their neuroprotective phytochemical components such as fatty acids, phenols, alkaloids, flavonoids, saponins, terpenes, and beyond. The principal objective of this inquiry is to meticulously inspect and provide discernment into the extant evidence concerning phytochemicals exhibiting clinically demonstrable effects on cognitive decline.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249315826240603075900
2024-06-14
2025-12-23
Loading full text...

Full text loading...

References

  1. ThomsonR.S. AuduongP. MillerA.T. GurgelR.K. Hearing loss as a risk factor for dementia: A systematic review.Laryngoscope Investig. Otolaryngol.201722697910.1002/lio2.65 28894825
    [Google Scholar]
  2. DeCarliC. Mild cognitive impairment: Prevalence, prognosis, aetiology, and treatment.Lancet Neurol.200321152110.1016/S1474‑4422(03)00262‑X 12849297
    [Google Scholar]
  3. RitchieK. TouchonJ. Mild cognitive impairment: Conceptual basis and current nosological status.Lancet2000355919922522810.1016/S0140‑6736(99)06155‑3 10675135
    [Google Scholar]
  4. AlbertM.S. DeKoskyS.T. DicksonD. DuboisB. FeldmanH.H. FoxN.C. GamstA. HoltzmanD.M. JagustW.J. PetersenR.C. SnyderP.J. CarrilloM.C. ThiesB. PhelpsC.H. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.Alzheimers Dement.20117327027910.1016/j.jalz.2011.03.008 21514249
    [Google Scholar]
  5. SaundersN.L.J. SummersM.J. Longitudinal deficits to attention, executive, and working memory in subtypes of mild cognitive impairment.Neuropsychology201125223724810.1037/a0021134 21381828
    [Google Scholar]
  6. CaiY. AbrahamsonK. How exercise influences cognitive performance when mild cognitive impairment exists: A literature review.J. Psychosoc. Nurs. Ment. Health Serv.2016541253510.3928/02793695‑20151109‑03 26565414
    [Google Scholar]
  7. SimonsD.J. BootW.R. CharnessN. GathercoleS.E. ChabrisC.F. HambrickD.Z. Stine-MorrowE.A.L. “brain-training” programs work?Psychol. Sci. Public Interest201617310318610.1177/1529100616661983 27697851
    [Google Scholar]
  8. BourassaM.W. AlimI. BultmanS.J. RatanR.R. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health?Neurosci. Lett.2016625566310.1016/j.neulet.2016.02.009 26868600
    [Google Scholar]
  9. BredesenD.E. RaoR.V. MehlenP. Cell death in the nervous system.Nature2006443711379680210.1038/nature05293 17051206
    [Google Scholar]
  10. PanditM.K. Neuroprotective properties of some Indian medicinal plants.Int. J. Pharm. Biol. Sci. Arch.20112513741379
    [Google Scholar]
  11. FarooquiA.A. FarooquiA.A. Effect of lifestyle, aging, and phytochemicals on the onset of neurological disorders. Phytochemicals, signal transduction, and neurological disorders.New YorkSpringer2012
    [Google Scholar]
  12. MariniA.M. JiangX. WuX. TianF. ZhuD. OkagakiP. LipskyR.H. Role of brain-derived neurotrophic factor and NF-kappaB in neuronal plasticity and survival: From genes to phenotype.Restor. Neurol. Neurosci.2004222121130 15272146
    [Google Scholar]
  13. BarbacidM. The Trk family of neurotrophin receptors.J. Neurobiol.199425111386140310.1002/neu.480251107 7852993
    [Google Scholar]
  14. VenkatesanR. JiE. KimS.Y. Phytochemicals that regulate neurodegenerative disease by targeting neurotrophins: A comprehensive review.Biomed Res. Int.2015201581406810.1155/2015/814068
    [Google Scholar]
  15. HerrupK. The case for rejecting the amyloid cascade hypothesis.Nat. Neurosci.201518679479910.1038/nn.4017 26007212
