Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

More than 20 million people worldwide have Alzheimer's disease (AD), making it the most prevalent disease. Patients with AD may live for at least a decade after diagnosis, making it the most common cause of disability in the elderly. Each year, 1% to 4% of the population is affected by AD, with prevalence peaking between ages 65 and 70 and declining to 6% among those over 85. Researchers have accumulated evidence on medicinal herbs that may reverse the pathogenesis of Alzheimer's disease. Alzheimer's disease (AD) is associated with severe memory loss, which can negatively impact social and professional life. The first neurotransmitter linked to Alzheimer's was acetylcholine (ACh). There is no known cure, and the available treatments are ineffective. Multiple studies indicate that Ayurvedic restorative herbs and their constituents may be effective in treating Alzheimer's disease. This technique emphasizes the fact that delaying or preventing Alzheimer's disease with the help of natural bio-actives could reduce the number of cases over the next half-century. To provide detailed information, the pathology and pathophysiology of Alzheimer's Disease are discussed in the text of this review, along with an overview of the neurotransmitters involved in the progression of the disease. The importance of different natural bio-actives for the treatment of Alzheimer's disease is also outlined in the paper. The information contained in this paper can serve as a template for future research expressing the more beneficial role of other bioactive in acting as an adjuvant in the prevention and treatment of this disease, facing certain challenges and gaps with conventional drugs used to treat Alzheimer's disease.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249307525240614073143
2024-06-27
2025-11-04
Loading full text...

Full text loading...

References

  1. SinghS.K. SrivastavS. YadavA.K. SrikrishnaS. PerryG. Overview of alzheimer’s disease and some therapeutic approaches targeting Aβ by using several synthetic and herbal compounds.Oxid. Med. Cell. Longev.201620167361613
    [Google Scholar]
  2. SelkoeD.J. Alzheimer’s disease: genes, proteins and therapy.Physiol. Rev.200181274176610.1152/physrev.2001.81.2.741
    [Google Scholar]
  3. MathuranathP.S. CherianP.J. MathewR. KumarS. GeorgeA. AlexanderA. RanjithN. SarmaP.S. Dementia in Kerala, South India: prevalence and influence of age, education and gender.Int. J. Geriatr. Psychiatry2010253290297
    [Google Scholar]
  4. YoshitakeT. KiyoharaY. KatoI. OhmuraT. IwamotoH. NakayamaK. OhmoriS. NomiyamaK. KawanoH. UedaK. SueishiK. TsuneyoshiM. FujishimaM. Incidence and risk factors of vascular dementia and Alzheimer’s disease in a defined elderly Japanese population.Neurology19954561161116810.1212/WNL.45.6.1161
    [Google Scholar]
  5. HaassC. SelkoeD.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide.Nat. Rev. Mol. Cell Biol.20078210111210.1038/nrm2101
    [Google Scholar]
  6. RLE. Economic research on Alzheimer disease. A review of the literature.Alzheimer Dis. Assoc. Disord.19976135145
    [Google Scholar]
  7. ThinakaranG. KooE.H. Amyloid precursor protein trafficking, processing, and function.J. Biol. Chem.200828344296152961910.1074/jbc.R800019200
    [Google Scholar]
