Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Migraine is one of the most painful and debilitating conditions, which is characterized by a pulsating headache. Many therapeutic strategies are being used to prevent and treat the symptoms and underlying pathology. A relatively high number of different medications are currently being used for migraine prevention in clinical practice. However, these compounds were initially developed for other indications and were different in their mechanisms of action. This review mainly summarized all the conventional and phytocompounds currently present for the treatment of migraine. Further, we also discussed therapeutic potential and clinical studies of natural compounds for the treatment of migraine prophylaxis under various chemical categories like flavonoids, polyphenols, alkaloids, glycosides, terpenoids, and lactone, acid, and alcohol.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249308649240730093046
2024-09-10
2025-11-05
Loading full text...

Full text loading...

References

  1. Villar-MartinezM.D. GoadsbyP.J. Pathophysiology and therapy of associated features of migraine.Cells20221117276710.3390/cells1117276736078174
    [Google Scholar]
  2. BurchR. RizzoliP. LoderE. The prevalence and impact of migraine and severe headache in the United States: Updated age, sex, and socioeconomic-specific estimates from government health surveys.Headache2021611606810.1111/head.1402433349955
    [Google Scholar]
  3. KhanJ. AsoomL.I.A. SunniA.A. RafiqueN. LatifR. SaifS.A. AlmandilN.B. AlmohazeyD. AbdulAzeezS. BorgioJ.F. Genetics, pathophysiology, diagnosis, treatment, management, and prevention of migraine.Biomed. Pharmacother.202113911155710.1016/j.biopha.2021.11155734243621
    [Google Scholar]
  4. HoffmannJ. BacaS.M. AkermanS. Neurovascular mechanisms of migraine and cluster headache.J. Cereb. Blood Flow Metab.201939457359410.1177/0271678X1773365528948863
    [Google Scholar]
  5. ErdenerŞ.E. KayaZ. DalkaraT. Parenchymal neuroinflammatory signaling and dural neurogenic inflammation in migraine.J. Headache Pain202122113810.1186/s10194‑021‑01353‑034794382
    [Google Scholar]
  6. LaiJ. DilliE. Migraine aura: Updates in pathophysiology and management.Curr. Neurol. Neurosci. Rep.20202061710.1007/s11910‑020‑01037‑332430657
    [Google Scholar]
  7. NiaziA.K. AndelovaM. SprengerT. Is the migrainous brain normal outside of acute attacks? Lessons learned from psychophysical, neurochemical and functional neuroimaging studies.Expert Rev. Neurother.20131391061106710.1586/14737175.2013.83558724053346
    [Google Scholar]
  8. SilbersteinS.D. GoadsbyP.J. Migraine: Preventive Treatment.Cephalalgia200222749151210.1046/j.1468‑2982.2002.00386.x12230591
    [Google Scholar]
  9. Al-QulitiK.W. AssaediE.S. New advances in prevention of migraine.Neurosciences201621320721410.17712/nsj.2016.3.2015050627356650
    [Google Scholar]
  10. Society, H.C.S.o.t.I.H.The International Classification of Headache Disorders 3rd edition (Beta version).2016Available From: https://www. ichd-3. org/[Diakses 21 Desember 2017]
  11. ArnoldM. Headache classification committee of the international headache society (IHS) the international classification of headache disorders.Cephalalgia2018381121110.1177/033310241773820229368949
    [Google Scholar]
  12. ManiyarF.H. SprengerT. MonteithT. SchankinC. GoadsbyP.J. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks.Brain2014137123224110.1093/brain/awt32024277718