    [Google Scholar]
  16. GinnekenV. Are there any biomarkers of aging? Biomarkers of the brain.Biomed. J. Sci. Tech. Res.201711201710.26717/BJSTR.2017.01.000151
    [Google Scholar]
  17. MaclinJ.M.A. WangT. XiaoS. Biomarkers for the diagnosis of Alzheimer’s disease, dementia Lewy body, frontotemporal dementia and vascular dementia.Gen. Psychiatr.2019321e10005410.1136/gpsych‑2019‑100054 31179427
    [Google Scholar]
  18. EliassenC.F. ReinvangI. SelnesP. GrambaiteR. FladbyT. HessenE. Biomarkers in subtypes of mild cognitive impairment and subjective cognitive decline.Brain Behav.201779e0077610.1002/brb3.776 28948074
    [Google Scholar]
  19. RabinL.A. SmartC.M. AmariglioR.E. Subjective cognitive decline in preclinical Alzheimer’s disease.Annu. Rev. Clin. Psychol.201713136939610.1146/annurev‑clinpsy‑032816‑045136 28482688
    [Google Scholar]
  20. PetersenR.C. LopezO. ArmstrongM.J. GetchiusT.S.D. GanguliM. GlossD. GronsethG.S. MarsonD. PringsheimT. DayG.S. SagerM. StevensJ. Rae-GrantA. Practice guideline update summary: Mild cognitive impairment.Neurology201890312613510.1212/WNL.0000000000004826 29282327
    [Google Scholar]
  21. DongL. HydeA.J. ZhangA.L. XueC.C. MayB.H. Chinese herbal medicine for mild cognitive impairment using montreal cognitive assessment: A systematic review.J. Altern. Complement. Med.201925657859210.1089/acm.2018.0346 30920303
    [Google Scholar]
  22. FaríasG.A. Guzmán-MartínezL. DelgadoC. MaccioniR.B. Nutraceuticals: A novel concept in prevention and treatment of Alzheimer’s disease and related disorders.J. Alzheimers Dis.201442235736710.3233/JAD‑132741 24927706
    [Google Scholar]
  23. FrisardiV. PanzaF. SeripaD. ImbimboB.P. VendemialeG. PilottoA. SolfrizziV. Nutraceutical properties of Mediterranean diet and cognitive decline: Possible underlying mechanisms.J. Alzheimers Dis.201022371574010.3233/JAD‑2010‑100942 20858954
    [Google Scholar]
  24. MecocciP. TinarelliC. SchulzR.J. PolidoriM.C. Nutraceuticals in cognitive impairment and Alzheimer’s disease.Front. Pharmacol.2014514710.3389/fphar.2014.00147 25002849
    [Google Scholar]
  25. GuptaM. KaurG. Withania somnifera (L.) Dunal ameliorates neurodegeneration and cognitive impairments associated with systemic inflammation.BMC Complement. Altern. Med.201919121710.1186/s12906‑019‑2635‑0 31416451
    [Google Scholar]
  26. GeW. RenC. XingL. GuanL. ZhangC. SunX. WangG. NiuH. QunS. Ginkgo biloba extract improves cognitive function and increases neurogenesis by reducing Aβ pathology in 5×FAD mice.Am. J. Transl. Res.202113314711482 33841671
    [Google Scholar]
  27. ShiC. ZhaoL. ZhuB. LiQ. YewD.T. YaoZ. XuJ. Protective effects of Ginkgo biloba extract (EGb761) and its constituents quercetin and ginkgolide B against β-amyloid peptide-induced toxicity in SH-SY5Y cells.Chem. Biol. Interact.2009181111512310.1016/j.cbi.2009.05.010 19464278
    [Google Scholar]
  28. ZhuJ.D. WangJ.J. ZhangX.H. YuY. KangZ.S. Panax ginseng extract attenuates neuronal injury and cognitive deficits in rats with vascular dementia induced by chronic cerebral hypoperfusion.Neural Regen. Res.201813466467210.4103/1673‑5374.230292 29722318
    [Google Scholar]
  29. SoaresM.B. RamalhoJ.B. IzaguirryA.P. PavinN.F. SpiazziC.C. SchimidtH.L. Mello-CarpesP.B. SantosF.W. Comparative effect of Camellia sinensis teas on object recognition test deficit and metabolic changes induced by cafeteria diet.Nutr. Neurosci.201922853154010.1080/1028415X.2017.1418726 29280418
