Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Liposomal drug delivery methods are becoming increasingly viable options for improving treatment outcomes for neurological illnesses. These systems provide a flexible framework for the formulation of medications intended for delivery to the brain, protecting the medication from enzymatic breakdown and enhancing its bioavailability. To maximize liposome-drug interactions and improve brain-targeted delivery efficiency, a variety of formulation strategies are used, such as surface modification and remote loading. By utilizing various pathways to cross the blood-brain barrier (BBB), such as passive diffusion and receptor-mediated transcytosis, liposomes facilitate the effective transport of therapeutic drugs to the brain parenchyma. Liposomal formulations show potential for targeted drug delivery, reducing off-target effects, and improving treatment efficacy in neurological conditions like Parkinson's disease, Alzheimer's disease, stroke, multiple sclerosis, and brain cancers. For instance, in Parkinson's disease, liposomal delivery of neuroprotective agents can help maintain dopamine levels and protect dopaminergic neurons. In Alzheimer's disease, liposomes can be engineered to deliver drugs that reduce amyloid-beta plaques or tau tangles. For brain cancer, liposomal chemotherapy can target tumor cells more precisely while minimizing damage to surrounding healthy tissue. In stroke, liposomal delivery of neuroprotective agents can reduce the extent of brain damage, while in multiple sclerosis, liposomes can be used to deliver drugs that modulate the immune response. However, the clinical translation of liposomal drug delivery systems for brain diseases faces challenges related to scalability, stability, and immunogenicity, in addition to regulatory barriers. Scalability issues arise from the complex manufacturing processes required to produce liposomes consistently on a large scale. Stability concerns involve maintaining the integrity of liposomes during storage and after administration. Immunogenicity can be a problem if the liposomes trigger an unwanted immune response, potentially reducing their effectiveness or causing adverse effects. To overcome these obstacles, multidisciplinary cooperation is essential. Collaboration among materials scientists, pharmacologists, neurologists, and regulatory experts can drive the development of more robust liposomal formulations. Continuous research is needed to refine liposome designs, such as by optimizing lipid composition, surface charge, and size to improve stability and targeting capabilities. Advanced techniques like PEGylation (coating liposomes with polyethylene glycol) can help reduce immunogenicity and extend circulation time in the bloodstream. Despite these challenges, liposomal methods present intriguing prospects for transforming medication administration to the brain and offering effective treatments for neurological illnesses. The development of more sophisticated liposomal technologies, combined with a deeper understanding of their mechanisms of action, could lead to significant breakthroughs in the treatment of neurological disorders. For example, research into ligand-targeted liposomes, which use specific molecules to bind to receptors on the BBB, holds promise for enhancing delivery specificity and efficiency. To fully realize the therapeutic promise of these novel drug delivery systems, further advancements in liposomal technologies and a deeper understanding of their mechanisms are necessary. This includes not only technical improvements but also comprehensive preclinical and clinical studies to evaluate safety, efficacy, and long-term effects. As our knowledge expands and technology progresses, liposomal drug delivery could become a cornerstone of neurological disease treatment, providing new hope for patients with previously intractable conditions.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249319942240903134353
2024-09-19
2025-09-18
Loading full text...

Full text loading...