  8. PerryE.K. PickeringA.T. WangW.W. HoughtonP.J. PerryN.S.L. Medicinal plants and Alzheimer’s disease: From ethnobotany to phytotherapy.J. Pharm. Pharmacol.201051552753410.1211/0022357991772808
    [Google Scholar]
  9. KennedyD.O. WightmanE.L. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function.Adv. Nutr.201121325010.3945/an.110.000117
    [Google Scholar]
  10. KumarV. Potential medicinal plants for CNS disorders: An overview.Phytother. Res.200620121023103510.1002/ptr.1970
    [Google Scholar]
  11. ManyamB.V. Dementia in Ayurveda.J. Altern. Complement. Med.199951818810.1089/acm.1999.5.81
    [Google Scholar]
  12. BayerT.A. WirthsO. MajtényiK. HartmannT. MulthaupG. BeyreutherK. CzechC. Key factors in Alzheimer’s disease: β‐amyloid precursor protein processing, metabolism and intraneuronal transport.Brain Pathol.200111111110.1111/j.1750‑3639.2001.tb00376.x
    [Google Scholar]
  13. HardyJ SelkoeDJ The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics.science.20022975580353356
    [Google Scholar]
  14. CarterJ. LippaC. β-amyloid, neuronal death and alzheimers disease.Curr. Mol. Med.20011673373710.2174/1566524013363177
    [Google Scholar]
  15. CummingsJ.L. VintersH.V. ColeG.M. KhachaturianZ.S. Alzheimer’s disease.Neurology1998511_suppl_1)(Suppl. 1S2S1710.1212/WNL.51.1_Suppl_1.S2
    [Google Scholar]
  16. FrancisP.T. PalmerA.M. SnapeM. WilcockG.K. The cholinergic hypothesis of Alzheimer’s disease: a review of progress.J. Neurol. Neurosurg. Psychiatry199966213714710.1136/jnnp.66.2.137
    [Google Scholar]
  17. WrightC.I. GeulaC. MesulamM.M. Neuroglial cholinesterases in the normal brain and in Alzheimer’s disease: Relationship to plaques, tangles, and patterns of selective vulnerability.Ann. Neurol.199334337338410.1002/ana.410340312
    [Google Scholar]
  18. LivingstonG. KatonaC. How useful are cholinesterase inhibitors in the treatment of Alzheimer’s disease? A number needed to treat analysis.Int. J. Geriatr. Psychiatry200015320320710.1002/(SICI)1099‑1166(200003)15:3<203::AID‑GPS100>3.0.CO;2‑9
    [Google Scholar]
  19. NordbergA. SvenssonA.L. Cholinesterase inhibitors in the treatment of Alzheimer’s disease: A comparison of tolerability and pharmacology.Drug Saf.199819646548010.2165/00002018‑199819060‑00004
    [Google Scholar]
  20. WeinstockM. Selectivity of cholinesterase inhibition: Clinical implications for the treatment of Alzheimer’s disease.CNS Drugs199912430732310.2165/00023210‑199912040‑00005
    [Google Scholar]
  21. BullockR. New drugs for Alzheimer’s disease and other dementias.Br. J. Psychiatry2002180213513910.1192/bjp.180.2.135
    [Google Scholar]
  22. AkhondzadehS NoroozianM. Alzheimer's disease: pathophysiology and pharmacotherapy.IDrugs: the investigational drugs j.200251110621069
    [Google Scholar]
  23. MedinaM. GarridoJ.J. WandosellF.G. Modulation of GSK-3 as a therapeutic strategy on tau pathologies.Front. Mol. Neurosci.201142410.3389/fnmol.2011.00024
    [Google Scholar]
  24. GauthierS. FeldmanH.H. SchneiderL.S. WilcockG.K. FrisoniG.B. HardlundJ.H. MoebiusH.J. BenthamP. KookK.A. WischikD.J. SchelterB.O. DavisC.S. StaffR.T. BracoudL. ShamsiK. StoreyJ.M.D. HarringtonC.R. WischikC.M. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: A randomised, controlled, double-blind, parallel-arm, phase 3 trial.Lancet2016388100622873288410.1016/S0140‑6736(16)31275‑2
    [Google Scholar]
  25. LovestoneS. BoadaM. DuboisB. HüllM. RinneJ.O. HuppertzH.J. CaleroM. AndrésM.V. Gómez-CarrilloB. LeónT. del SerT. A phase II trial of tideglusib in Alzheimer’s disease.J. Alzheimers Dis.2015451758810.3233/JAD‑141959
