Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Drug delivery through the blood-brain barrier (BBB) is one of the key challenges in the modern era of medicine due to the highly semipermeable characteristics of BBB that restrict the entry of various drugs into the central nervous system (CNS) for the management of brain disorders. Drugs can be easily incorporated into carbon nanocarriers that can cross the blood-brain barrier. Numerous nanocarriers have been developed, including polymeric nanoparticles, carbon nanoparticles, lipid-based nanoparticles, . Among these, carbon nanostructures could be superior due to their easier BBB penetration and strong biocompatibility. Several CDs (Carbon dots) and CD-ligand conjugates have explored effectively penetrating the BBB, which enables significant progress in using CD-based drug delivery systems (DDS) to manage CNS diseases. Despite the drug delivery applications, they might also be used as a central nervous system (CNS) drug; few of the carbon nanostructures show profound neurodegenerative activity. Further, their impact on neuronal growth and anti- amyloid action is quite interesting. The present study covers diverse carbon nanostructures for brain-targeted drug delivery, exploring a variety of CNS activities. Moreover, it emphasizes recent patents on carbon nanostructures for CNS disorders.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249305383240705045921
2024-07-12
2025-11-04
Loading full text...

Full text loading...

References

  1. AcharA. MyersR. GhoshC. Drug delivery challenges in brain disorders across the blood–brain barrier: Novel methods and future considerations for improved therapy.Biomedicines2021912183410.3390/biomedicines9121834 34944650
    [Google Scholar]
  2. ZhangW. SigdelG. MintzK.J. SevenE.S. ZhouY. WangC. LeblancR.M. Carbon dots: A future blood–brain Barrier penetrating nanomedicine and drug nanocarrier.Int. J. Nanomedicine2021165003501610.2147/IJN.S318732 34326638
    [Google Scholar]
  3. FacciolàA. VisalliG. La MaestraS. CeccarelliM. D’AleoF. NunnariG. PellicanòG.F. Di PietroA. Carbon nanotubes and central nervous system: Environmental risks, toxicological aspects and future perspectives.Environ. Toxicol. Pharmacol.201965233010.1016/j.etap.2018.11.006 30500734
    [Google Scholar]
  4. XuD. LinQ. ChangH.T. Recent advances and sensing applications of carbon dots.Small Methods202044190038710.1002/smtd.201900387
    [Google Scholar]
  5. CaffoM. CurcioA. RajivK. CarusoG. VenzaM. GermanòA. Potential role of carbon nanomaterials in the treatment of malignant brain gliomas.Cancers2023159257510.3390/cancers15092575 37174040
    [Google Scholar]
  6. MohammedJ. DesuP.K. NamrathaJ.R. RaoG.S.N.K. Applications of carbon dots (CDs) in drug delivery.Adv Pharmacol Pharm2023111364510.13189/app.2023.110104
    [Google Scholar]
  7. TabishT.A. NarayanR.J. Crossing the blood–brain barrier with graphene nanostructures.Mater. Today20215139340110.1016/j.mattod.2021.08.013
    [Google Scholar]
  8. PeriniG. PalmieriV. FriggeriG. AugelloA. De SpiritoM. PapiM. Carboxylated graphene quantum dots-mediated photothermal therapy enhances drug-membrane permeability, ROS production, and the immune system recruitment on 3D glioblastoma models.Cancer Nanotechnol.20231411310.1186/s12645‑023‑00168‑9
    [Google Scholar]
  9. CuiL. RenX. SunM. LiuH. XiaL. Carbon dots: Synthesis, properties and applications.Nanomaterials20211112341910.3390/nano11123419 34947768
    [Google Scholar]
  10. HillS. GalanM.C. Fluorescent carbon dots from mono-and polysaccharides: synthesis, properties and applications.Beilstein J. Org. Chem.201713167569310.3762/bjoc.13.67
    [Google Scholar]
  11. TruskewyczA. YinH. HalbergN. LaiD.T.H. BallA.S. TruongV.K. RybickaA.M. ColeI. Carbon dot therapeutic platforms: Administration, distribution, metabolism, excretion, toxicity, and therapeutic potential.Small20221816210634210.1002/smll.202106342 35088534
    [Google Scholar]
  12. ZhaoY. GanL. RenL. LinY. MaC. LinX. Factors influencing the blood-brain barrier permeability.Brain Res.2022178814793710.1016/j.brainres.2022.147937 35568085
    [Google Scholar]