References

  1. Vijay Kumar Kapil Kumar IkramA.J. Aparna Joshi Deepak Teotia A comprehensive review on liposomes: A vesicular system for drug delivery.GSC Biol. Pharm. Sci.202218233133710.30574/gscbps.2022.18.2.0084
    [Google Scholar]
  2. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  3. Gonzalez GomezA. HosseinidoustZ. Liposomes for antibiotic encapsulation and delivery.ACS Infect. Dis.20206589690810.1021/acsinfecdis.9b0035732208673
    [Google Scholar]
  4. JuhairiyahF. de LangeE.C.M. Understanding drug delivery to the brain using liposome-based strategies: Studies that provide mechanistic insights are essential.AAPS J.202123611410.1208/s12248‑021‑00648‑z34713363
    [Google Scholar]
  5. PoustforooshA. NematollahiM.H. HashemipourH. PardakhtyA. Recent advances in Bio-conjugated nanocarriers for crossing the Blood-Brain Barrier in (pre-)clinical studies with an emphasis on vesicles.J. Control. Release202234377779710.1016/j.jconrel.2022.02.01535183653
    [Google Scholar]
  6. Markowicz-PiaseckaM. MarkiewiczA. DarłakP. SikoraJ. AdlaS.K. BaginaS. HuttunenK.M. Current chemical, biological, and physiological views in the development of successful brain-targeted pharmaceutics.Neurotherapeutics202219394297610.1007/s13311‑022‑01228‑535391662
    [Google Scholar]
  7. PandianS.R.K. VijayakumarK.K. MurugesanS. KunjiappanS. Liposomes: An emerging carrier for targeting Alzheimer’s and Parkinson’s diseases.Heliyon202286e0957510.1016/j.heliyon.2022.e0957535706935
    [Google Scholar]
  8. SchnyderA. HuwylerJ. Drug transport to brain with targeted liposomes.NeuroRx2005219910710.1602/neurorx.2.1.9915717061
    [Google Scholar]
  9. MicheliM.R. BovaR. MaginiA. PolidoroM. EmilianiC. Lipid-based nanocarriers for CNS-targeted drug delivery.Recent Patents CNS Drug Discov.201271718610.2174/15748891279884224122283231
    [Google Scholar]
  10. JoshiS. Singh-MoonR.P. EllisJ.A. ChaudhuriD.B. WangM. ReifR. BruceJ.N. BigioI.J. StraubingerR.M. Cerebral hypoperfusion-assisted intra-arterial deposition of liposomes in normal and glioma-bearing rats.Neurosurgery20157619210010.1227/NEU.000000000000055225525695
    [Google Scholar]
  11. JoshiS. Singh-MoonR. WangM. ChaudhuriD.B. EllisJ.A. BruceJ.N. BigioI.J. StraubingerR.M. Cationic surface charge enhances early regional deposition of liposomes after intracarotid injection.J. Neurooncol.2014120348949710.1007/s11060‑014‑1584‑125195130
    [Google Scholar]
  12. StenehjemD.D. HartzA.M.S. BauerB. AndersonG.W. Novel and emerging strategies in drug delivery for overcoming the blood-brain barrier.Future Med. Chem.2009191623164110.4155/fmc.09.13721425983
    [Google Scholar]
  13. GabathulerR. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases.Neurobiol. Dis.2010371485710.1016/j.nbd.2009.07.02819664710
    [Google Scholar]
  14. BanksW.A. From blood–brain barrier to blood–brain interface: New opportunities for CNS drug delivery.Nat. Rev. Drug Discov.201615427529210.1038/nrd.2015.2126794270
    [Google Scholar]
  15. ElBayoumiT.A. TorchilinV.P. Current trends in liposome research.Methods in Molecular BiologyTotowa, NJHumana Press201060512710.1007/978‑1‑60327‑360‑2_1
    [Google Scholar]
  16. ForlenzaO.V. DinizB.S. GattazW.F. Diagnosis and biomarkers of predementia in Alzheimer’s disease.BMC Med.2010818910.1186/1741‑7015‑8‑8921176189
    [Google Scholar]
  17. BertramL. TanziR.E. The genetic epidemiology of neurodegenerative disease.J. Clin. Invest.200511561449145710.1172/JCI2476115931380