    [Google Scholar]
  26. RodaA.R. Montoliu-GayaL. VillegasS. The role of apolipoprotein E isoforms in Alzheimer’s disease.J. Alzheimers Dis.201968245947110.3233/JAD‑180740
    [Google Scholar]
  27. Boza-SerranoA. YangY. PaulusA. DeierborgT. Innate immune alterations are elicited in microglial cells before plaque deposition in the Alzheimer’s disease mouse model 5xFAD.Sci. Rep.201881155010.1038/s41598‑018‑19699‑y
    [Google Scholar]
  28. ArranzA.M. De StrooperB. The role of astroglia in Alzheimer’s disease: Pathophysiology and clinical implications.Lancet Neurol.201918440641410.1016/S1474‑4422(18)30490‑3
    [Google Scholar]
  29. DurafourtB.A. MooreC.S. ZammitD.A. JohnsonT.A. ZaguiaF. GuiotM.C. Bar-OrA. AntelJ.P. Comparison of polarization properties of human adult microglia and blood‐derived macrophages.Glia201260571772710.1002/glia.22298
    [Google Scholar]
  30. UedaY. GullipalliD. SongW.C. Modeling complement-driven diseases in transgenic mice: Values and limitations.Immunobiology2016221101080109010.1016/j.imbio.2016.06.007
    [Google Scholar]
  31. SierraA. Gottfried-BlackmoreA.C. McEwenB.S. BullochK. Microglia derived from aging mice exhibit an altered inflammatory profile.Glia200755441242410.1002/glia.20468
    [Google Scholar]
  32. PatelN.S. ParisD. MathuraV. QuadrosA.N. CrawfordF.C. MullanM.J. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease.J. Neuroinflammation200521910.1186/1742‑2094‑2‑9
    [Google Scholar]
  33. BambergerM.E. HarrisM.E. McDonaldD.R. HusemannJ. LandrethG.E. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation.J. Neurosci.20032372665267410.1523/JNEUROSCI.23‑07‑02665.2003
    [Google Scholar]
  34. HickmanS.E. AllisonE.K. El KhouryJ. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice.J. Neurosci.200828338354836010.1523/JNEUROSCI.0616‑08.2008
    [Google Scholar]
  35. ButterfieldD.A. DrakeJ. PocernichC. CastegnaA. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide.Trends Mol. Med.200171254855410.1016/S1471‑4914(01)02173‑6
    [Google Scholar]
  36. MoreiraP.I. CarvalhoC. ZhuX. SmithM.A. PerryG. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology.Biochim. Biophys. Acta Mol. Basis Dis.20101802121010.1016/j.bbadis.2009.10.006
    [Google Scholar]
  37. Bousejra-ElGarahF. BijaniC. CoppelY. FallerP. HureauC. Iron (II) binding to amyloid-β, the Alzheimer’s peptide.Inorg. Chem.201150189024903010.1021/ic201233b
    [Google Scholar]
  38. SmithM.A. HarrisP.L.R. SayreL.M. PerryG. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals.Proc. Natl. Acad. Sci.199794189866986810.1073/pnas.94.18.9866
    [Google Scholar]
  39. ZawiszaI. RózgaM. BalW. Affinity of copper and zinc ions to proteins and peptides related to neurodegenerative conditions (Aβ, APP, α-synuclein, PrP).Coord. Chem. Rev.201225619-202297230710.1016/j.ccr.2012.03.012
    [Google Scholar]
  40. MiglioriniC. PorciattiE. LuczkowskiM. ValensinD. Structural characterization of Cu2+, Ni2+ and Zn2+ binding sites of model peptides associated with neurodegenerative diseases.Coord. Chem. Rev.20122561-235236810.1016/j.ccr.2011.07.004
    [Google Scholar]
  41. NoëlS. Bustos RodriguezS. SayenS. GuillonE. FallerP. HureauC. Use of a new water-soluble Zn sensor to determine Zn affinity for the amyloid-β peptide and relevant mutants.Metallomics2014671220122210.1039/c4mt00016a