    [Google Scholar]
  30. SorrentiV. ContariniG. SutS. Dall’AcquaS. ConfortinF. PagettaA. GiustiP. ZussoM. Curcumin prevents acute neuroinflammation and long-term memory impairment induced by systemic lipopolysaccharide in mice.Front. Pharmacol.2018918310.3389/fphar.2018.00183 29556196
    [Google Scholar]
  31. ChoM.J. KimJ.H. ParkC.H. LeeA.Y. ShinY.S. LeeJ.H. ParkC.G. ChoE.J. Comparison of the effect of three licorice varieties on cognitive improvement via an amelioration of neuroinflammation in lipopolysaccharide-induced mice.Nutr. Res. Pract.201812319119810.4162/nrp.2018.12.3.191 29854324
    [Google Scholar]
  32. RapakaD. BitraV.R. VishalaT.C. AkulaA. Vitis vinifera acts as anti-Alzheimer’s agent by modulating biochemical parameters implicated in cognition and memory.J. Ayurveda Integr. Med.201910424124710.1016/j.jaim.2017.06.013 30337026
    [Google Scholar]
  33. PhamH.T.N. PhanS.V. TranH.N. PhiX.T. LeX.T. NguyenK.M. FujiwaraH. YoneyamaM. OgitaK. YamaguchiT. MatsumotoK. Bacopa monnieri (L.) ameliorates cognitive deficits caused in a trimethyltin-induced neurotoxicity model mice.Biol. Pharm. Bull.20194281384139310.1248/bpb.b19‑00288 31366873
    [Google Scholar]
  34. ZhaoL. DuanZ. WangY. WangM. LiuY. WangX. LiH. Protective effect of Terminalia chebula Retz. extract against Aβ aggregation and Aβ-induced toxicity in Caenorhabditis elegans.J. Ethnopharmacol.202126811364010.1016/j.jep.2020.113640 33307058
    [Google Scholar]
  35. BhuvanendranS. KumariY. OthmanI. ShaikhM.F. Amelioration of cognitive deficit by embelin in a scopolamine-induced Alzheimer’s disease-like condition in a rat model.Front. Pharmacol.2018966510.3389/fphar.2018.00665 29988493
    [Google Scholar]
  36. VermaS.V. VarmaR.K. SinghS.S. Nootropic activity of Calotropis gigantea (Linn) root against scopolamine induce amnesia in albino rats.Int. J. Indig. Herbs Drugs2017241317
    [Google Scholar]
  37. ElshamyS. Abdel MotaalA. Abdel-HalimM. MedhatD. HandoussaH. Potential neuroprotective activity of Mentha longifolia L. in aluminum chloride‐induced rat model of Alzheimer’s disease.J. Food Biochem.2021454177010.1111/jfbc.13644 33587299
    [Google Scholar]
  38. HosseiniA. GomarA. MiraziN. GomarM. Ameliorating the effect of Zingiber officinale (ginger) hydroethanolic extract on scopolamine-induced memory impairment in adult male rats.Advanced Herbal Medicine.2016223542
    [Google Scholar]
  39. KimN. DoJ. JuI.G. JeonS.H. LeeJ.K. OhM.S. Picrorhiza kurroa prevents memory deficits by inhibiting NLRP3 inflammasome activation and BACE1 expression in 5xFAD mice.Neurotherapeutics202017118919910.1007/s13311‑019‑00792‑7 31741224
    [Google Scholar]
  40. ChellammalH.S. MananM.M. AzilA. MuruganY. ChelvamP. ChandarasekaranP. Neurocognitive effects of Prunus domestica fruit extract on scopolamine-induced amnesic mice.J. Appl. Pharm. Sci.202010115966
    [Google Scholar]
  41. VirgiliF. MarinoM. Regulation of cellular signals from nutritional molecules: A specific role for phytochemicals, beyond antioxidant activity.Free Radic. Biol. Med.20084591205121610.1016/j.freeradbiomed.2008.08.001 18762244
    [Google Scholar]
  42. SpencerJ.P.E. Beyond antioxidants: The cellular and molecular interactions of flavonoids and how these underpin their actions on the brain.Proc. Nutr. Soc.201069224426010.1017/S0029665110000054 20158941
