Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Background

Neuropathic pain is a complex chronic condition resulting from the damage or dysfunction of the nervous system. Conventional therapies offer limited success and often come with various adverse effects. Therefore, the exploration of alternative therapies, such as phytoconstituents, may be of substantial interest for their potential to alleviate neuropathic pain.

Objectives

This review systematically examines the diverse roles and mechanisms of various phytoconstituents in modulating neuropathic pain. In this study, a comprehensive analysis of phytoconstituents in neuropathic pain is carried out to understand their mechanism in preventing the disease.

Methods

The current search is done in the databases of Google Scholar, PubMed Central, ScienceDirect, and Scopus using the keywords: neuropathic pain, phytoconstituents as analgesics, physiological effects of medicinal plants, and natural products, to find the most relevant articles of the last 10 years.

Results

Out of 125 articles, 112 were included in this study, which revealed that several phytoconstituents inhibit several biomarkers responsible for neuropathic pain. Moreover, this review highlights the underlying molecular pathways and targets through which these bioactive compounds exert their therapeutic effects, emphasizing their potential as novel pharmacological agents.

Conclusion

This study concludes that phytoconstituents may possess potential applications in managing neuropathic pain and could be effectively used as an alternative approach to mitigate the condition with enhanced risk of safety and tolerability.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249312031240803190651
2024-08-13
2025-11-04
Loading full text...

Full text loading...

References

  1. SinghH. BhushanS. AroraR. Singh ButtarH. AroraS. SinghB. Alternative treatment strategies for neuropathic pain: Role of Indian medicinal plants and compounds of plant origin-A review.Biomed. Pharmacother.20179263465010.1016/j.biopha.2017.05.07928578258
    [Google Scholar]
  2. VrankenJH. Mechanisms and treatment of neuropathic pain.Cent Nerv Syst Agents Med Chem.200991717810.2174/18715240978760193220021340
    [Google Scholar]
  3. YousofS.M. ElSayedD.A. El-BazA.A. SallamH.S. AbbasF. Combined treatment of adipose derived-mesenchymal stem cells and pregabalin is superior to monotherapy for the treatment of neuropathic pain in rats.Stem Cells Int.202120211910.1155/2021/884711033628271
    [Google Scholar]
  4. BurakgaziA.Z. MessersmithW. VaidyaD. HauerP. HokeA. PolydefkisM. Longitudinal assessment of oxaliplatin-induced neuropathy.Neurology2011771098098610.1212/WNL.0b013e31822cfc5921865571
    [Google Scholar]
  5. CohenS.P. MaoJ. Neuropathic pain: mechanisms and their clinical implications.BMJ2014348feb05 6f765610.1136/bmj.f765624500412
    [Google Scholar]
  6. DoughertyP.M. WillisW.D. Enhanced responses of spinothalamic tract neurons to excitatory amino acids accompany capsaicin-induced sensitization in the monkey.J. Neurosci.199212388389410.1523/JNEUROSCI.12‑03‑00883.19921545244
    [Google Scholar]
  7. BannisterK. SachauJ. BaronR. DickensonA.H. Neuropathic pain: mechanism-based therapeutics.Annu. Rev. Pharmacol. Toxicol.202060125727410.1146/annurev‑pharmtox‑010818‑02152431914896
    [Google Scholar]
  8. HogansB.B. Watt-WatsonJ. WilkinsonP. CarrE.C.J. GordonD.B. Perspective: update on pain education.Pain201815991681168210.1097/j.pain.000000000000129729847472
    [Google Scholar]
  9. NguelefackT.B. DutraR.C. PaszcukA.F. AndradeE.L. TapondjouL.A. CalixtoJ.B. Antinociceptive activities of the methanol extract of the bulbs of Dioscorea bulbifera L. var sativa in mice is dependent of NO–cGMP–ATP-sensitive-K+ channel activation.J. Ethnopharmacol.2010128356757410.1016/j.jep.2010.01.06120152893