    [Google Scholar]
  18. FerriC.P. PrinceM. BrayneC. BrodatyH. FratiglioniL. GanguliM. HallK. HasegawaK. HendrieH. HuangY. JormA. MathersC. MenezesP.R. RimmerE. ScazufcaM. Alzheimer’s Disease International Global prevalence of dementia: A Delphi consensus study.Lancet200536695032112211710.1016/S0140‑6736(05)67889‑016360788
    [Google Scholar]
  19. CitronM. Alzheimer’s disease: Strategies for disease modification.Nat. Rev. Drug Discov.20109538739810.1038/nrd289620431570
    [Google Scholar]
  20. LivingstonG. HuntleyJ. SommerladA. AmesD. BallardC. BanerjeeS. BrayneC. BurnsA. Cohen-MansfieldJ. CooperC. CostafredaS.G. DiasA. FoxN. GitlinL.N. HowardR. KalesH.C. KivimäkiM. LarsonE.B. OgunniyiA. OrgetaV. RitchieK. RockwoodK. SampsonE.L. SamusQ. SchneiderL.S. SelbækG. TeriL. MukadamN. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission.Lancet20203961024841344610.1016/S0140‑6736(20)30367‑632738937
    [Google Scholar]
  21. LleóA. GreenbergS.M. GrowdonJ.H. Current pharmacotherapy for Alzheimer’s disease.Annu. Rev. Med.200657151353310.1146/annurev.med.57.121304.13144216409164
    [Google Scholar]
  22. MutluN.B. DeğimZ. YılmazŞ. EşsizD. NacarA. New perspective for the treatment of Alzheimer diseases: Liposomal rivastigmine formulations.Drug Dev. Ind. Pharm.201137777578910.3109/03639045.2010.54126221231901
    [Google Scholar]
  23. SpuchC. AntequeraD. PorteroA. OriveG. HernándezR.M. MolinaJ.A. Bermejo-ParejaF. PedrazJ.L. CarroE. The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer’s disease.Biomaterials201031215608561810.1016/j.biomaterials.2010.03.04220430437
    [Google Scholar]
  24. CaritaA.C. EloyJ.O. ChorilliM. LeeR.J. LeonardiG.R. Recent advances and perspectives in liposomes for cutaneous drug delivery.Curr. Med. Chem.201825560663510.2174/092986732466617100912015428990515
    [Google Scholar]
  25. JinM. ShepardsonN. YangT. ChenG. WalshD. SelkoeD.J. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration.Proc. Natl. Acad. Sci. USA2011108145819582410.1073/pnas.101703310821421841
    [Google Scholar]
  26. AllinquantB. ClamagirandC. PotierM.C. Role of cholesterol metabolism in the pathogenesis of Alzheimerʼs disease.Curr. Opin. Clin. Nutr. Metab. Care201417431932310.1097/MCO.000000000000006924839952
    [Google Scholar]
  27. ViolaK.L. KleinW.L. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis.Acta Neuropathol.2015129218320610.1007/s00401‑015‑1386‑325604547
    [Google Scholar]
  28. HampelH. MesulamM.M. CuelloA.C. FarlowM.R. GiacobiniE. GrossbergG.T. KhachaturianA.S. VergalloA. CavedoE. SnyderP.J. KhachaturianZ.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease.Brain201814171917193310.1093/brain/awy13229850777
    [Google Scholar]
  29. NixonR.A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer’s disease: inseparable partners in a multifactorial disease.FASEB J.20173172729274310.1096/fj.20170035928663518
    [Google Scholar]
  30. ZetterbergH. MattssonN. Understanding the cause of sporadic Alzheimer’s disease.Expert Rev. Neurother.201414662163010.1586/14737175.2014.91574024852227
    [Google Scholar]
  31. BarageS.H. SonawaneK.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease.Neuropeptides20155211810.1016/j.npep.2015.06.00826149638
    [Google Scholar]
  32. ZengZ. Recent advances in PEG–PLA block copolymer nanoparticles.Int. J. Nanomedicine2010Nov105710.2147/IJN.S14912
    [Google Scholar]