    [Google Scholar]
  43. SpencerJ.P.E. VauzourD. RendeiroC. Flavonoids and cognition: The molecular mechanisms underlying their behavioural effects.Arch. Biochem. Biophys.20094921-21910.1016/j.abb.2009.10.003 19822127
    [Google Scholar]
  44. RamassamyC. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets.Eur. J. Pharmacol.20065451516410.1016/j.ejphar.2006.06.025 16904103
    [Google Scholar]
  45. PasinettiG.M. WangJ. HoL. ZhaoW. DubnerL. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment.Biochim. Biophys. Acta Mol. Basis Dis.2015185261202120810.1016/j.bbadis.2014.10.006 25315300
    [Google Scholar]
  46. WilliamsR.J. SpencerJ.P.E. Flavonoids, cognition, and dementia: Actions, mechanisms, and potential therapeutic utility for Alzheimer disease.Free Radic. Biol. Med.2012521354510.1016/j.freeradbiomed.2011.09.010 21982844
    [Google Scholar]
  47. AnandhanA. JanakiramanU. ManivasagamT. Theaflavin ameliorates behavioral deficits, biochemical indices and monoamine transporters expression against subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson’s disease.Neuroscience201221825726710.1016/j.neuroscience.2012.05.039 22634505
    [Google Scholar]
  48. ChenL. TengH. JiaZ. BattinoM. MironA. YuZ. CaoH. XiaoJ. Intracellular signaling pathways of inflammation modulated by dietary flavonoids: The most recent evidence.Crit. Rev. Food Sci. Nutr.201858172908292410.1080/10408398.2017.1345853 28682647
    [Google Scholar]
  49. PervinM. UnnoK. OhishiT. TanabeH. MiyoshiN. NakamuraY. Beneficial effects of green tea catechins on neurodegenerative diseases.Molecules2018236129710.3390/molecules23061297 29843466
    [Google Scholar]
  50. BodeA.M. DongZ. Epigallocatechin 3-gallate and green tea catechins: United they work, divided they fail.Cancer Prev. Res. (Phila.)20092651451710.1158/1940‑6207.CAPR‑09‑0083 19470792
    [Google Scholar]
  51. CharoI.F. RansohoffR.M. The many roles of chemokines and chemokine receptors in inflammation.N. Engl. J. Med.2006354661062110.1056/NEJMra052723 16467548
    [Google Scholar]
  52. KimH.S. QuonM.J. KimJ. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate.Redox Biol.2014218719510.1016/j.redox.2013.12.022 24494192
    [Google Scholar]
  53. Shaham-NivS. RehakP. ZaguriD. LevinA. Adler-AbramovichL. VukovićL. KrálP. GazitE. Differential inhibition of metabolite amyloid formation by generic fibrillation-modifying polyphenols.Commun. Chem.2018112510.1038/s42004‑018‑0025‑z
    [Google Scholar]
  54. Rezai-ZadehK. ShytleD. SunN. MoriT. HouH. JeannitonD. EhrhartJ. TownsendK. ZengJ. MorganD. HardyJ. TownT. TanJ. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice.J. Neurosci.200525388807881410.1523/JNEUROSCI.1521‑05.2005 16177050
    [Google Scholar]
  55. WilliamsP. SorribasA. HowesM.J.R. Natural products as a source of Alzheimer’s drug leads.Nat. Prod. Rep.2011281487710.1039/C0NP00027B 21072430
    [Google Scholar]
  56. HowesM.J. Phytochemicals as anti-inflammatory nutraceuticals and phytopharmaceuticals. Immunity and Inflammation in Health and Disease.Academic Press201836338810.1016/B978‑0‑12‑805417‑8.00028‑7
    [Google Scholar]
  57. ChenY. HuangL. ZhangH. DiaoX. ZhaoS. ZhouW. Reduction in autophagy by (-)-epigallocatechin-3-gallate (EGCG): A potential mechanism of prevention of mitochondrial dysfunction after subarachnoid hemorrhage.Mol. Neurobiol.201754139240510.1007/s12035‑015‑9629‑9 26742518
    [Google Scholar]