  13. AhlawatJ. Guillama BarrosoG. Masoudi AsilS. AlvaradoM. ArmendarizI. BernalJ. CarabazaX. ChavezS. CruzP. EscalanteV. EstorgaS. FernandezD. LozanoC. MarrufoM. AhmadN. NegreteS. OlveraK. ParadaX. PortilloB. RamirezA. RamosR. RodriguezV. RojasP. RomeroJ. SuarezD. UruetaG. VielS. NarayanM. Nanocarriers as potential drug delivery candidates for overcoming the blood–brain barrier: Challenges and possibilities.ACS Omega2020522125831259510.1021/acsomega.0c01592 32548442
    [Google Scholar]
  14. AshrafizadehM. MohammadinejadR. KailasaS.K. AhmadiZ. AfsharE.G. PardakhtyA. Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: A review.Adv. Colloid Interface Sci.202027810212310.1016/j.cis.2020.102123 32087367
    [Google Scholar]
  15. VinodC. JenaS. Nano-neurotheranostics: Impact of nanoparticles on neural dysfunctions and strategies to reduce toxicity for improved efficacy.Front. Pharmacol.20211261269210.3389/fphar.2021.612692 33841144
    [Google Scholar]
  16. KadryH. NooraniB. CuculloL. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity.Fluids Barriers CNS20201716910.1186/s12987‑020‑00230‑3 33208141
    [Google Scholar]
  17. CornelissenF.M.G. MarkertG. DeutschG. AntonaraM. FaaijN. BartelinkI. NoskeD. VandertopW.P. BenderA. WestermanB.A. Explaining blood–brain barrier permeability of small molecules by integrated analysis of different transport mechanisms.J. Med. Chem.202366117253726710.1021/acs.jmedchem.2c01824 37217193
    [Google Scholar]
  18. Bernardo-CastroS. SousaJ.A. BrásA. CecíliaC. RodriguesB. AlmendraL. MachadoC. SantoG. SilvaF. FerreiraL. SantanaI. Sargento-FreitasJ. Pathophysiology of blood–brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery.Front. Neurol.20201159467210.3389/fneur.2020.594672 33362697
    [Google Scholar]
  19. HennaT.K. RapheyV.R. SankarR. Ameena ShirinV.K. GangadharappaH.V. PramodK. Carbon nanostructures: The drug and the delivery system for brain disorders.Int. J. Pharm.202058711970110.1016/j.ijpharm.2020.119701 32736018
    [Google Scholar]
  20. PanditR. ChenL. GötzJ. The blood-brain barrier: Physiology and strategies for drug delivery.Adv. Drug Deliv. Rev.2020165-16611410.1016/j.addr.2019.11.009 31790711
    [Google Scholar]
  21. DanemanR. PratA. The blood-brain barrier.Cold Spring Harb. Perspect. Biol.201571a02041210.1101/cshperspect.a020412 25561720
    [Google Scholar]
  22. HallC.N. ReynellC. GessleinB. HamiltonN.B. MishraA. SutherlandB.A. O’FarrellF.M. BuchanA.M. LauritzenM. AttwellD. Capillary pericytes regulate cerebral blood flow in health and disease.Nature20145087494556010.1038/nature13165 24670647
    [Google Scholar]
  23. Ferland-McColloughD. SlaterS. RichardJ. ReniC. MangialardiG. Pericytes, an overlooked player in vascular pathobiology.Pharmacol. Ther.2017171304210.1016/j.pharmthera.2016.11.008 27916653
    [Google Scholar]
  24. IadecolaC. The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease.Neuron2017961174210.1016/j.neuron.2017.07.030 28957666
    [Google Scholar]
  25. BrambillaR. The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis.Acta Neuropathol.2019137575778310.1007/s00401‑019‑01980‑7 30847559
    [Google Scholar]
  26. LiuC.Y. YangY. JuW.N. WangX. ZhangH.L. Emerging roles of astrocytes in neuro-vascular unit and the tripartite synapse with emphasis on reactive gliosis in the context of Alzheimer’s disease.Front. Cell. Neurosci.20181219310.3389/fncel.2018.00193 30042661
    [Google Scholar]
  27. KabbaJ.A. XuY. ChristianH. RuanW. ChenaiK. XiangY. ZhangL. SaavedraJ.M. PangT. Microglia: Housekeeper of the central nervous system.Cell. Mol. Neurobiol.2018381537110.1007/s10571‑017‑0504‑2 28534246
    [Google Scholar]
  28. LalatsaA. ButtA.M. Physiology of the blood–brain barrier and mechanisms of transport across the BBB.Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors201810.1016/B978‑0‑12‑812218‑1.00003‑8
    [Google Scholar]
  29. RajsicS. GotheH. BorbaH.H. SroczynskiG. VujicicJ. ToellT. SiebertU. Economic burden of stroke: A systematic review on post-stroke care.Eur. J. Health Econ.201920110713410.1007/s10198‑018‑0984‑0 29909569
    [Google Scholar]
  30. SarvariS. MoakediF. HoneE. SimpkinsJ.W. RenX. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke.Metab. Brain Dis.202035685186810.1007/s11011‑020‑00573‑8 32297170
    [Google Scholar]
  31. OrthmannA. FichtnerI. ZeisigR. Improving the transport of chemotherapeutic drugs across the blood–brain barrier.Expert Rev. Clin. Pharmacol.20114447749010.1586/ecp.11.26 22114857
    [Google Scholar]