  33. VaradharajanA. DavisA.D. GhoshA. JagtapT. XavierA. MenonA.J. RoyD. GandhiS. GregorT. Guidelines for pharmacotherapy in Alzheimer’s disease – A primer on FDA-approved drugs.J. Neurosci. Rural Pract.202314456657310.25259/JNRP_356_202338059250
    [Google Scholar]
  34. LiuZ. GaoX. KangT. JiangM. MiaoD. GuG. HuQ. SongQ. YaoL. TuY. ChenH. JiangX. ChenJ. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide.Bioconjug. Chem.2013246997100710.1021/bc400055h23718945
    [Google Scholar]
  35. GobbiM. ReF. CanoviM. BeegM. GregoriM. SesanaS. SonninoS. BrogioliD. MusicantiC. GascoP. SalmonaM. MasseriniM.E. Lipid-based nanoparticles with high binding affinity for amyloid-β1–42 peptide.Biomaterials201031256519652910.1016/j.biomaterials.2010.04.04420553982
    [Google Scholar]
  36. PederzoliF. RuoziB. DuskeyJ. HagmeyerS. SauerA.K. GrabruckerS. CoelhoR. OddoneN. OttonelliI. DainiE. ZoliM. VandelliM.A. TosiG. GrabruckerA.M. Nanomedicine against Aβ aggregation by β–sheet breaker peptide delivery: In vitro evidence.Pharmaceutics2019111157210.3390/pharmaceutics1111057231683907
    [Google Scholar]
  37. ZhangH. HaoC. QuA. SunM. XuL. XuC. KuangH. Light-induced chiral iron copper selenide nanoparticles prevent β-amyloidopathy in vivo.Angew. Chem. Int. Ed.202059187131713810.1002/anie.20200202832067302
    [Google Scholar]
  38. YiannopoulouK.G. PapageorgiouS.G. Current and future treatments in alzheimer disease: An update.J. Cent. Nerv. Syst. Dis.20201210.1177/117957352090739732165850
    [Google Scholar]
  39. Manvi KhanM.I. Badruddeen AkhtarJ. AhmadM. SiddiquiZ. FatimaG. Role of plant bioactive as diuretics: General considerations and mechanism of diuresis.Curr. Hypertens. Rev.2023192799210.2174/157340211966623061211522037309769
    [Google Scholar]
  40. PardridgeW.M. BoadoR.J. Reengineering biopharmaceuticals for targeted delivery across the blood–brain barrier.Methods in EnzymologyElsevier201250326929210.1016/B978‑0‑12‑396962‑0.00011‑2
    [Google Scholar]
  41. GuptaG.L. SamantN.P. Current druggable targets for therapeutic control of Alzheimer’s disease.Contemp. Clin. Trials202110910654910.1016/j.cct.2021.10654934464763
    [Google Scholar]
  42. RossC. TaylorM. FullwoodN. AllsopD. Liposome delivery systems for the treatment of Alzheimer’s disease.Int. J. Nanomed.2018138507852210.2147/IJN.S183117
    [Google Scholar]
  43. DunnB. SteinP. CavazzoniP. Approval of aducanumab for alzheimer disease—the FDA’s perspective.JAMA Intern. Med.2021181101276127810.1001/jamainternmed.2021.460734254984
    [Google Scholar]
  44. PatelR.J. Liposomes as carrier for drug delivery in Alzheimer’s disease.Alzheimer’s Disease and Advanced Drug Delivery Strategies.Elsevier202415317910.1016/B978‑0‑443‑13205‑6.00008‑X
    [Google Scholar]
  45. RubinR. Recently approved alzheimer drug raises questions that might never be answered.JAMA2021326646947210.1001/jama.2021.1155834287610
    [Google Scholar]
  46. FilipiC.J. LehmanG.A. RothsteinR.I. RaijmanI. StiegmannG.V. WaringJ.P. HunterJ.G. GostoutC.J. EdmundowiczS.A. DunneD.P. WatsonP.A. CornetD.A. Transoral, flexible endoscopic suturing for treatment of GERD: A multicenter trial.Gastrointest. Endosc.200153441642210.1067/mge.2001.11350211275879
    [Google Scholar]
  47. AtriA. Current and future treatments in alzheimer’s disease.Semin. Neurol.201939222724010.1055/s‑0039‑167858130925615
    [Google Scholar]