  58. Ortiz-LópezL. Márquez-ValadezB. Gómez-SánchezA. Silva-LuceroM.D.C. Torres-PérezM. Téllez-BallesterosR.I. IchwanM. Meraz-RíosM.A. KempermannG. Ramírez-RodríguezG.B. Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro.Neuroscience201632220822010.1016/j.neuroscience.2016.02.040 26917271
    [Google Scholar]
  59. RogersJ. PerkinsI. OlphenA. BurdashN. KleinT.W. FriedmanH. Epigallocatechin gallate modulates cytokine production by bone marrow-derived dendritic cells stimulated with lipopolysaccharide or muramyldipeptide, or infected with Legionella pneumophila.Exp. Biol. Med.2005230964565110.1177/153537020523000906 16179732
    [Google Scholar]
  60. KohS.H. KimS.H. KwonH. ParkY. KimK.S. SongC.W. KimJ. KimM.H. YuH.J. HenkelJ.S. JungH.K. Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3.Brain Res. Mol. Brain Res.20031181-2728110.1016/j.molbrainres.2003.07.003 14559356
    [Google Scholar]
  61. LimG.P. ChuT. YangF. BeechW. FrautschyS.A. ColeG.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse.J. Neurosci.200121218370837710.1523/JNEUROSCI.21‑21‑08370.2001 11606625
    [Google Scholar]
  62. WangM.S. BoddapatiS. EmadiS. SierksM.R. Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model.BMC Neurosci.20101115710.1186/1471‑2202‑11‑57 20433710
    [Google Scholar]
  63. CoxK.H.M. PipingasA. ScholeyA.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population.J. Psychopharmacol.201529564265110.1177/0269881114552744 25277322
    [Google Scholar]
  64. EsatbeyogluT. HuebbeP. ErnstI.M.A. ChinD. WagnerA.E. RimbachG. Curcumin--from molecule to biological function.Angew. Chem. Int. Ed.201251225308533210.1002/anie.201107724 22566109
    [Google Scholar]
  65. NgT.P. ChiamP.C. LeeT. ChuaH.C. LimL. KuaE.H. Curry consumption and cognitive function in the elderly.Am. J. Epidemiol.2006164989890610.1093/aje/kwj267 16870699
    [Google Scholar]
  66. ZhaoJ. ZhaoY. ZhengW. LuY. FengG. YuS. Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats.Brain Res.2008122922423210.1016/j.brainres.2008.06.117 18640105
    [Google Scholar]
  67. AnastácioJ.R. NettoC.A. CastroC.C. SanchesE.F. FerreiraD.C. NoschangC. KrolowR. DalmazC. PagnussatA. Resveratrol treatment has neuroprotective effects and prevents cognitive impairment after chronic cerebral hypoperfusion.Neurol. Res.201436762763310.1179/1743132813Y.0000000293 24620966
    [Google Scholar]
  68. WangR. ZhangY. LiJ. ZhangC. Resveratrol ameliorates spatial learning memory impairment induced by Aβ 1–42 in rats.Neuroscience2017344394710.1016/j.neuroscience.2016.08.051 27600946
    [Google Scholar]
  69. AlaeiH. SiahmardZ. ReisiP. PilehvarianA. The effect of red grape juice on Alzheimer′s disease in rats.Adv. Biomed. Res.2012116310.4103/2277‑9175.100188 23326794
    [Google Scholar]
  70. MoussaC. HebronM. HuangX. AhnJ. RissmanR.A. AisenP.S. TurnerR.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease.J. Neuroinflammation20171411010.1186/s12974‑016‑0779‑0 28086917
    [Google Scholar]
  71. MarambaudP. ZhaoH. DaviesP. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides.J. Biol. Chem.200528045373773738210.1074/jbc.M508246200 16162502
    [Google Scholar]
  72. BastianettoS. MénardC. QuirionR. Neuroprotective action of resveratrol.Biochim. Biophys. Acta Mol. Basis Dis.2015185261195120110.1016/j.bbadis.2014.09.011
    [Google Scholar]