    [Google Scholar]
  10. van HeckeO. AustinS.K. KhanR.A. SmithB.H. TorranceN. Neuropathic pain in the general population: A systematic review of epidemiological studies.Pain2014155465466210.1016/j.pain.2013.11.01324291734
    [Google Scholar]
  11. CavalliE. MammanaS. NicolettiF. BramantiP. MazzonE. The neuropathic pain: An overview of the current treatment and future therapeutic approaches.Int. J. Immunopathol. Pharmacol.20193310.1177/205873841983838330900486
    [Google Scholar]
  12. QuintansJ.S.S. AntoniolliÂ.R. AlmeidaJ.R.G.S. Santana-FilhoV.J. Quintans-JúniorL.J. Natural products evaluated in neuropathic pain models - a systematic review.Basic Clin. Pharmacol. Toxicol.2014114644245010.1111/bcpt.1217824252102
    [Google Scholar]
  13. ForouzanfarF. HosseinzadehH. Medicinal herbs in the treatment of neuropathic pain: a review.Iran. J. Basic Med. Sci.201821434735829796216
    [Google Scholar]
  14. HosseinzadehH. MoallemS. MoshiriM. SarnavaziM. EtemadL. Anti-nociceptive and anti-inflammatory effects of cyanocobalamin (vitamin B12) against acute and chronic pain and inflammation in mice.Arzneimittelforschung201262732432910.1055/s‑0032‑131163522588629
    [Google Scholar]
  15. FinnerupN.B. AttalN. HaroutounianS. McNicolE. BaronR. DworkinR.H. GilronI. HaanpääM. HanssonP. JensenT.S. KamermanP.R. LundK. MooreA. RajaS.N. RiceA.S.C. RowbothamM. SenaE. SiddallP. SmithB.H. WallaceM. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis.Lancet Neurol.201514216217310.1016/S1474‑4422(14)70251‑025575710
    [Google Scholar]
  16. SchmaderK.E. Epidemiology and impact on quality of life of postherpetic neuralgia and painful diabetic neuropathy.Clin. J. Pain200218635035410.1097/00002508‑200211000‑0000212441828
    [Google Scholar]
  17. WerhagenL. BudhC.N. HultlingC. MolanderC. Neuropathic pain after traumatic spinal cord injury – relations to gender, spinal level, completeness, and age at the time of injury.Spinal Cord2004421266567310.1038/sj.sc.310164115289801
    [Google Scholar]
  18. FinnerupN.B. KunerR. JensenT.S. Neuropathic pain: from mechanisms to treatment.Physiol. Rev.202032584191
    [Google Scholar]
  19. IslamF. IslamM.M. Khan MeemA.F. NafadyM.H. IslamM.R. AkterA. MitraS. AlhumaydhiF.A. EmranT.B. KhusroA. Simal-GandaraJ. EftekhariA. KarimiF. BaghayeriM. Multifaceted role of polyphenols in the treatment and management of neurodegenerative diseases.Chemosphere2022307Pt 313602010.1016/j.chemosphere.2022.13602035985383
    [Google Scholar]
  20. AhmadianE. EftekhariA. SamieiM. Maleki DizajS. VinkenM. The role and therapeutic potential of connexins, pannexins and their channels in Parkinson’s disease.Cell. Signal.20195811111810.1016/j.cellsig.2019.03.01030877035
    [Google Scholar]
  21. SharmaN. AroraA. KakkarD. Natural polysaccharides for ulcerative colitis: A general overview.Asian Pac. J. Trop. Biomed.202313518519410.4103/2221‑1691.377405
    [Google Scholar]
  22. KhalilovR.K. BakishzadeA. NasibovaA. Future prospects of Biomaterial in Nanomedicine.Advances in Biology & Earth Sciences20249Special Issue51010.62476/abes.9s5
    [Google Scholar]
  23. RosicG. SelakovicD. OmarovaS. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials.Advances in Biology & Earth Sciences20249Special Issue113410.62476/abes9s11
    [Google Scholar]
  24. VermaS. EstanislaoL. SimpsonD. HIV-associated neuropathic pain: epidemiology, pathophysiology and management.CNS Drugs200519432533410.2165/00023210‑200519040‑0000515813646
    [Google Scholar]