  48. ZhengX. ShaoX. ZhangC. TanY. LiuQ. WanX. ZhangQ. XuS. JiangX. Intranasal H102 peptide-loaded liposomes for brain delivery to treat alzheimer’s disease.Pharm. Res.201532123837384910.1007/s11095‑015‑1744‑926113236
    [Google Scholar]
  49. MohapatraP. SinghD. SahooS.K. PEGylated nanoparticles as a versatile drug delivery system.Nanoengineering of Biomaterials.1st ed JanaS. JanaS. Wiley202230934110.1002/9783527832095.ch10
    [Google Scholar]
  50. NguyenT.T. NguyenT.T.D. NguyenT.K.O. VoT.K. VoV.G. Advances in developing therapeutic strategies for Alzheimer’s disease.Biomed. Pharmacother.202113911162310.1016/j.biopha.2021.11162333915504
    [Google Scholar]
  51. MatthewsK.A. BrennerM.J. BrennerA.C. Evaluation of the efficacy and safety of a hydrochlorothiazide to chlorthalidone medication change in veterans with hypertension.Clin. Ther.20133591423143010.1016/j.clinthera.2013.07.43023993697
    [Google Scholar]
  52. BindaA. MuranoC. RivoltaI. Innovative therapies and nanomedicine applications for the treatment of Alzheimer’s disease: A state-of-the-art (2017–2020).Int. J. Nanomed.2020156113613510.2147/IJN.S231480
    [Google Scholar]
  53. HashimotoM. KawaharaK. Bar-OnP. RockensteinE. CrewsL. MasliahE. The Role of α-synuclein assembly and metabolism in the pathogenesis of Lewy body disease.J. Mol. Neurosci.200424334335210.1385/JMN:24:3:34315655259
    [Google Scholar]
  54. ChoonaraY.E. PillayV. Du ToitL.C. ModiG. NaidooD. NdesendoV.M.K. SibamboS.R. Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders.Int. J. Mol. Sci.20091062510255710.3390/ijms1006251019582217
    [Google Scholar]
  55. MdS. HaqueS. SahniJ.K. BabootaS. AliJ. New non-oral drug delivery systems for Parkinson’s disease treatment.Expert Opin. Drug Deliv.20118335937410.1517/17425247.2011.55661621314492
    [Google Scholar]
  56. BenjaminE.J. ViraniS.S. CallawayC.W. ChamberlainA.M. ChangA.R. ChengS. ChiuveS.E. CushmanM. DellingF.N. DeoR. de FerrantiS.D. FergusonJ.F. FornageM. GillespieC. IsasiC.R. JiménezM.C. JordanL.C. JuddS.E. LacklandD. LichtmanJ.H. LisabethL. LiuS. LongeneckerC.T. LutseyP.L. MackeyJ.S. MatcharD.B. MatsushitaK. MussolinoM.E. NasirK. O’FlahertyM. PalaniappanL.P. PandeyA. PandeyD.K. ReevesM.J. RitcheyM.D. RodriguezC.J. RothG.A. RosamondW.D. SampsonU.K.A. SatouG.M. ShahS.H. SpartanoN.L. TirschwellD.L. TsaoC.W. VoeksJ.H. WilleyJ.Z. WilkinsJ.T. WuJ.H.Y. AlgerH.M. WongS.S. MuntnerP. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics—2018 update: A report from the american heart association.Circulation201813712e67e49210.1161/CIR.000000000000055829386200
    [Google Scholar]
  57. MoskowitzM.A. LoE.H. IadecolaC. The science of stroke: Mechanisms in search of treatments.Neuron201067218119810.1016/j.neuron.2010.07.00220670828
    [Google Scholar]
  58. ChenL. GaoX. The application of nanoparticles for neuroprotection in acute ischemic stroke.Ther. Deliv.201781091592810.4155/tde‑2017‑002328944741
    [Google Scholar]
  59. KhanA.R. YangX. FuM. ZhaiG. Recent progress of drug nanoformulations targeting to brain.J. Control. Release2018291376410.1016/j.jconrel.2018.10.00430308256
    [Google Scholar]
  60. FrézardF. Liposomes: From biophysics to the design of peptide vaccines.Braz. J. Med. Biol. Res.199932218118910.1590/S0100‑879X199900020000610347753
    [Google Scholar]
  61. KyleS. SahaS. Nanotechnology for the detection and therapy of stroke.Adv. Healthc. Mater.20143111703172010.1002/adhm.20140000924692428
    [Google Scholar]