    [Google Scholar]
  13. DodickD.W. A phase-by-phase review of migraine pathophysiology.Headache201858S1Suppl. 141610.1111/head.1330029697154
    [Google Scholar]
  14. MoultonE.A. BecerraL. JohnsonA. BursteinR. BorsookD. Altered hypothalamic functional connectivity with autonomic circuits and the locus coeruleus in migraine.PLoS One201494e9550810.1371/journal.pone.009550824743801
    [Google Scholar]
  15. BursteinR. JakubowskiM. Unitary hypothesis for multiple triggers of the pain and strain of migraine.J. Comp. Neurol.2005493191410.1002/cne.2068816258903
    [Google Scholar]
  16. ToimilB. YoonH. LiC. KohanL. Migraine Diagnosis and Symptomatology.MigraineChamSpringer2021
    [Google Scholar]
  17. QubtyW. PatniyotI. Migraine pathophysiology.Pediatr. Neurol.20201071610.1016/j.pediatrneurol.2019.12.01432192818
    [Google Scholar]
  18. GoetzA. McCormickS. PhillipsR. FriedmanD. CE: Diagnosing and managing migraine.Am. J. Nurs.20221221324310.1097/01.NAJ.0000805640.82646.ac34882585
    [Google Scholar]
  19. Tfelt-HansenP.C. KoehlerP.J. One hundred years of migraine research: Major clinical and scientific observations from 1910 to 2010.Headache201151575277810.1111/j.1526‑4610.2011.01892.x21521208
    [Google Scholar]
  20. DreierJ.P. MajorS. LemaleC.L. KolaV. ReiffurthC. SchoknechtK. HechtN. HartingsJ.A. WoitzikJ. Correlates of spreading depolarization, spreading depression, and negative ultraslow potential in epidural versus subdural electrocorticography.Front. Neurosci.20191337310.3389/fnins.2019.0037331068779
    [Google Scholar]
  21. BurkeM.J. JoutsaJ. CohenA.L. SoussandL. CookeD. BursteinR. FoxM.D. Mapping migraine to a common brain network.Brain2020143254155310.1093/brain/awz40531919494
    [Google Scholar]
  22. MalekiN. BecerraL. BrawnJ. McEwenB. BursteinR. BorsookD. Common hippocampal structural and functional changes in migraine.Brain Struct. Funct.2013218490391210.1007/s00429‑012‑0437‑y22760159
    [Google Scholar]
  23. GoadsbyP.J. HollandP.R. Martins-OliveiraM. HoffmannJ. SchankinC. AkermanS. Pathophysiology of migraine: A disorder of sensory processing.Physiol. Rev.201797255362210.1152/physrev.00034.201528179394
    [Google Scholar]
  24. EdvinssonL. VillalónC.M. MaassenVanDenBrinkA. Basic mechanisms of migraine and its acute treatment.Pharmacol. Ther.2012136331933310.1016/j.pharmthera.2012.08.01122939884
    [Google Scholar]
  25. RussoA.F. Calcitonin gene-related peptide (CGRP): A new target for migraine.Annu. Rev. Pharmacol. Toxicol.201555153355210.1146/annurev‑pharmtox‑010814‑12470125340934
    [Google Scholar]
  26. CadyR.K. Diagnosis and treatment of migraine.Clin. Cornerstone199916213210.1016/S1098‑3597(99)90037‑610682185
    [Google Scholar]
  27. JaggiA.S. SinghN. Role of different brain areas in peripheral nerve injury-induced neuropathic pain.Brain Res.2011138118720110.1016/j.brainres.2011.01.00221238432
    [Google Scholar]
  28. IyengarS. JohnsonK.W. OssipovM.H. AuroraS.K. CGRP and the trigeminal system in migraine.Headache201959565968110.1111/head.1352930982963
    [Google Scholar]
  29. SchwedtT.J. SchlaggarB.L. MarS. NolanT. CoalsonR.S. NardosB. BenzingerT. Larson-PriorL.J. Atypical resting-state functional connectivity of affective pain regions in chronic migraine.Headache201353573775110.1111/head.1208123551164
    [Google Scholar]