    [Google Scholar]
  42. MurakamiK. MurataN. NodaY. TaharaS. KanekoT. KinoshitaN. HatsutaH. MurayamaS. BarnhamK.J. IrieK. ShirasawaT. ShimizuT. SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid β protein oligomerization and memory loss in mouse model of Alzheimer disease.J. Biol. Chem.201128652445574456810.1074/jbc.M111.279208
    [Google Scholar]
  43. BermejoP. Martín-AragónS. BenedíJ. SusínC. FeliciE. GilP. Manuel RiberaJ. VillarÁ.M. Peripheral levels of glutathione and protein oxidation as markers in the development of Alzheimer’s disease from Mild Cognitive Impairment.Free Radic. Res.200842216217010.1080/10715760701861373
    [Google Scholar]
  44. LiuH. WangH. ShenviS. HagenT.M. LiuR-M. LIU RM. Glutathione metabolism during aging and in Alzheimer disease.Ann. N. Y. Acad. Sci.20041019134634910.1196/annals.1297.059
    [Google Scholar]
  45. AtriA. Current and future treatments in Alzheimer’s disease.Semin. Neurol.201939222724010.1055/s‑0039‑1678581
    [Google Scholar]
  46. CummingsJ. LeeG. RitterA. SabbaghM. ZhongK. Alzheimer’s disease drug development pipeline: 2020.Alzheimers Dement. (N. Y.)202061e1205010.1002/trc2.12050
    [Google Scholar]
  47. LanariA. AmentaF. SilvestrelliG. TomassoniD. ParnettiL. Neurotransmitter deficits in behavioural and psychological symptoms of Alzheimer’s disease.Mech. Ageing Dev.2006127215816510.1016/j.mad.2005.09.016
    [Google Scholar]
  48. Švob ŠtracD. PivacN. Mück-ŠelerD. The serotonergic system and cognitive function.Transl. Neurosci.201671354910.1515/tnsci‑2016‑0007
    [Google Scholar]
  49. RobertsB.R. RyanT.M. BushA.I. MastersC.L. DuceJ.A. The role of metallobiology and amyloid‐β peptides in Alzheimer’s disease.J. Neurochem.2012120s114916610.1111/j.1471‑4159.2011.07500.x
    [Google Scholar]
  50. MullaneK. WilliamsM. Preclinical models of Alzheimer’s disease: relevance and translational validity.Curr. Protocols Pharmacol.2019841e5710.1002/cpph.57
    [Google Scholar]
  51. Franco BocanegraD.K. NicollJ.A.R. BocheD. Innate immunity in Alzheimer’s disease: The relevance of animal models?J. Neural Transm.2018125582784610.1007/s00702‑017‑1729‑4
    [Google Scholar]
  52. GötzJ. BodeaL.G. GoedertM. Rodent models for Alzheimer disease.Nat. Rev. Neurosci.2018191058359810.1038/s41583‑018‑0054‑8
    [Google Scholar]
  53. KumarA. SinghA. AggarwalA. Therapeutic potentials of herbal drugs for Alzheimer’s disease: An overview.Indian J. Exp. Biol.2017556373
    [Google Scholar]
  54. MishraL.C. SinghB.B. DagenaisS. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): A review.Altern. Med. Rev.200054334346
    [Google Scholar]
  55. WollenK.A. Alzheimer’s disease: The pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners.Altern. Med. Rev.2010153223244
    [Google Scholar]
  56. AbedonB. AuddyB. HazraJ. MitraA. GhosalS. A standardized Withania somnifera extract significantly reduces stress-related parameters in chronically stressed humans: A double-blind, randomized, placebo-controlled study.Jana.2008115056
    [Google Scholar]
  57. MatsudaH. MurakamiT. KishiA. YoshikawaM. Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera Dunal. and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum.Bioorg. Med. Chem.2001961499150710.1016/S0968‑0896(01)00024‑4
    [Google Scholar]
  58. PariharM.S. HemnaniT. Phenolic antioxidants attenuate hippocampal neuronal cell damage against kainic acid induced excitotoxicity.J. Biosci.200328112112810.1007/BF02970142