  62. HankeyG.J. Stroke.Lancet20173891006964165410.1016/S0140‑6736(16)30962‑X27637676
    [Google Scholar]
  63. SaccoR.L. KasnerS.E. BroderickJ.P. CaplanL.R. ConnorsJ.J.B. CulebrasA. ElkindM.S.V. GeorgeM.G. HamdanA.D. HigashidaR.T. HohB.L. JanisL.S. KaseC.S. KleindorferD.O. LeeJ.M. MoseleyM.E. PetersonE.D. TuranT.N. ValderramaA.L. VintersH.V. American Heart Association Stroke Council, Council on Cardiovascular Surgery and Anesthesia Council on Cardiovascular Radiology and Intervention Council on Cardiovascular and Stroke Nursing Council on Epidemiology and Prevention Council on Peripheral Vascular Disease Council on Nutrition, Physical Activity and Metabolism An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association.Stroke20134472064208910.1161/STR.0b013e318296aeca23652265
    [Google Scholar]
  64. MayerS.A. RinconF. Treatment of intracerebral haemorrhage.Lancet Neurol.200541066267210.1016/S1474‑4422(05)70195‑216168935
    [Google Scholar]
  65. MosconiM.G. PaciaroniM. Treatments in ischemic stroke: Current and future.Eur. Neurol.202285534936610.1159/00052582235917794
    [Google Scholar]
  66. FukutaT. YanagidaY. AsaiT. OkuN. Co-administration of liposomal fasudil and tissue plasminogen activator ameliorated ischemic brain damage in occlusion model rats prepared by photochemically induced thrombosis.Biochem. Biophys. Res. Commun.2018495187387710.1016/j.bbrc.2017.11.10729162447
    [Google Scholar]
  67. AndersonC.S. RobinsonT. LindleyR.I. ArimaH. LavadosP.M. LeeT.H. BroderickJ.P. ChenX. ChenG. SharmaV.K. KimJ.S. ThangN.H. CaoY. ParsonsM.W. LeviC. HuangY. OlavarríaV.V. DemchukA.M. BathP.M. DonnanG.A. MartinsS. Pontes-NetoO.M. SilvaF. RicciS. RoffeC. PandianJ. BillotL. WoodwardM. LiQ. WangX. WangJ. ChalmersJ. ENCHANTED Investigators and Coordinators Low-dose versus standard-dose intravenous alteplase in acute ischemic stroke.N. Engl. J. Med.2016374242313232310.1056/NEJMoa151551027161018
    [Google Scholar]
  68. FernandesL.F. BruchG.E. MassensiniA.R. FrézardF. Recent advances in the therapeutic and diagnostic use of liposomes and carbon nanomaterials in ischemic stroke.Front. Neurosci.20181245310.3389/fnins.2018.0045330026685
    [Google Scholar]
  69. ThomallaG. SimonsenC.Z. BoutitieF. AndersenG. BerthezeneY. ChengB. CheripelliB. ChoT.H. FazekasF. FiehlerJ. FordI. GalinovicI. GellissenS. GolsariA. GregoriJ. GüntherM. GuibernauJ. HäuslerK.G. HennericiM. KemmlingA. MarstrandJ. ModrauB. NeebL. Perez de la OssaN. PuigJ. RinglebP. RoyP. ScheelE. SchonewilleW. SerenaJ. SunaertS. VillringerK. WoutersA. ThijsV. EbingerM. EndresM. FiebachJ.B. LemmensR. MuirK.W. NighoghossianN. PedrazaS. GerloffC. WAKE-UP Investigators MRI-guided thrombolysis for stroke with unknown time of onset.N. Engl. J. Med.2018379761162210.1056/NEJMoa180435529766770
    [Google Scholar]
  70. ImaizumiS. WoolworthV. KinouchiH. ChenS.F. FishmanR.A. ChanP.H. Liposome-entrapped superoxide dismutase ameliorates infarct volume in focal cerebral ischaemia.Brain Edema VIII. ReulenH-J. BaethmannA. FenstermacherJ. MarmarouA. SpatzM. ViennaSpringer Vienna199023623810.1007/978‑3‑7091‑9115‑6_79
    [Google Scholar]
  71. BasuB. PrajapatiB. DuttaA. PaliwalH. Medical application of liposomes.J. Explor. Res. Pharmacol.202491132210.14218/JERP.2023.00002
    [Google Scholar]
  72. LeachJ.K. PattersonE. O’RearE.A. Distributed intraclot thrombolysis: Mechanism of accelerated thrombolysis with encapsulated plasminogen activators.J. Thromb. Haemost.2004291548155510.1111/j.1538‑7836.2004.00884.x15333029