  30. SacksO. Migraine: The Evolution of a Common Disorder.Berkeley, California, United StatesUniversity of California Press1970
    [Google Scholar]
  31. LaurellK. ArttoV. BendtsenL. HagenK. HäggströmJ. LindeM. SöderströmL. TronvikE. WessmanM. ZwartJ.A. KallelaM. Premonitory symptoms in migraine: A cross-sectional study in 2714 persons.Cephalalgia2016361095195910.1177/033310241562025126643378
    [Google Scholar]
  32. KarsanN. BoseP.R. O’DalyO. ZelayaF.O. GoadsbyP.J. Alterations in functional connectivity during different phases of the triggered migraine attack.Headache20206071244125810.1111/head.1386532568433
    [Google Scholar]
  33. MeylakhN. Unique neural mechanisms of the migraine brain.Doctor of Philosophy, The University of Sydney2019
    [Google Scholar]
  34. ArulmozhiD.K. VeeranjaneyuluA. BodhankarS.L. Migraine: Current concepts and emerging therapies.Vascul. Pharmacol.200543317618710.1016/j.vph.2005.07.00116099727
    [Google Scholar]
  35. DavidoffR.A. Migraine: Manifestations, Pathogenesis, And Management.Oxford, EnglandOxford University Press2002
    [Google Scholar]
  36. KnightY. Brainstem modulation of caudal trigeminal nucleus: A model for understanding migraine biology and future drug targets.Headache Curr.20052510811810.1111/j.1743‑5013.2005.00019.x
    [Google Scholar]
  37. TajtiJ. SzokD. MajláthZ. TukaB. CsátiA. VécseiL. Migraine and neuropeptides.Neuropeptides201552193010.1016/j.npep.2015.03.00626094101
    [Google Scholar]
  38. HoT.W. EdvinssonL. GoadsbyP.J. CGRP and its receptors provide new insights into migraine pathophysiology.Nat. Rev. Neurol.201061057358210.1038/nrneurol.2010.12720820195
    [Google Scholar]
  39. UritsI. JonesM.R. GressK. CharipovaK. FiocchiJ. KayeA.D. ViswanathO. CGRP antagonists for the treatment of chronic migraines: A comprehensive review.Curr. Pain Headache Rep.20192352910.1007/s11916‑019‑0768‑y30874961
    [Google Scholar]
  40. EdvinssonL. Role of CGRP in Migraine.Handbook of Experimental PharmacologyChamSpringer2019
    [Google Scholar]
  41. HaanesK.A. EdvinssonL. Pathophysiological mechanisms in migraine and the identification of new therapeutic targets.CNS Drugs201933652553710.1007/s40263‑019‑00630‑630989485
    [Google Scholar]
  42. ScuteriD. ToninP. NicoteraP. BagettaG. CorasanitiM.T. Real world considerations for newly approved CGRP receptor antagonists in migraine care.Expert Rev. Neurother.202222322123010.1080/14737175.2022.204975835240905
    [Google Scholar]
  43. OngJ.J.Y. De FeliceM. Migraine treatment: Current acute medications and their potential mechanisms of action.Neurotherapeutics201815227429010.1007/s13311‑017‑0592‑129235068
    [Google Scholar]
  44. BeckerW.J. Acute migraine treatment.Continuum (Minneap. Minn.)2015214 Headache95397210.1212/CON.000000000000019226252584
    [Google Scholar]
  45. MehrotraS. GuptaS. GarreldsI.M. VillalónC.M. SaxenaP.R. BogersA.J.J.C. MaassenVanDenBrinkA. Effects of current and prospective antimigraine drugs on the porcine isolated meningeal artery.Naunyn Schmiedebergs Arch. Pharmacol.2006374316317510.1007/s00210‑006‑0108‑817103145
    [Google Scholar]
  46. RaineroI. Neurobiology of Chronic Migraine.J. Headache Pain2004589
    [Google Scholar]
  47. SilbersteinS.D. KoriS.H. Dihydroergotamine: A review of formulation approaches for the acute treatment of migraine.CNS Drugs201327538539410.1007/s40263‑013‑0061‑223620146
    [Google Scholar]