    [Google Scholar]
  59. KumarS. HarrisR.J. SealC.J. OkelloE.J. An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation in vitro.Phytother. Res.201226111311710.1002/ptr.3512
    [Google Scholar]
  60. TohdaC. KuboyamaT. KomatsuK. Search for natural products related to regeneration of the neuronal network.Neurosignals2005141-2344510.1159/000085384
    [Google Scholar]
  61. KuboyamaT. TohdaC. ZhaoJ. NakamuraN. HattoriM. KomatsuK. Axon- or dendrite-predominant outgrowth induced by constituents from Ashwagandha.Neuroreport200213141715172010.1097/00001756‑200210070‑00005
    [Google Scholar]
  62. SchliebsR. LiebmannA. BhattacharyaS. KumarA. GhosalS. BiglV. Systemic administration of defined extracts from Withania somnifera (Indian ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain.Neurochem. Int.199730218119010.1016/S0197‑0186(96)00025‑3
    [Google Scholar]
  63. TohdaC. KuboyamaT. KomatsuK. Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK-N-SH cells.Neuroreport20001191981198510.1097/00001756‑200006260‑00035
    [Google Scholar]
  64. KuboyamaT. TohdaC. KomatsuK. Neuritic regeneration and synaptic reconstruction induced by withanolide A.Br. J. Pharmacol.2005144796197110.1038/sj.bjp.0706122
    [Google Scholar]
  65. RussoA. BorrelliF. Bacopa monniera, a reputed nootropic plant: An overview.Phytomedicine200512430531710.1016/j.phymed.2003.12.008
    [Google Scholar]
  66. SinghR.H. NarsimhamurthyK. SinghG. Neuronutrient impact of Ayurvedic Rasayana therapy in brain aging.Biogerontology20089636937410.1007/s10522‑008‑9185‑z
    [Google Scholar]
  67. ShinomolG.K. BharathM.M. Exploring the role of “Brahmi”(Bacopa monnieri and Centella asiatica) in brain function and therapy.Recent Pat. Endocr. Metab. Immune Drug Discov.201151334910.2174/187221411794351833
    [Google Scholar]
  68. UabunditN. WattanathornJ. MucimapuraS. IngkaninanK. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model.J. Ethnopharmacol.20101271263110.1016/j.jep.2009.09.056
    [Google Scholar]
  69. NathanP.J. ClarkeJ. LloydJ. HutchisonC.W. DowneyL. StoughC. The acute effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy normal subjects.Hum. Psychopharmacol.200116434535110.1002/hup.306
    [Google Scholar]
  70. CS. PN. JL. JC. CH. LD. TR. The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects.Psychopharmacology2001156448148410.1007/s002130100815
    [Google Scholar]
  71. DhanasekaranM. HolcombL.A. HittA.R. TharakanB. PorterJ.W. YoungK.A. ManyamB.V. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer’s disease animal model.Phytother. Res.2009231141910.1002/ptr.2405
    [Google Scholar]
  72. JainN.N. OhalC.C. ShroffS.K. BhutadaR.H. SomaniR.S. KastureV.S. KastureS.B. Clitoria ternatea and the CNS.Pharmacol. Biochem. Behav.200375352953610.1016/S0091‑3057(03)00130‑8
    [Google Scholar]
  73. SethiyaN.K. NahataA. MishraS.H. DixitV.K. An update on Shankhpushpi, a cognition-boosting Ayurvedic medicine.J. Chin. Integr. Med.20097111001102210.3736/jcim20091101
    [Google Scholar]
  74. NahataA. PatilU.K. DixitV.K. Effect of Evolvulus alsinoides Linn. on learning behavior and memory enhancement activity in rodents.Phytother. Res.201024448649310.1002/ptr.2932
    [Google Scholar]
  75. MalikJ. KaranM. VasishtK. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi.Pharm. Biol.201149121234124210.3109/13880209.2011.584539