  73. RichardT. PoupardP. NassraM. PapastamoulisY. IglésiasM.L. KrisaS. Waffo-TeguoP. MérillonJ.M. MontiJ.P. Protective effect of ε-viniferin on β-amyloid peptide aggregation investigated by electrospray ionization mass spectrometry.Bioorg. Med. Chem.201119103152315510.1016/j.bmc.2011.04.001 21524590
    [Google Scholar]
  74. ChenB. ZangW. WangJ. HuangY. HeY. YanL. LiuJ. ZhengW. The chemical biology of sirtuins.Chem. Soc. Rev.201544155246526410.1039/C4CS00373J 25955411
    [Google Scholar]
  75. BorraM.T. SmithB.C. DenuJ.M. Mechanism of human SIRT1 activation by resveratrol.J. Biol. Chem.200528017171871719510.1074/jbc.M501250200 15749705
    [Google Scholar]
  76. HasegawaK. YoshikawaK. Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons.J. Neurosci.200828358772878410.1523/JNEUROSCI.3052‑08.2008 18753379
    [Google Scholar]
  77. YanishlievaN.V. MarinovaE.M. GordonM.H. RanevaV.G. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems.Food Chem.1999641596610.1016/S0308‑8146(98)00086‑7
    [Google Scholar]
  78. AngelovI. VillanuevaD. StatevaR.P. RegleroG. IbañezE. FornariT. Extraction of thymol from different varieties of thyme plants using green solvents.Agric. Food Sci.20149514
    [Google Scholar]
  79. SaravananS. PariL. Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice.Eur. J. Pharmacol.201576127928710.1016/j.ejphar.2015.05.034 26007642
    [Google Scholar]
  80. HarmanD. Alzheimer’s disease pathogenesis: Role of aging.Ann. N. Y. Acad. Sci.20061067145446010.1196/annals.1354.065 16804026
    [Google Scholar]
  81. AziziZ. EbrahimiS. SaadatfarE. KamalinejadM. MajlessiN. Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia.Behav. Pharmacol.201223324124910.1097/FBP.0b013e3283534301 22470103
    [Google Scholar]
  82. RahnamaS. RabieiZ. AlibabaeiZ. MokhtariS. Rafieian-kopaeiM. DerisF. Anti-amnesic activity of Citrus aurantium flowers extract against scopolamine-induced memory impairments in rats.Neurol. Sci.201536455356010.1007/s10072‑014‑1991‑2 25367404
    [Google Scholar]
  83. ZelzerS. OberreitherR. BerneckerC. StelzerI. Truschnig-WildersM. FaulerG. Measurement of total and free malondialdehyde by gas–chromatography mass spectrometry – comparison with high-performance liquid chromatography methology.Free Radic. Res.201347865165610.3109/10715762.2013.812205 23745592
    [Google Scholar]
  84. GengL. LiuZ. WangS. SunS. MaS. LiuX. ChanP. SunL. SongM. ZhangW. LiuG.H. QuJ. Low-dose quercetin positively regulates mouse healthspan.Protein Cell2019101077077510.1007/s13238‑019‑0646‑8 31325157
    [Google Scholar]
  85. SunS. JiY. KerstenS. QiL. Mechanisms of inflammatory responses in obese adipose tissue.Annu. Rev. Nutr.201232126128610.1146/annurev‑nutr‑071811‑150623 22404118
    [Google Scholar]
  86. WangD.M. LiS.Q. WuW.L. ZhuX.Y. WangY. YuanH.Y. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease.Neurochem. Res.20143981533154310.1007/s11064‑014‑1343‑x 24893798
    [Google Scholar]
  87. UttaraB. SinghA. ZamboniP. MahajanR. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options.Curr. Neuropharmacol.200971657410.2174/157015909787602823 19721819
    [Google Scholar]
  88. HungC.H. ChanS.H. ChuP.M. TsaiK.L. Quercetin is a potent anti‐atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation.Mol. Nutr. Food Res.201559101905191710.1002/mnfr.201500144 26202455
    [Google Scholar]