  48. VillalónC. An introduction to migraine: From ancient treatment to functional pharmacology and antimigraine therapy .Proc West Pharmacol Soc200245199210
    [Google Scholar]
  49. HoffmannJ. GoadsbyP.J. Emerging targets in migraine.CNS Drugs2014281111710.1007/s40263‑013‑0126‑224318669
    [Google Scholar]
  50. GazeraniP. CairnsB.E. New insight in migraine pathogenesis: Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the circulation after sumatriptan.Scand. J. Pain20134420821010.1016/j.sjpain.2013.07.00129913624
    [Google Scholar]
  51. MathewN.T. Serotonin 1D (5-HT1D) agonists and other agents in acute migraine.Neurol. Clin.1997151618310.1016/S0733‑8619(05)70295‑49058397
    [Google Scholar]
  52. BarbantiP. AuriliaC. EgeoG. FofiL. PalmirottaR. Serotonin receptor targeted therapy for migraine treatment: An overview of drugs in phase I and II clinical development.Expert Opin. Investig. Drugs201726326927710.1080/13543784.2017.128340428103158
    [Google Scholar]
  53. NegroA. KoverechA. MartellettiP. Serotonin receptor agonists in the acute treatment of migraine: A review on their therapeutic potential.J. Pain Res.20181151552610.2147/JPR.S13283329563831
    [Google Scholar]
  54. HuangP.C. YangF.C. ChangC.M. YangC.P. Targeting the 5-HT1B/1D and 5-HT1F receptors for acute migraine treatment.Prog. Brain Res.20202559912110.1016/bs.pbr.2020.05.01033008517
    [Google Scholar]
  55. LáinezM.J.A. Rizatriptan in the treatment of migraine.Neuropsychiatr. Dis. Treat.20062324725910.2147/nedt.2006.2.3.24719412472
    [Google Scholar]
  56. DienerH. FörderreutherS. KroppP. Treatment of migraine attacks und preventive treatment of migraine, S 1 guideline, 2022, DGN and DMKG. Deutsche Gesellschaft für Neurologie (Pub.), Guidelines for diagnosis and treatment in neurology.2022Available From: www. dgn. org/leitlinien
  57. GuidettiD. RotaE. MorelliN. ImmovilliP. Migraine and Stroke: “Vascular” Comorbidity.Front. Neurol.2014519310.3389/fneur.2014.0019325339937
    [Google Scholar]
  58. GoadsbyP.J. All that is obvious is not clear: What is the origin of throbbing pain in migraine?Pain2013154797097110.1016/j.pain.2013.04.01923680499
    [Google Scholar]
  59. GoadsbyP.J. WietechaL.A. DennehyE.B. KucaB. CaseM.G. AuroraS.K. GaulC. Phase 3 randomized, placebo-controlled, double-blind study of lasmiditan for acute treatment of migraine.Brain201914271894190410.1093/brain/awz13431132795
    [Google Scholar]
  60. KhazaeiM. Hosseini Nejad MirN. Yadranji AghdamF. TaheriM. Ghafouri-FardS. Effectiveness of intravenous dexamethasone, metoclopramide, ketorolac, and chlorpromazine for pain relief and prevention of recurrence in the migraine headache: A prospective double-blind randomized clinical trial.Neurol. Sci.20194051029103310.1007/s10072‑019‑03766‑x30783794
    [Google Scholar]
  61. AvcuN. DoğanN.Ö. PekdemirM. YakaE. YılmazS. AlyeşilC. AkalınL.E. Intranasal lidocaine in acute treatment of migraine: A randomized controlled trial.Ann. Emerg. Med.201769674375110.1016/j.annemergmed.2016.09.03127889366
    [Google Scholar]
  62. Sánchez-PorrasR. SantosE. SchöllM. StockC. ZhengZ. SchiebelP. OrakciogluB. UnterbergA.W. SakowitzO.W. The effect of ketamine on optical and electrical characteristics of spreading depolarizations in gyrencephalic swine cortex.Neuropharmacology201484526110.1016/j.neuropharm.2014.04.01824796257
    [Google Scholar]
  63. RaoA.S. GelayeB. KurthT. DashP.D. NitchieH. PeterlinB.L. A randomized trial of ketorolac vs sumatripan vs placebo nasal spray (KSPN) for acute migraine.Headache201656233134010.1111/head.1276726840902