  25. KocsisJ.D. WaxmanS.G. Ionic channel organization of normal and regenerating mammalian axons.Prog. Brain Res.1987718910110.1016/S0079‑6123(08)61816‑62438722
    [Google Scholar]
  26. DevorM. Sodium channels and mechanisms of neuropathic pain.J. Pain200671S3S1210.1016/j.jpain.2005.09.00616426998
    [Google Scholar]
  27. TsantoulasC. McMahonS.B. Opening paths to novel analgesics: the role of potassium channels in chronic pain.Trends Neurosci.201437314615810.1016/j.tins.2013.12.00224461875
    [Google Scholar]
  28. PatelR. DickensonA.H. Mechanisms of the gabapentinoids and α 2 δ -1 calcium channel subunit in neuropathic pain.Pharmacol. Res. Perspect.201642e0020510.1002/prp2.20527069626
    [Google Scholar]
  29. SuzukiR. MatthewsE.A. DickensonA.H. Comparison of the effects of MK-801, ketamine and memantine on responses of spinal dorsal horn neurones in a rat model of mononeuropathy.Pain200191110110910.1016/S0304‑3959(00)00423‑111240082
    [Google Scholar]
  30. DickensonA.H. PatelR. Sense and sensibility—logical approaches to profiling in animal models.Pain201815971426142810.1097/j.pain.000000000000124529916961
    [Google Scholar]
  31. DoyonN. FerriniF. GagnonM. De KoninckY. Treating pathological pain: is KCC2 the key to the gate?Expert Rev. Neurother.201313546947110.1586/ern.13.4023621303
    [Google Scholar]
  32. ZhangZ.J. JiangB.C. GaoY.J. Chemokines in neuron–glial cell interaction and pathogenesis of neuropathic pain.Cell. Mol. Life Sci.201774183275329110.1007/s00018‑017‑2513‑128389721
    [Google Scholar]
  33. NavratilovaE. JiG. PhelpsC. QuC. HeinM. YakhnitsaV. NeugebauerV. PorrecaF. Kappa opioid signaling in the central nucleus of the amygdala promotes disinhibition and aversiveness of chronic neuropathic pain.Pain2019160482483210.1097/j.pain.000000000000145830681985
    [Google Scholar]
  34. BeeL.A. DickensonA.H. Rostral ventromedial medulla control of spinal sensory processing in normal and pathophysiological states.Neuroscience2007147378679310.1016/j.neuroscience.2007.05.00417570596
    [Google Scholar]
  35. BannisterK. DickensonA.H. What the brain tells the spinal cord.Pain2016157102148215110.1097/j.pain.000000000000056827023423
    [Google Scholar]
  36. OssipovM.H. MorimuraK. PorrecaF. Descending pain modulation and chronification of pain.Curr. Opin. Support. Palliat. Care20148214315110.1097/SPC.000000000000005524752199
    [Google Scholar]
  37. De FeliceM. SanojaR. WangR. Vera-PortocarreroL. OyarzoJ. KingT. OssipovM.H. VanderahT.W. LaiJ. DussorG.O. FieldsH.L. PriceT.J. PorrecaF. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain.Pain2011152122701270910.1016/j.pain.2011.06.00821745713
    [Google Scholar]
  38. BannisterK. PatelR. GoncalvesL. TownsonL. DickensonA.H. Diffuse noxious inhibitory controls and nerve injury.Pain201515691803181110.1097/j.pain.000000000000024026010460
    [Google Scholar]
  39. YarnitskyD. GranotM. Nahman-AverbuchH. KhamaisiM. GranovskyY. Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy.Pain201215361193119810.1016/j.pain.2012.02.02122480803
    [Google Scholar]
  40. BasuP. BasuA. In vitro and in vivo effects of flavonoids on peripheral neuropathic pain.Molecules2020255117110.3390/molecules2505117132150953
    [Google Scholar]
  41. GargG. AdamsJ.D. Treatment of neuropathic pain with plant medicines.Chin. J. Integr. Med.201218856557010.1007/s11655‑012‑1188‑622855031
    [Google Scholar]
  42. DewickPM. Medicinal natural products: A biosynthetic approach.John Wiley & Sons2002
    [Google Scholar]
  43. SayhanH. BeyazSG. ÇeliktaşA. The local anesthetic and pain relief activity of alkaloids.Alkaloids - Alternatives in synthesis, modification and applicationIntech Open2017578410.5772/intechopen.69847
    [Google Scholar]