  89. JiangL. KunduS. LedermanJ.D. López-HernándezG.Y. BallingerE.C. WangS. TalmageD.A. RoleL.W. Cholinergic signaling controls conditioned fear behaviors and enhances plasticity of cortical-amygdala circuits.Neuron20169051057107010.1016/j.neuron.2016.04.028 27161525
    [Google Scholar]
  90. LuJ. WuD. ZhengY. HuB. ZhangZ. ShanQ. ZhengZ. LiuC. WangY. Quercetin activates AMP‐activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol‐induced neurotoxicity.J. Pathol.2010222219921210.1002/path.2754 20690163
    [Google Scholar]
  91. PetersenM. SimmondsM.S. Rosmarinic acid.Phytochemistry200362212112510.1016/S0031‑9422(02)00513‑7 12482446
    [Google Scholar]
  92. NadeemM. ImranM. Aslam GondalT. ImranA. ShahbazM. Muhammad AmirR. Wasim SajidM. Batool QaisraniT. AtifM. HussainG. SalehiB. Therapeutic potential of rosmarinic acid: A comprehensive review.Appl. Sci.2019915313910.3390/app9153139
    [Google Scholar]
  93. ScholeyA.B. TildesleyN.T.J. BallardC.G. WesnesK.A. TaskerA. PerryE.K. KennedyD.O. An extract of Salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers.Psychopharmacology2008198112713910.1007/s00213‑008‑1101‑3 18350281
    [Google Scholar]
  94. AkhondzadehS. NoroozianM. MohammadiM. OhadiniaS. JamshidiA.H. KhaniM. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: A double blind, randomized and placebo-controlled trial.J. Clin. Pharm. Ther.2003281535910.1046/j.1365‑2710.2003.00463.x 12605619
    [Google Scholar]
  95. KuoY.C. RajeshR. Targeted delivery of rosmarinic acid across the blood–brain barrier for neuronal rescue using polyacrylamide-chitosan-poly(lactide- co -glycolide) nanoparticles with surface cross-reacting material 197 and apolipoprotein E.Int. J. Pharm.20175281-222824110.1016/j.ijpharm.2017.05.039 28549973
    [Google Scholar]
  96. ShanbhagS.M. KulkarniH.J. GaitondeB.B. Pharmacological actions of berberine on the central nervous system.Jpn. J. Pharmacol.197020448248710.1254/jjp.20.482 5312930
    [Google Scholar]
  97. YuG. LiY. TianQ. LiuR. WangQ. WangJ.Z. WangX. Berberine attenuates calyculin A-induced cytotoxicity and Tau hyperphosphorylation in HEK293 cells.J. Alzheimers Dis.201124352553510.3233/JAD‑2011‑101779 21297267
    [Google Scholar]
  98. DurairajanS.S.K. LiuL.F. LuJ.H. ChenL.L. YuanQ. ChungS.K. HuangL. LiX.S. HuangJ.D. LiM. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model.Neurobiol. Aging201233122903291910.1016/j.neurobiolaging.2012.02.016 22459600
    [Google Scholar]
  99. JiH.F. ShenL. Molecular basis of inhibitory activities of berberine against pathogenic enzymes in Alzheimer’s disease.ScientificWorldJournal2012201282320110.1100/2012/823201
    [Google Scholar]
  100. ZhaoY. WangJ. BallevreO. LuoH. ZhangW. Antihypertensive effects and mechanisms of chlorogenic acids.Hypertens. Res.201235437037410.1038/hr.2011.195 22072103
    [Google Scholar]
  101. RaskarV. BhalekarM.R. Formulation of coffee bean extract (Chlorogenic Acid) solid lipid nanoparticles for lymphatic uptake on oral administration.J. Drug Deliv. Ther.201994477484
    [Google Scholar]
  102. ObohG. AgunloyeO.M. AkinyemiA.J. AdemiluyiA.O. AdefeghaS.A. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro.Neurochem. Res.201338241341910.1007/s11064‑012‑0935‑6 23184188
    [Google Scholar]
  103. KimJ. LeeS. ShimJ. KimH.W. KimJ. JangY.J. YangH. ParkJ. ChoiS.H. YoonJ.H. LeeK.W. LeeH.J. Caffeinated coffee, decaffeinated coffee, and the phenolic phytochemical chlorogenic acid up-regulate NQO1 expression and prevent H2O2-induced apoptosis in primary cortical neurons.Neurochem. Int.201260546647410.1016/j.neuint.2012.02.004 22353630