    [Google Scholar]
  64. DodickD.W. Indomethacin-responsive headache syndromes.Curr. Pain Headache Rep.200481192610.1007/s11916‑004‑0036‑614731379
    [Google Scholar]
  65. ZobdehF. ben KraiemA. AttwoodM.M. ChubarevV.N. TarasovV.V. SchiöthH.B. MwinyiJ. Pharmacological treatment of migraine: Drug classes, mechanisms of action, clinical trials and new treatments.Br. J. Pharmacol.2021178234588460710.1111/bph.1565734379793
    [Google Scholar]
  66. KregeJ.H. RizzoliP.B. LiffickE. DotyE.G. DowsettS.A. WangJ. BuchananA.S. Safety findings from Phase 3 lasmiditan studies for acute treatment of migraine: Results from SAMURAI and SPARTAN.Cephalalgia201939895796610.1177/033310241985508031166697
    [Google Scholar]
  67. ConwayC. CroopR. DubowchikG. CoricV. LiptonR. EnterprisesAAN 2020
  68. KonstantinosS. VikelisM. RapoportA. Acute care and treatment of migraine.J. Neuroophthalmol.202040447248410.1097/WNO.000000000000105332956223
    [Google Scholar]
  69. Silva-NétoR.P. JevouxC. KrymchantowskiA. Preventive and abortive treatment of migraine with traditional drugs. The state of the art.Headache Medicine202314313314310.48208/HeadacheMed.2023.27
    [Google Scholar]
  70. FilaM. ChojnackiC. ChojnackiJ. BlasiakJ. Nutrients to improve mitochondrial function to reduce brain energy deficit and oxidative stress in migraine.Nutrients20211312443310.3390/nu1312443334959985
    [Google Scholar]
  71. GoschorskaM. GutowskaI. Baranowska-BosiackaI. BarczakK. ChlubekD. The use of antioxidants in the treatment of migraine.Antioxidants20209211610.3390/antiox902011632012936
    [Google Scholar]
  72. BaianoA. Del NobileM.A. Antioxidant compounds from vegetable matrices: Biosynthesis, occurrence, and extraction systems.Crit. Rev. Food Sci. Nutr.201656122053206810.1080/10408398.2013.81205925751787
    [Google Scholar]
  73. EsatbeyogluT. HuebbeP. ErnstI.M.A. ChinD. WagnerA.E. RimbachG. Curcumin--from molecule to biological function.Angew. Chem. Int. Ed.201251225308533210.1002/anie.20110772422566109
    [Google Scholar]
  74. XuX.Y. MengX. LiS. GanR.Y. LiY. LiH.B. Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives.Nutrients20181010155310.3390/nu1010155330347782
    [Google Scholar]
  75. Pulido-MoranM. Moreno-FernandezJ. Ramirez-TortosaC. Ramirez-TortosaM.C. Curcumin and Health.Molecules201621326410.3390/molecules2103026426927041
    [Google Scholar]
  76. HeidariH. ShojaeiM. AskariG. MajeedM. BagherniyaM. BarretoG.E. SahebkarA. The impact of curcumin on migraine: A comprehensive review.Biomed. Pharmacother.202316411491010.1016/j.biopha.2023.11491037216708
    [Google Scholar]
  77. BulboacăA.E. BolboacăS.D. StănescuI.C. SfrângeuC.A. PorfireA. TefasL. BulboacăA.C. The effect of intravenous administration of liposomal curcumin in addition to sumatriptan treatment in an experimental migraine model in rats.Int. J. Nanomedicine2018133093310310.2147/IJN.S16208729872296
    [Google Scholar]
  78. ChenY. WangS. WangY. Role of herbal medicine for prevention and treatment of migraine.Phytother. Res.202236273076010.1002/ptr.733934818682
    [Google Scholar]
  79. TripathiG.M. The Molecular Immunology of Neurological Diseases.AmsterdamElsevier202113514710.1016/B978‑0‑12‑821974‑4.00006‑6
    [Google Scholar]
  80. MancusoM. OrsucciD. CalsolaroV. ChoubA. SicilianoG. Coenzyme Q10 and neurological diseases.Pharmaceuticals (Basel)20092313414910.3390/ph20313427713230