  44. ZhuC. LiuN. TianM. MaL. YangJ. LanX. MaH. NiuJ. YuJ. Effects of alkaloids on peripheral neuropathic pain: a review.Chin. Med.202015110610.1186/s13020‑020‑00387‑x33024448
    [Google Scholar]
  45. FattorussoE. Taglialatela-ScafatiO. Modern alkaloids: Structure, isolation, synthesis, and biology.John Wiley & Sons200710.1002/9783527621071
    [Google Scholar]
  46. OuS. ZhaoY.D. XiaoZ. WenH.Z. CuiJ. RuanH.Z. Effect of lappaconitine on neuropathic pain mediated by P2X3 receptor in rat dorsal root ganglion.Neurochem. Int.201158556457310.1016/j.neuint.2011.01.01621272608
    [Google Scholar]
  47. LiuM. ShenJ. LiuH. XuY. SuY.P. YangJ. YuC.X. Gelsenicine from Gelsemium elegans attenuates neuropathic and inflammatory pain in mice.Biol. Pharm. Bull.201134121877188010.1248/bpb.34.187722130245
    [Google Scholar]
  48. da SilvaK.A.B.S. ManjavachiM.N. PaszcukA.F. PivattoM. ViegasC.Jr BolzaniV.S. CalixtoJ.B. Plant derived alkaloid (−)-cassine induces anti-inflammatory and anti-hyperalgesics effects in both acute and chronic inflammatory and neuropathic pain models.Neuropharmacology201262296797710.1016/j.neuropharm.2011.10.00222032869
    [Google Scholar]
  49. VinckenJ.P. HengL. de GrootA. GruppenH. Saponins, classification and occurrence in the plant kingdom.Phytochemistry200768327529710.1016/j.phytochem.2006.10.00817141815
    [Google Scholar]
  50. LinM. YangS. HuangJ. ZhouL. Insecticidal triterpenes in Meliaceae: Plant species, molecules and activities: Part I (Aphanamixis-Chukrasia).Int. J. Mol. Sci.202122241326210.3390/ijms22241326234948062
    [Google Scholar]
  51. ConnollyJ.D. HillR.A. Triterpenoids.Nat. Prod. Rep.200825479483010.1039/b718038c18663395
    [Google Scholar]
  52. ShiJ. ArunasalamK. YeungD. KakudaY. MittalG. JiangY. Saponins from edible legumes: chemistry, processing, and health benefits.J. Med. Food200471677810.1089/10966200432298473415117556
    [Google Scholar]
  53. ManS. GaoW. ZhangY. HuangL. LiuC. Chemical study and medical application of saponins as anti-cancer agents.Fitoterapia201081770371410.1016/j.fitote.2010.06.00420550961
    [Google Scholar]
  54. HassanH.S. SuleM.I. MusaA.M. MusaK.Y. AbubakarM.S. HassanA.S. Anti-inflammatory activity of crude saponin extracts from five Nigerian medicinal plants.Afr. J. Tradit. Complement. Altern. Med.20119225025523983342
    [Google Scholar]
  55. SinghD. ChaudhuriP.K. Structural characteristics, bioavailability and cardioprotective potential of saponins.Integr. Med. Res.201871334310.1016/j.imr.2018.01.00329629289
    [Google Scholar]
  56. XuG.B. XiaoY.H. ZhangQ.Y. ZhouM. LiaoS.G. Hepatoprotective natural triterpenoids.Eur. J. Med. Chem.201814569171610.1016/j.ejmech.2018.01.01129353722
    [Google Scholar]
  57. FangZ. LiJ. YangR. FangL. ZhangY. A Review: The Triterpenoid Saponins and Biological Activities of Lonicera Linn. Molecules20202517377310.3390/molecules2517377332825106
    [Google Scholar]
  58. LeeJ.Y. ChoiH.Y. ParkC.S. KimD.H. YuneT.Y. Total saponin extract, ginsenoside Rb1, and compound K alleviate peripheral and central neuropathic pain through estrogen receptors on rats.Phytother. Res.20213542119213210.1002/ptr.696033205558
    [Google Scholar]
  59. a XieQ. LiH. LuD. YuanJ. MaR. LiJ. RenM. LiY. ChenH. WangJ. GongD. Neuroprotective effect for cerebral ischemia by natural products: A review.Front Pharmacol.20211260741210.3389/fphar.2021.607412.33967750
    [Google Scholar]
  60. b SongJuxian. LiMin. Hong LuJia. KangYuxuan. DengZhiqiang. Editorial: Assessing the pharmacological effects and therapeutic potential of traditional chinese medicine in neurological disease models: An update.Frontiers in Pharmacology20221390915310.3389/fphar.2022.909153.