    [Google Scholar]
  76. SharmaK. BhatnagarM. KulkarniS.K. Effect of Convolvulus pluricaulis Choisy and Asparagus racemosus Willd on learning and memory in young and old mice: A comparative evaluation.Indian J. Exp. Biol.2010485479485
    [Google Scholar]
  77. RaiK.S. MurthyK.D. KaranthaK.S. RaoM.S. Clitoria ternatea (Linn) root extract treatment during growth spurt period enhances learning and memory in rats.Indian J. Physiol. Pharmacol.2001453305313
    [Google Scholar]
  78. TaranalliA.D. CheeramkuzhyT.C. Influence of Clitoria ternatea extracts on memory and central cholinergic activity in rats.Pharm. Biol.2000381515610.1076/1388‑0209(200001)3811‑BFT051
    [Google Scholar]
  79. RaiK.S. MurthyK.D. RaoM.S. KaranthK.S. Altered dendritic arborization of amygdala neurons in young adult rats orally intubated with Clitorea ternatea aqueous root extract.Phytother. Res.200519759259810.1002/ptr.1657
    [Google Scholar]
  80. UrizarN.L. MooreD.D. GUGULIPID: A natural cholesterol-lowering agent.Annu. Rev. Nutr.200323130331310.1146/annurev.nutr.23.011702.073102
    [Google Scholar]
  81. SaxenaG. SinghS.P. PalR. SinghS. PratapR. NathC. Gugulipid, an extract of Commiphora whighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice.Pharmacol. Biochem. Behav.200786479780510.1016/j.pbb.2007.03.010
    [Google Scholar]
  82. PerryE.K. PickeringA.T. WangW.W. HoughtonP. PerryN.S.L. Medicinal plants and Alzheimer’s disease: Integrating ethnobotanical and contemporary scientific evidence.J. Altern. Complement. Med.19984441942810.1089/acm.1998.4.419
    [Google Scholar]
  83. AkhondzadehS. NoroozianM. MohammadiM. OhadiniaS. JamshidiA.H. KhaniM. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: A double blind, randomized and placebo-controlled trial.J. Clin. Pharm. Ther.2003281535910.1046/j.1365‑2710.2003.00463.x
    [Google Scholar]
  84. GroverM. BehlT. SehgalA. SinghS. SharmaN. VirmaniT. RachamallaM. FarasaniA. ChigurupatiS. AlsubayielA.M. FelembanS.G. SandujaM. BungauS. In vitro phytochemical screening, cytotoxicity studies of Curcuma longa extracts with isolation and characterisation of their isolated compounds.Molecules20212624750910.3390/molecules26247509
    [Google Scholar]
  85. ChattopadhyayI. BiswasK. BandyopadhyayU. BanerjeeR.K. Turmeric and curcumin: Biological actions and medicinal applications.Curr. Sci.200420044453
    [Google Scholar]
  86. MandelS. AmitT. Bar-AmO. YoudimM.B.H. Iron dysregulation in Alzheimer’s disease: Multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities as therapeutic agents.Prog. Neurobiol.200782634836010.1016/j.pneurobio.2007.06.001
    [Google Scholar]
  87. SinhaK. MishraN.P. SinghJ. KhanujaS.P. Tinospora cordifolia (Guduchi): A reservoir plant for therapeutic applications: A review.Ind. J. Tradit. Knowl.200433257270
    [Google Scholar]
  88. MutalikM. MutalikM. Tinospora cordifolia: Role in depression, cognition and memory.Aust. J. Med. Herb.2011234168173
    [Google Scholar]
  89. RaoR.V. DescampsO. JohnV. BredesenD.E. Ayurvedic medicinal plants for Alzheimer’s disease: A review.Alzheimers Res. Ther.2012432210.1186/alzrt125
    [Google Scholar]
  90. FarooquiA.A. FarooquiT. MadanA. OngJ.H. OngW.Y. Ayurvedic medicine for the treatment of dementia: Mechanistic aspects.Evid. Based Complement. Alternat. Med.20182018248107610.1155/2018/2481076
    [Google Scholar]