    [Google Scholar]
  81. HaH. GonzalezA. Migraine headache prophylaxis.Am. Fam. Physician2019991172430600979
    [Google Scholar]
  82. GaulC. DienerH.C. DaneschU. GroupM.S. Improvement of migraine symptoms with a proprietary supplement containing riboflavin, magnesium and Q10: A randomized, placebo-controlled, double-blind, multicenter trial.J. Headache Pain20151613210.1186/s10194‑015‑0516‑625916335
    [Google Scholar]
  83. ShoeibiA. OlfatiN. Soltani SabiM. SalehiM. MaliS. Akbari OryaniM. Effectiveness of coenzyme Q10 in prophylactic treatment of migraine headache: An open-label, add-on, controlled trial.Acta Neurol. Belg.2017117110310910.1007/s13760‑016‑0697‑z27670440
    [Google Scholar]
  84. KimM.S. BangJ.H. LeeJ. HanJ.S. BaikT.G. JeonW.K. Ginkgo biloba L. extract protects against chronic cerebral hypoperfusion by modulating neuroinflammation and the cholinergic system.Phytomedicine201623121356136410.1016/j.phymed.2016.07.01327765355
    [Google Scholar]
  85. ZhangZ. PengD. ZhuH. WangX. Experimental evidence of Ginkgo biloba extract EGB as a neuroprotective agent in ischemia stroke rats.Brain Res. Bull.2012872-319319810.1016/j.brainresbull.2011.11.00222100334
    [Google Scholar]
  86. TulsulkarJ. ShahZ.A. Ginkgo biloba prevents transient global ischemia-induced delayed hippocampal neuronal death through antioxidant and anti-inflammatory mechanism.Neurochem. Int.201362218919710.1016/j.neuint.2012.11.01723228346
    [Google Scholar]
  87. LinL.Z. ChenP. OzcanM. HarnlyJ.M. Chromatographic profiles and identification of new phenolic components of Ginkgo biloba leaves and selected products.J. Agric. Food Chem.200856156671667910.1021/jf800488x18598036
    [Google Scholar]
  88. ShiC. ZhaoL. ZhuB. LiQ. YewD.T. YaoZ. XuJ. Protective effects of Ginkgo biloba extract (EGb761) and its constituents quercetin and ginkgolide B against β-amyloid peptide-induced toxicity in SH-SY5Y cells.Chem. Biol. Interact.2009181111512310.1016/j.cbi.2009.05.01019464278
    [Google Scholar]
  89. NashK.M. ShahZ.A. Current perspectives on the beneficial role of Ginkgo biloba in neurological and cerebrovascular disorders.Integr Med Insights.2015101910.4137/IMI.S25054
    [Google Scholar]
  90. D’AndreaG. BussoneG. AllaisG. AguggiaM. D’OnofrioF. MaggioM. MoschianoF. SaraccoM.G. TerziM.G. PetrettaV. BenedettoC. Efficacy of Ginkgolide B in the prophylaxis of migraine with aura.Neurol. Sci.200930S1Suppl. 112112410.1007/s10072‑009‑0074‑219415441
    [Google Scholar]
  91. MaL. LiuX. ZhaoY. ChenB. LiX. QiR. Ginkgolide B reduces LOX-1 expression by inhibiting Akt phosphorylation and increasing Sirt1 expression in oxidized LDL-stimulated human umbilical vein endothelial cells.PLoS One201389e7476910.1371/journal.pone.007476924069345
    [Google Scholar]
  92. AllaisG. D’AndreaG. MaggioM. BenedettoC. The efficacy of ginkgolide B in the acute treatment of migraine aura: An open preliminary trial.Neurol. Sci.201334S1Suppl. 116116310.1007/s10072‑013‑1413‑x23695070
    [Google Scholar]
  93. WuC. ChenF. WangX. KimH.J. HeG. Haley-ZitlinV. HuangG. Antioxidant constituents in feverfew (Tanacetum parthenium) extract and their chromatographic quantification.Food Chem.200696222022710.1016/j.foodchem.2005.02.024
    [Google Scholar]