    [Google Scholar]
  61. LiZ.Y. JiangY.M. LiuY.M. GuoZ. ShenS.N. LiuX.M. PanR.L. Saikosaponin D acts against corticosterone-induced apoptosis via regulation of mitochondrial GR translocation and a GR-dependent pathway.Prog. Neuropsychopharmacol. Biol. Psychiatry201453808910.1016/j.pnpbp.2014.02.01024636912
    [Google Scholar]
  62. YuanB. YangR. MaY. ZhouS. ZhangX. LiuY. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications.Pharm. Biol.201755162063510.1080/13880209.2016.126243327951737
    [Google Scholar]
  63. LinX. WuS. WangQ. ShiY. LiuG. ZhiJ. WangF. Saikosaponin-D reduces H 2 O 2-induced PC12 cell apoptosis by removing ROS and blocking MAPK-dependent oxidative damage.Cell. Mol. Neurobiol.20163681365137510.1007/s10571‑016‑0336‑526961382
    [Google Scholar]
  64. YangF. XiaoX. LeeB.H. VuS. YangW. Yarov-YarovoyV. ZhengJ. The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel.Nat. Commun.201891287910.1038/s41467‑018‑05339‑630038260
    [Google Scholar]
  65. LiX. KangL. LiG. ZengH. ZhangL. LingX. DongH. LiangS. ChenH. Intrathecal leptin inhibits expression of the P2X2/3 receptors and alleviates neuropathic pain induced by chronic constriction sciatic nerve injury.Mol. Pain201391744-8069-9-6510.1186/1744‑8069‑9‑6524325936
    [Google Scholar]
  66. LinJ. LiG. DenX. XuC. LiuS. GaoY. LiuH. ZhangJ. LiX. LiangS. VEGF and its receptor-2 involved in neuropathic pain transmission mediated by P2X2/3 receptor of primary sensory neurons.Brain Res. Bull.201083528429110.1016/j.brainresbull.2010.08.00220705122
    [Google Scholar]
  67. ShiG.B. FanR. ZhangW. YangC. WangQ. SongJ. GaoY. HouM.X. ChenY.F. WangT.C. CaiG.J. Antinociceptive activity of astragaloside IV in the animal model of chronic constriction injury.Behav. Pharmacol.201526543644610.1097/FBP.000000000000014425974189
    [Google Scholar]
  68. MuthuramanA. DiwanV. JaggiA.S. SinghN. SinghD. Ameliorative effects of Ocimum sanctum in sciatic nerve transection-induced neuropathy in rats.J. Ethnopharmacol.20081201566210.1016/j.jep.2008.07.04918762236
    [Google Scholar]
  69. AzevedoM.I. PereiraA.F. NogueiraR.B. RolimF.E. BritoG.A.C. WongD.V.T. Lima-JúniorR.C.P. de Albuquerque RibeiroR. ValeM.L. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy.Mol. Pain201391744-8069-9-5310.1186/1744‑8069‑9‑5324152430
    [Google Scholar]
  70. LimE.Y. LeeC. KimY.T. The Antinociceptive potential of Camellia japonica leaf extract,(-)-Epicatechin, and Rutin against chronic constriction injury-induced neuropathic pain in rats.Antioxidants (Basel) 202211241010.3390/antiox1102041035204294
    [Google Scholar]
  71. HaraK. HaranishiY. TeradaT. TakahashiY. NakamuraM. SataT. Effects of intrathecal and intracerebroventricular administration of luteolin in a rat neuropathic pain model.Pharmacol. Biochem. Behav.2014125788410.1016/j.pbb.2014.08.01125196931
    [Google Scholar]
  72. KishoreL. KaurN. SinghR. Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy.Inflammopharmacology2018264993100310.1007/s10787‑017‑0416‑229159712
    [Google Scholar]
  73. HashemzaeiM. AbdollahzadehM. IranshahiM. GolmakaniE. RezaeeR. TabrizianK. Effects of luteolin and luteolin-morphine co-administration on acute and chronic pain and sciatic nerve ligated-induced neuropathy in mice.J. Complement. Integr. Med.20171412016006610.1515/jcim‑2016‑006628282295