    [Google Scholar]
  73. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int. J. Nanomedicine201510Feb97599910.2147/IJN.S6886125678787
    [Google Scholar]
  74. IshiiT. AsaiT. OyamaD. AgatoY. YasudaN. FukutaT. ShimizuK. MinaminoT. OkuN. Treatment of cerebral ischemia-reperfusion injury with PEGylated liposomes encapsulating FK506.FASEB J.20132741362137010.1096/fj.12‑22132523241312
    [Google Scholar]
  75. ThomasR.G. KimJ. KimJ. YoonJ. ChoiK.H. JeongY.Y. Treatment of ischemic stroke by atorvastatin-loaded pegylated liposome.Transl. Stroke Res.202415238839810.1007/s12975‑023‑01125‑936639607
    [Google Scholar]
  76. ZhaoY.Z. LinM. LinQ. YangW. YuX.C. TianF.R. MaoK.L. YangJ.J. LuC.T. WongH.L. Intranasal delivery of bFGF with nanoliposomes enhances in vivo neuroprotection and neural injury recovery in a rodent stroke model.J. Control. Release201622416517510.1016/j.jconrel.2016.01.01726774220
    [Google Scholar]
  77. ChungG.Y. ShimK.H. KimH.J. MinS.K. ShinH.S. Chitosan-coated C-phycocyanin liposome for extending the neuroprotective time window against ischemic brain stroke.Curr. Pharm. Des.201824171859186410.2174/138161282466618051512354329766794
    [Google Scholar]
  78. TieboschI.A.C.W. CrielaardB.J. BoutsM.J.R.J. ZwartbolR. Salas-PerdomoA. LammersT. PlanasA.M. StormG. DijkhuizenR.M. Combined treatment with recombinant tissue plasminogen activator and dexamethasone phosphate-containing liposomes improves neurological outcome and restricts lesion progression after embolic stroke in rats.J. Neurochem.2012123s2Suppl. 2657410.1111/j.1471‑4159.2012.07945.x23050644
    [Google Scholar]
  79. IshiiT. AsaiT. FukutaT. OyamaD. YasudaN. AgatoY. ShimizuK. MinaminoT. OkuN. A single injection of liposomal asialo-erythropoietin improves motor function deficit caused by cerebral ischemia/reperfusion.Int. J. Pharm.20124391-226927410.1016/j.ijpharm.2012.09.02622989979
    [Google Scholar]
  80. ZhaoY. JiangY. LvW. WangZ. LvL. WangB. LiuX. LiuY. HuQ. SunW. XuQ. XinH. GuZ. Dual targeted nanocarrier for brain ischemic stroke treatment.J. Control. Release2016233647110.1016/j.jconrel.2016.04.03827142584
    [Google Scholar]
  81. XingC. LevchenkoT. GuoS. StinsM. TorchilinV.P. LoE.H. Delivering minocycline into brain endothelial cells with liposome-based technology.J. Cereb. Blood Flow Metab.201232698398810.1038/jcbfm.2012.4822491155
    [Google Scholar]
  82. Ramos-CabrerP. AgullaJ. ArgibayB. Pérez-MatoM. CastilloJ. Serial MRI study of the enhanced therapeutic effects of liposome-encapsulated citicoline in cerebral ischemia.Int. J. Pharm.20114051-222823310.1016/j.ijpharm.2010.12.01421168478
    [Google Scholar]
  83. PengT. BrittonG.L. KimH. CattanoD. AronowskiJ. GrottaJ. McPhersonD.D. HuangS.L. Therapeutic time window and dose dependence of xenon delivered via echogenic liposomes for neuroprotection in stroke.CNS Neurosci. Ther.2013191077378410.1111/cns.1215923981565
    [Google Scholar]
  84. ShimboD. AbumiyaT. ShichinoheH. NakayamaN. KazumataK. HoukinK. Post-ischemic intra-arterial infusion of liposome-encapsulated hemoglobin can reduce ischemia reperfusion injury.Brain Res.20141554596610.1016/j.brainres.2014.01.03824486612
    [Google Scholar]
  85. ZhaoY. XinZ. LiN. ChangS. ChenY. GengL. ChangH. ShiH. ChangY.Z. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism.Free Radic. Biol. Med.201812411110.1016/j.freeradbiomed.2018.05.08229807160