  91. PingaliU. PilliR. FatimaN. Effect of standardized aqueous extract of Withania somniferaon tests of cognitive and psychomotor performance in healthy human participants.Pharmacognosy Res.2014611210.4103/0974‑8490.122912
    [Google Scholar]
  92. SinghH. RaghavS. DalalP.K. SrivastavaJ.S. AsthanaO.P. Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment.Indian J. Psychiatry200648423824210.4103/0019‑5545.31555
    [Google Scholar]
  93. WattanathornJ. MatorL. MuchimapuraS. TongunT. PasuriwongO. PiyawatkulN. YimtaeK. SripanidkulchaiB. SingkhoraardJ. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica.J. Ethnopharmacol.2008116232533210.1016/j.jep.2007.11.038
    [Google Scholar]
  94. NahataA. PatilU.K. DixitV.K. Effect of Convulvulus pluricaulis Choisy. on learning behaviour and memory enhancement activity in rodents.Nat. Prod. Res.200822161472148210.1080/14786410802214199
    [Google Scholar]
  95. IwasakiK. KobayashiS. ChimuraY. TaguchiM. InoueK. ChoS. AkibaT. AraiH. CyongJ.C. SasakiH. A randomized, double‐blind, placebo‐controlled clinical trial of the Chinese herbal medicine “ba wei di huang wan” in the treatment of dementia.J. Am. Geriatr. Soc.20045291518152110.1111/j.1532‑5415.2004.52415.x
    [Google Scholar]
  96. BaumL. LamC.W.K. CheungS.K.K. KwokT. LuiV. TsohJ. LamL. LeungV. HuiE. NgC. WooJ. ChiuH.F.K. GogginsW.B. ZeeB.C-Y. ChengK.F. FongC.Y.S. WongA. MokH. ChowM.S.S. HoP.C. IpS.P. HoC.S. YuX.W. LaiC.Y.L. ChanM-H. SzetoS. ChanI.H.S. MokV. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease.J. Clin. Psychopharmacol.200828111011310.1097/jcp.0b013e318160862c
    [Google Scholar]
  97. YangP. SunF. Aducanumab: The first targeted Alzheimer’s therapy.Drug Discov. Ther.202115316616810.5582/ddt.2021.01061
    [Google Scholar]
  98. MatsunagaS. KishiT. NomuraI. SakumaK. OkuyaM. IkutaT. IwataN. The efficacy and safety of memantine for the treatment of Alzheimer’s disease.Expert Opin. Drug Saf.201817101053106110.1080/14740338.2018.1524870
    [Google Scholar]
  99. SprayI.N. FDA approves new drug to treat dementia.J. Gerontol. Nurs.2015413
    [Google Scholar]
  100. ThompsonC.A. FDA approves galantamine for Alzheimer’s disease.AJHP: Off. J. Am. Soc. Heal.Syst. Pharmac.2001588649
    [Google Scholar]
  101. BirksJ.S. EvansJ.G. Rivastigmine for Alzheimer’s disease.Cochrane Database Syst. Rev.2015104CD00119110.1002/14651858.CD001191.pub3
    [Google Scholar]
  102. SeltzerB. Donepezil: An update.Expert Opin. Pharmacother.2007871011102310.1517/14656566.8.7.1011
    [Google Scholar]
  103. ThompsonC.A. FDA approves galantamine for Alzheimer’s disease.Am. J. Health Syst. Pharm.200158864910.1093/ajhp/58.8.649a
    [Google Scholar]
  104. PaseM.P. KeanJ. SarrisJ. NealeC. ScholeyA.B. StoughC. The cognitive-enhancing effects of Bacopa monnieri: A systematic review of randomized, controlled human clinical trials.J. Altern. Complement. Med.201218764765210.1089/acm.2011.0367
    [Google Scholar]
  105. AsolkarL.V. KakkarK.K. ChakreO.J. Glossary of Indian medicinal plants with active principles.CSIR, New Delhi.19921187
    [Google Scholar]
  106. AkramM. NawazA. Effects of medicinal plants on Alzheimer’s disease and memory deficits.Neural Regen. Res.201712466067010.4103/1673‑5374.205108
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249307525240614073143
Loading
/content/journals/cnsamc/10.2174/0118715249307525240614073143
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test