    [Google Scholar]
  74. ChangS. LiX. ZhengY. ShiH. ZhangD. JingB. ChenZ. QianG. ZhaoG. Kaempferol exerts a neuroprotective effect to reduce neuropathic pain through TLR4 / NF-ĸB signaling pathway.Phytother. Res.20223641678169110.1002/ptr.739635234314
    [Google Scholar]
  75. WangH. QuanJ. DengY. ChenJ. ZhangK. QuZ. Utilizing network pharmacological analysis to investigate the key targets and mechanisms of kaempferol against oxaliplatin-induced neurotoxicity.Toxicol. Mech. Methods2023331384610.1080/15376516.2022.206953135574720
    [Google Scholar]
  76. CaiX. XuX. Investigation of the key targets and pharmacological mechanisms of rhamnocitrin against oxaliplatin-induced neuropathic pain based on network pharmacology approach and experimental validation.Gen. Physiol. Biophys.202241319120310.4149/gpb_202201535616000
    [Google Scholar]
  77. PokkulaS. ThakurS.R. Icariin ameliorates partial sciatic nerve ligation induced neuropathic pain in rats: an evidence of in silico and in vivo studies.J. Pharm. Pharmacol.202173787488010.1093/jpp/rgab02133822115
    [Google Scholar]
  78. EomS. LeeB.B. LeeS. ParkY. YeomH.D. KimT.H. NamS.H. LeeJ.H. Antioxidative and analgesic effects of Naringin through selective inhibition of transient receptor potential vanilloid member 1.Antioxidants20211116410.3390/antiox1101006435052566
    [Google Scholar]
  79. KandhareA.D. RaygudeK.S. GhoshP. GhuleA.E. BodhankarS.L. Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy.Fitoterapia201283465065910.1016/j.fitote.2012.01.01022343014
    [Google Scholar]
  80. SinghP. BansalS. KuhadA. KumarA. ChopraK. Naringenin ameliorates diabetic neuropathic pain by modulation of oxidative-nitrosative stress, cytokines and MMP-9 levels.Food Funct.20201154548456010.1039/C9FO00881K32400767
    [Google Scholar]
  81. ZhouY. CaiS. MoutalA. YuJ. GómezK. MaduraC.L. ShanZ. PhamN.Y.N. SerafiniM.J. DorameA. ScottD.D. François-MoutalL. Perez-MillerS. PatekM. KhannaM. KhannaR. The natural flavonoid naringenin elicits analgesia through inhibition of NaV1.8 voltage-gated sodium channels.ACS Chem. Neurosci.201910124834484610.1021/acschemneuro.9b0054731697467
    [Google Scholar]
  82. XuY.Q. JinS.J. LiuN. LiY.X. ZhengJ. MaL. DuJ. ZhouR. ZhaoC.J. NiuY. SunT. YuJ.Q. Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway.Biochem. Biophys. Res. Commun.2014451456857310.1016/j.bbrc.2014.08.02525128276
    [Google Scholar]
  83. ÇankalD. AkkolE.K. KılınçY. İlhanM. CapassoR. An effective phytoconstituent aconitine: A realistic approach for the treatment of trigeminal neuralgia.Mediators Inflamm.202120211810.1155/2021/667606333935591
    [Google Scholar]
  84. KangD.W. MoonJ.Y. ChoiJ.G. KangS.Y. RyuY. ParkJ.B. LeeJ.H. KimH.W. Antinociceptive profile of levo-tetrahydropalmatine in acute and chronic pain mice models: Role of spinal sigma-1 receptor.Sci. Rep.2016613785010.1038/srep3785027910870
    [Google Scholar]
  85. YangY. LiY.X. WangH.L. JinS.J. ZhouR. QiaoH.Q. DuJ. WuJ. ZhaoC.J. NiuY. SunT. YuJ.Q. Oxysophocarpine ameliorates carrageenan-induced inflammatory pain via inhibiting expressions of prostaglandin E2 and cytokines in mice.Planta Med.2015811079179710.1055/s‑0035‑154615326132856