  94. PfaffenrathV. DienerH.C. FischerM. FriedeM. Henneicke-von ZepelinH.H. The efficacy and safety of Tanacetum parthenium (feverfew) in migraine prophylaxis--a double-blind, multicentre, randomized placebo-controlled dose-response study.Cephalalgia200222752353210.1046/j.1468‑2982.2002.00396.x12230594
    [Google Scholar]
  95. VoltaG.D. ZavariseP. PeregoL. SaviL. PezziniA. Comparison of the effect of tanacethum parthenium, 5-hydroxy tryptophan, and magnesium (aurastop) versus magnesium alone on aura phenomenon and its evolution.Pain Res Manag.201920196320163
    [Google Scholar]
  96. PaswanV.K. SinghC.S. KukrejaG. BunkarD.S. BhinchharB.K. Health benefits and functional and medicinal properties of some common indian spices.Herbs and Spices-New Processing TechnologiesLondonInTechOpen2021118
    [Google Scholar]
  97. LaribiB. KoukiK. M’HamdiM. BettaiebT. Coriander (Coriandrum sativum L.) and its bioactive constituents.Fitoterapia201510392610.1016/j.fitote.2015.03.01225776008
    [Google Scholar]
  98. MansouriS. KazemiI. BaghestaniA.R. ZayeriF. GhorbanifarZ. Evaluating the effect of Coriandrum sativum syrup on being migraine-free using mixture models.Med. J. Islam. Repub. Iran2020344410.47176/mjiri.34.4432884919
    [Google Scholar]
  99. LoprestiA.L. SmithS.J. DrummondP.D. Herbal treatments for migraine: A systematic review of randomised-controlled studies.Phytother. Res.202034102493251710.1002/ptr.670132310327
    [Google Scholar]
  100. NairM.B. GrootM. Medicinal plants for Home herbal gardens, Institutional gardens and animal health.2021Available From: https://research.wur.nl/en/publications/medicinal-plants-for-home-herbal-gardens-institutional-gardens-an
  101. TiwariG. TiwariR. MishraS. RamachandranV. Preventive and Therapeutic Aspects of Migraine for Patient Care: An Insight.Curr. Mol. Pharmacol.202316214716010.2174/187446721566622021110025635152874
    [Google Scholar]
  102. RajapakseT. DavenportW.J. Phytomedicines in the treatment of migraine.CNS Drugs201933539941510.1007/s40263‑018‑0597‑230627973
    [Google Scholar]
  103. NayebiN. KhaliliN. KamalinejadM. EmtiazyM. A systematic review of the efficacy and safety of Rosa damascena Mill. with an overview on its phytopharmacological properties.Complement. Ther. Med.20173412914010.1016/j.ctim.2017.08.01428917365
    [Google Scholar]
  104. FerroE.C. BiaginiA.P. da SilvaÍ.E.F. SilvaM.L. SilvaJ.R.T. The combined effect of acupuncture and Tanacetum parthenium on quality of life in women with headache: Randomised study.Acupunct. Med.201230425225710.1136/acupmed‑2012‑01019522961605
    [Google Scholar]
  105. Oelkers-AxR. LeinsA. ParzerP. HilleckeT. BolayH.V. FischerJ. BenderS. HermannsU. ReschF. Butterbur root extract and music therapy in the prevention of childhood migraine: An explorative study.Eur. J. Pain200812330131310.1016/j.ejpain.2007.06.00317659990
    [Google Scholar]
  106. ParohanM. SarrafP. JavanbakhtM.H. ForoushaniA.R. Ranji-BurachalooS. DjalaliM. The synergistic effects of nano-curcumin and coenzyme Q10 supplementation in migraine prophylaxis: A randomized, placebo-controlled, double-blind trial.Nutr. Neurosci.202124431732610.1080/1028415X.2019.162777031241007
    [Google Scholar]
  107. HaghighiA.B. MotazedianS. RezaiiR. Therapeutic potentials of menthol in migraine headache: Possible mechanisms of action.Med. Hypotheses200769245510.1016/j.mehy.2006.12.02417317030
    [Google Scholar]
  108. BurdockG.A. CarabinI.G. Safety assessment of coriander (Coriandrum sativum L.) essential oil as a food ingredient.Food Chem. Toxicol.2009471223410.1016/j.fct.2008.11.00619032971