    [Google Scholar]
  86. MontanerJ. Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats.Int. J. Nanomed.2016113035304810.2147/IJN.S107292
    [Google Scholar]
  87. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.03723036225
    [Google Scholar]
  88. PrajapatiB. PatelJ. Lipid-Based Drug Delivery Systems: Principles and Applications.1st edNew YorkJenny Stanford Publishing202310.1201/9781003459811
    [Google Scholar]
  89. NozohouriS. SifatA.E. VaidyaB. AbbruscatoT.J. Novel approaches for the delivery of therapeutics in ischemic stroke.Drug Discov. Today202025353555110.1016/j.drudis.2020.01.00731978522
    [Google Scholar]
  90. MetselaarJ.M. StormG. Liposomes in the treatment of inflammatory disorders.Expert Opin. Drug Deliv.20052346547610.1517/17425247.2.3.46516296768
    [Google Scholar]
  91. LoyseA. ThangarajH. EasterbrookP. FordN. RoyM. ChillerT. GovenderN. HarrisonT.S. BicanicT. Cryptococcal meningitis: Improving access to essential antifungal medicines in resource-poor countries.Lancet Infect. Dis.201313762963710.1016/S1473‑3099(13)70078‑123735626
    [Google Scholar]
  92. PhadkeM.A. PatkiP.S. KulkarniP.S. JadhavS.S. KapreS.V. Pharmacovigilance on MMR vaccine containing L-Zagreb mumps strain.Vaccine20042231-324135413610.1016/j.vaccine.2004.04.00215474702
    [Google Scholar]
  93. AnandaS. NowakA.K. CherL. DowlingA. BrownC. SimesJ. RosenthalM.A. Cooperative Trials Group for Neuro-Oncology (COGNO) Phase 2 trial of temozolomide and pegylated liposomal doxorubicin in the treatment of patients with glioblastoma multiforme following concurrent radiotherapy and chemotherapy.J. Clin. Neurosci.201118111444144810.1016/j.jocn.2011.02.02621813279
    [Google Scholar]
  94. HsuJ.F. ChuS.M. LiaoC.C. WangC.J. WangY.S. LaiM.Y. WangH.C. HuangH.R. TsaiM.H. Nanotechnology and nanocarrier-based drug delivery as the potential therapeutic strategy for glioblastoma multiforme: An update.Cancers202113219510.3390/cancers1302019533430494
    [Google Scholar]
  95. OliveiraM.J.A. VillegasG.M.E. MottaF.D. Fabela-SánchezO. Espinosa-RoaA. FotoranW.L. PeixotoJ.C. TanoF.T. LugãoA.B. VásquezP.A.S. Influence of gamma radiation on Amphotericin B incorporated in PVP hydrogel as an alternative treatment for cutaneous leishmaniosis.Acta Trop.202121510580510.1016/j.actatropica.2020.10580533387468
    [Google Scholar]
  96. JacobsA. GargH. ViardM. RavivY. PuriA. BlumenthalR. HIV-1 envelope glycoprotein-mediated fusion and pathogenesis: Implications for therapy and vaccine development.Vaccine200826243026303510.1016/j.vaccine.2007.12.02618242797
    [Google Scholar]
  97. BhattacharyaS. SaindaneD. PrajapatiB.G. Liposomal drug delivery and its potential impact on cancer research.Anticancer. Agents Med. Chem.202222152671268310.2174/187152062266622041814164035440318
    [Google Scholar]
  98. PaulD. NanjappanS. PrajapatiB.G. KunnambathK. An outlook into liposomal drug delivery of chemotherapeutic agents to combat colorectal cancer.Colorectal Cancer.Elsevier202447548710.1016/B978‑0‑443‑13870‑6.00002‑7
    [Google Scholar]
  99. SercombeL. VeeratiT. MoheimaniF. WuS.Y. SoodA.K. HuaS. Advances and challenges of liposome assisted drug delivery.Front. Pharmacol.2015628610.3389/fphar.2015.0028626648870
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249319942240903134353
Loading
/content/journals/cnsamc/10.2174/0118715249319942240903134353
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test