    [Google Scholar]
  86. GongS.S. LiY.X. ZhangM.T. DuJ. MaP.S. YaoW.X. ZhouR. NiuY. SunT. YuJ.Q. Neuroprotective effect of matrine in mouse model of vincristine-induced neuropathic pain.Neurochem. Res.201641113147315910.1007/s11064‑016‑2040‑827561290
    [Google Scholar]
  87. WangS. LiA. GuoS. Ligustrazine attenuates neuropathic pain by inhibition of JAK/STAT3 pathway in a rat model of chronic constriction injury.Pharmazie201671740841229441918
    [Google Scholar]
  88. JiangW. FanW. GaoT. LiT. YinZ. GuoH WangL. HanY. JiangJD. Analgesic mechanism of sinomenine against chronic pain.Pain Res Manag.20202020187686210.1155/2020/187686232454918
    [Google Scholar]
  89. LiM. WangC. Traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the fruit of Tetradium ruticarpum: A review.J. Ethnopharmacol.202026311323110.1016/j.jep.2020.11323132758577
    [Google Scholar]
  90. ZhaoH. LuoF. LiH. ZhangL. YiY. WanJ. Antinociceptive effect of tetrandrine on LPS-induced hyperalgesia via the inhibition of IKKβ phosphorylation and the COX-2/PGE2 pathway in mice.PLoS One201494e9458610.1371/journal.pone.009458624722146
    [Google Scholar]
  91. FangY. ZhangT. LiL. ChenS. WangL. TangJ. LiaoY. Nicotine decreases nerve regeneration and pain behaviors via PTEN and downstream inflammation-related pathway in two rat nerve injury models.eNeuro2023109ENEURO.0185-23.202310.1523/ENEURO.0185‑23.202337620149
    [Google Scholar]
  92. RanjithkumarR. AlhadidiQ. ShahZ.A. RamanathanM. Tribulusterine containing Tribulus terrestris extract exhibited neuroprotection through attenuating stress kinases mediated inflammatory mechanism: in vitro and in vivo studies.Neurochem. Res.20194451228124210.1007/s11064‑019‑02768‑730863969
    [Google Scholar]
  93. LiuH.Y. LiY.X. HaoY.J. WangH.Y. DaiX.Y. SunT. YuJ.Q. Effects of oxymatrine on the neuropathic pain induced by chronic constriction injury in mice.CNS Neurosci. Ther.201218121030103210.1111/cns.1202623164255
    [Google Scholar]
  94. HouM. WangR. ZhaoS. WangZ. Ginsenosides in Panax genus and their biosynthesis.Acta Pharm. Sin. B20211171813183410.1016/j.apsb.2020.12.01734386322
    [Google Scholar]
  95. TanB. WuX. YuJ. ChenZ. The Role of Saponins in the treatment of neuropathic pain.Molecules20222712395610.3390/molecules2712395635745079
    [Google Scholar]
  96. ChenZ. LiuL. GaoC. ChenW. VongC.T. YaoP. YangY. LiX. TangX. WangS. WangY. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine.J. Ethnopharmacol.202025811289510.1016/j.jep.2020.11289532330511
    [Google Scholar]
  97. YiT. FanL.L. ChenH.L. ZhuG.Y. SuenH.M. TangY.N. ZhuL. ChuC. ZhaoZ.Z. ChenH.B. Comparative analysis of diosgenin in Dioscorea species and related medicinal plants by UPLC-DAD-MS.BMC Biochem.20141511910.1186/1471‑2091‑15‑1925107333
    [Google Scholar]
  98. ZhouS. HuangJ. LiK. ShuaigangD.U. YangB. GuoZ. Genistein attenuates LPS-induced inflammatory injury of rat dorsal root ganglion neuron via down-regulating HDAC6.Zhong Nan Da Xue Xue Bao Yi Xue Ban.202247670771610.11817/j.issn.1672‑7347.2022.210428.35837770