    [Google Scholar]
  104. WangX. FanX. YuanS. JiaoW. LiuB. CaoJ. JiangW. Chlorogenic acid protects against aluminium-induced cytotoxicity through chelation and antioxidant actions in primary hippocampal neuronal cells.Food Funct.2017882924293410.1039/C7FO00659D 28745369
    [Google Scholar]
  105. YangL. HaoJ. ZhangJ. XiaW. DongX. HuX. KongF. CuiX. Ginsenoside Rg3 promotes beta-amyloid peptide degradation by enhancing gene expression of neprilysin.J. Pharm. Pharmacol.201061337538010.1211/jpp.61.03.0013 19222911
    [Google Scholar]
  106. SunM. YeY. XiaoL. DuanX. ZhangY. ZhangH. Anticancer effects of ginsenoside Rg3 (Review).Int. J. Mol. Med.201739350751810.3892/ijmm.2017.2857 28098857
    [Google Scholar]
  107. ChenF. EckmanE.A. EckmanC.B. ChenF. EckmanE.A. EckmanC.B. Reductions in levels of the Alzheimer’s amyloid β peptide after oral administration of ginsenosides.FASEB J.20062081269127110.1096/fj.05‑5530fje 16636099
    [Google Scholar]
  108. LiW. ChuY. ZhangL. YinL. LiL. Ginsenoside Rg1 attenuates tau phosphorylation in SK-N-SH induced by Aβ‐stimulated THP-1 supernatant and the involvement of p38 pathway activation.Life Sci.20129115-1680981510.1016/j.lfs.2012.08.028 22982182
    [Google Scholar]
  109. KimJ. ShimJ. LeeS. ChoW.H. HongE. LeeJ.H. HanJ.S. LeeH.J. LeeK.W. Rg3-enriched ginseng extract ameliorates scopolamine-induced learning deficits in mice.BMC Complement. Altern. Med.20161616610.1186/s12906‑016‑1050‑z 26887326
    [Google Scholar]
  110. TewariD. StankiewiczA.M. MocanA. SahA.N. TzvetkovN.T. HuminieckiL. HorbańczukJ.O. AtanasovA.G. Ethnopharmacological approaches for dementia therapy and significance of natural products and herbal drugs.Front. Aging Neurosci.201810310.3389/fnagi.2018.00003 29483867
    [Google Scholar]
  111. AhmedT. SetzerW.N. NabaviS.F. OrhanI.E. BraidyN. Sobarzo-SanchezE. NabaviS.M. Insights into effects of ellagic acid on the nervous system: A mini review.Curr. Pharm. Des.201622101350136010.2174/1381612822666160125114503 26806345
    [Google Scholar]
  112. CozziR. RicordyR. BartoliniF. RamadoriL. PerticoneP. De SalviaR. Taurine and ellagic acid: Two differently‐acting natural antioxidants.Environ. Mol. Mutagen.199526324825410.1002/em.2850260310 7588651
    [Google Scholar]
  113. MashhadizadehS. FarboodY. DianatM. KhodadadiA. SarkakiA. Therapeutic effects of ellagic acid on memory, hippocampus electrophysiology deficits, and elevated TNF-α level in brain due to experimental traumatic brain injury.Iran. J. Basic Med. Sci.2017204399407 28804609
    [Google Scholar]
  114. RojanathammaneeL. PuigK.L. CombsC.K. Pomegranate polyphenols and extract inhibit nuclear factor of activated T-cell activity and microglial activation in vitro and in a transgenic mouse model of Alzheimer disease.J. Nutr.2013143559760510.3945/jn.112.169516 23468550
    [Google Scholar]
  115. DornellesG.L. de OliveiraJ.S. de AlmeidaE.J.R. MelloC.B.E. e RodriguesB.R. da SilvaC.B. PetryL.S. PillatM.M. PalmaT.V. de AndradeC.M. Ellagic acid inhibits neuroinflammation and cognitive impairment induced by lipopolysaccharides.Neurochem. Res.202045102456247310.1007/s11064‑020‑03105‑z 32779097
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249315826240603075900
Loading
/content/journals/cnsamc/10.2174/0118715249315826240603075900
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test