    [Google Scholar]
  109. AndersonG. SeoM. BerkM. CarvalhoA. MaesM. Gut permeability and microbiota in Parkinson’s disease: Role of depression, tryptophan catabolites, oxidative and nitrosative stress and melatonergic pathways.Curr. Pharm. Des.201622406142615110.2174/138161282266616090616151327604608
    [Google Scholar]
  110. MengX. LiQ. WangD. LiJ. CuiY. SunZ. YinH. Exploring the role of gut microbiota in migraine risk: A two-sample Mendelian randomization study.Scand. J. Gastroenterol.202459441141810.1080/00365521.2023.229837038149430
    [Google Scholar]
  111. IvanovaA.Y. ShirokovI.V. ToshchakovS.V. KozlovaA.D. ObolenskayaO.N. MariasinaS.S. IvlevV.A. GartseevI.B. MedvedevO.S. Effects of coenzyme Q10 on the biomarkers (Hydrogen, Methane, SCFA and TMA) and composition of the gut microbiome in rats.Pharmaceuticals (Basel)202316568610.3390/ph1605068637242469
    [Google Scholar]
  112. SunJ. XieQ. SunM. ZhangW. WangH. LiuN. WangM. Curcumin protects mice with myasthenia gravis by regulating the gut microbiota, short-chain fatty acids, and the Th17/Treg balance.Heliyon2024104e2603010.1016/j.heliyon.2024.e2603038420408
    [Google Scholar]
  113. YuT. XingY. GaoQ. WangD. ChenH. WangH. ZhangY. Ginkgo biloba extract drives gut flora and microbial metabolism variation in a mouse model of alzheimer’s disease.Pharmaceutics20231512274610.3390/pharmaceutics1512274638140087
    [Google Scholar]
  114. AndersonG. Integrating pathophysiology in migraine: Role of the gut microbiome and melatonin.Curr. Pharm. Des.201925333550356210.2174/138161282566619092011461131538885
    [Google Scholar]
  115. TanD.X. ManchesterL.C. LiuX. Rosales-CorralS.A. Acuna-CastroviejoD. ReiterR.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin’s primary function and evolution in eukaryotes.J. Pineal Res.201354212713810.1111/jpi.1202623137057
    [Google Scholar]
  116. MokkawesT. de VisserS.P. Melatonin activation by cytochrome P450 isozymes: How does CYP1A2 compare to CYP1A1?Int. J. Mol. Sci.2023244365110.3390/ijms2404365136835057
    [Google Scholar]
  117. JangS.W. LiuX. PradoldejS. TosiniG. ChangQ. IuvoneP.M. YeK. N -acetylserotonin activates TrkB receptor in a circadian rhythm.Proc. Natl. Acad. Sci. USA201010783876388110.1073/pnas.091253110720133677
    [Google Scholar]
  118. YooD.Y. NamS.M. KimW. LeeC.H. WonM.H. HwangI.K. YoonY.S. N-acetylserotonin increases cell proliferation and differentiating neuroblasts with tertiary dendrites through upregulation of brain-derived neurotrophic factor in the mouse dentate gyrus.J. Vet. Med. Sci.201173111411141610.1292/jvms.11‑012321712640
    [Google Scholar]
  119. GuoJ-Q. DengH-H. BoX. YangX-S. Involvement of BDNF/TrkB and ERK/CREB axes in nitroglycerin-induced rat migraine and effects of estrogen on these signals in the migraine.Biol. Open20176181627875242
    [Google Scholar]
  120. ChiangC.C. PorrecaF. RobertsonC.E. DodickD.W. Potential treatment targets for migraine: Emerging options and future prospects.Lancet Neurol.202423331332410.1016/S1474‑4422(24)00003‑638365382
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249308649240730093046
Loading
/content/journals/cnsamc/10.2174/0118715249308649240730093046
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antimigraine; intracranial; meningeal; Migraine; phytocompound; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test