    [Google Scholar]
  99. WuJ.Y. LiY. LiB.L. WangY.G. CuiW.G. ZhouW.H. ZhaoX. Evidence for 5-HT 1A receptor-mediated antiallodynic and antihyperalgesic effects of apigenin in mice suffering from mononeuropathy.Br. J. Pharmacol.2021178194005402510.1111/bph.1557434030210
    [Google Scholar]
  100. BertozziM.M. RossaneisA.C. FattoriV. Longhi-BalbinotD.T. FreitasA. CunhaF.Q. Alves-FilhoJ.C. CunhaT.M. CasagrandeR. VerriW.A.Jr Diosmin reduces chronic constriction injury-induced neuropathic pain in mice.Chem. Biol. Interact.201727318018910.1016/j.cbi.2017.06.01428625489
    [Google Scholar]
  101. AdamanteG. de AlmeidaA.S. RigoF.K. da Silva SilveiraE. CoelhoY.O. De PráS.D.T. MilioliA.M. CamponogaraC. CasotiR. BellinasoF. DesideriA.V. SantosM.F.C. FerreiraJ. OliveiraS.M. TrevisanG. Diosmetin as a novel transient receptor potential vanilloid 1 antagonist with antinociceptive activity in mice.Life Sci.201921621522610.1016/j.lfs.2018.11.02930447303
    [Google Scholar]
  102. MokhtariT. LuM. El-KenawyA.E.M. Potential anxiolytic and antidepressant-like effects of luteolin in a chronic constriction injury rat model of neuropathic pain: Role of oxidative stress, neurotrophins, and inflammatory factors.Int. Immunopharmacol.202312211052010.1016/j.intimp.2023.11052037478667
    [Google Scholar]
  103. KaurG. BediO. SharmaN. SinghS. DeshmukhR. KumarP. Anti-hyperalgesic and anti-nociceptive potentials of standardized grape seed proanthocyanidin extract against CCI-induced neuropathic pain in rats.J. Basic Clin. Physiol. Pharmacol.201627191710.1515/jbcpp‑2015‑002626378488
    [Google Scholar]
  104. MirshekarM. RoghaniM. KhaliliM. BaluchnejadmojaradT. Arab MoazzenS. Chronic oral pelargonidin alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: Involvement of oxidative stress.Iran. Biomed. J.2010141-2333920683496
    [Google Scholar]
  105. JiangK. ShiJ. ShiJ. Morin alleviates vincristine-induced neuropathic pain via nerve protective effect and inhibition of NF-κB pathway in rats.Cell. Mol. Neurobiol.201939679980810.1007/s10571‑019‑00679‑331011938
    [Google Scholar]
  106. ZhangX.L. CaoX.Y. LaiR.C. XieM.X. ZengW.A. Puerarin relieves paclitaxel-induced neuropathic pain: The role of Nav1. 8 β1 subunit of sensory neurons.Front. Pharmacol.20199151010.3389/fphar.2018.0151030666203
    [Google Scholar]
  107. BayirM.H. YıldızhanK. AltındağF. Effect of Hesperidin on Sciatic Nerve Damage in STZ-Induced Diabetic Neuropathy: Modulation of TRPM2 Channel.Neurotox. Res.202341663864710.1007/s12640‑023‑00657‑037439953
    [Google Scholar]
  108. SemisH.S. KandemirF.M. KaynarO. DoganT. ArikanS.M. The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats.Life Sci.202128712010410.1016/j.lfs.2021.12010434743946
    [Google Scholar]
  109. FoudahA.I. AlqarniM.H. DeviS. SinghA. AlamA. AlamP. SinghS. Analgesic action of catechin on chronic constriction injury–induced neuropathic pain in Sprague–Dawley rats.Front. Pharmacol.20221389507910.3389/fphar.2022.89507936034867
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249312031240803190651
Loading
/content/journals/cnsamc/10.2174/0118715249312031240803190651
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test