  32. MishraN. AshiqueS. GargA. RaiV.K. DuaK. GoyalA. BhattS. Role of siRNA-based nanocarriers for the treatment of neurodegenerative diseases.Drug Discov. Today20222751431144010.1016/j.drudis.2022.01.003 35017085
    [Google Scholar]
  33. EngelhardtB. SorokinL. The blood–brain and the blood–cerebrospinal fluid barriers: Function and dysfunction.Semin. Immunopathol.200931449751110.1007/s00281‑009‑0177‑0
    [Google Scholar]
  34. ZhangS. GanL. CaoF. WangH. GongP. MaC. RenL. LinY. LinX. The barrier and interface mechanisms of the brain barrier, and brain drug delivery.Brain Res. Bull.2022190698310.1016/j.brainresbull.2022.09.017 36162603
    [Google Scholar]
  35. JaleelJ.A. SruthiS. PramodK. Reinforcing nanomedicine using graphene family nanomaterials.J. Control. Release201725521823010.1016/j.jconrel.2017.04.041 28461100
    [Google Scholar]
  36. MallakpourS. SoltanianS. Surface functionalization of carbon nanotubes: Fabrication and applications.RSC Advances2016611110991610993510.1039/C6RA24522F
    [Google Scholar]
  37. PanwarN. SoehartonoA.M. ChanK.K. ZengS. XuG. QuJ. CoquetP. YongK.T. ChenX. Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery.Chem. Rev.2019119169559965610.1021/acs.chemrev.9b00099 31287663
    [Google Scholar]
  38. KafaH. WangJ.T.W. RubioN. VennerK. AndersonG. PachE. BallesterosB. PrestonJ.E. AbbottN.J. Al-JamalK.T. The interaction of carbon nanotubes with an in vitro blood-brain barrier model and mouse brain in vivo.Biomaterials20155343745210.1016/j.biomaterials.2015.02.083 25890741
    [Google Scholar]
  39. VanHandelM. AlizadehD. ZhangL. KatebB. BronikowskiM. ManoharaH. BadieB. Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model.J. Neuroimmunol.20092081-23910.1016/j.jneuroim.2008.12.006 19181390
    [Google Scholar]
  40. SamantaP.N. DasK.K. Noncovalent interaction assisted fullerene for the transportation of some brain anticancer drugs: A theoretical study.J. Mol. Graph. Model.20177218720010.1016/j.jmgm.2017.01.009 28110183
    [Google Scholar]
  41. LiS. AmatD. PengZ. VanniS. RaskinS. De AnguloG. OthmanA.M. GrahamR.M. LeblancR.M. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells.Nanoscale2016837166621666910.1039/C6NR05055G 27714111
    [Google Scholar]
  42. PollakT.A. DrndarskiS. StoneJ.M. DavidA.S. McGuireP. AbbottN.J. The blood–brain barrier in psychosis.Lancet Psychiatry201851799210.1016/S2215‑0366(17)30293‑6 28781208
    [Google Scholar]
  43. LuC.T. ZhaoY.Z. WongH.L. CaiJ. PengL. TianX.Q. Current approaches to enhance CNS delivery of drugs across the brain barriers.Int. J. Nanomedicine201492241225710.2147/IJN.S61288 24872687
    [Google Scholar]
  44. CaiQ. WangL. DengG. LiuJ. ChenQ. ChenZ. Systemic delivery to central nervous system by engineered PLGA nanoparticles.Am. J. Transl. Res.201682749764 27158367
    [Google Scholar]
  45. KooJ. LimC. OhK.T. Recent advances in intranasal administration for brain-targeting delivery: A comprehensive review of lipid-based nanoparticles and stimuli-responsive gel formulations.Int. J. Nanomedicine2024191767180710.2147/IJN.S439181 38414526
    [Google Scholar]
  46. WangJ.T.W. RubioN. KafaH. VenturelliE. FabbroC. Ménard-MoyonC. Da RosT. SosabowskiJ.K. LawsonA.D. RobinsonM.K. PratoM. BiancoA. FestyF. PrestonJ.E. KostarelosK. Al-JamalK.T. Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: Spatial to ultra-structural analyses.J. Control. Release2016224223210.1016/j.jconrel.2015.12.039 26742944
    [Google Scholar]
  47. XieL. LuoY. LinD. XiW. YangX. WeiG. The molecular mechanism of fullerene-inhibited aggregation of Alzheimer’s β-amyloid peptide fragment.Nanoscale20146169752976210.1039/C4NR01005A 25004796
    [Google Scholar]
  48. PodolskiI.Y. KondratjevaE.V. GurinS.S. DumpisM.A. PiotrovskyL.B. Fullerene C60 complexed with poly (N-vinyl-pyrrolidone)(C60/PVP) prevents the disturbance of long-term memory consolidation induced by cycloheximide.Fuller. Nanotub. Carbon Nanostruct.2005121-242142410.1081/FST‑120027201
    [Google Scholar]
  49. HsiehF.Y. ZhilenkovA.V. VoronovI.I. KhakinaE.A. MischenkoD.V. TroshinP.A. HsuS. Water-soluble fullerene derivatives as brain medicine: Surface chemistry determines if they are neuroprotective and antitumor.ACS Appl. Mater. Interfaces2017913114821149210.1021/acsami.7b01077 28263053
    [Google Scholar]
  50. VaniJ.R. MohammadiM.T. ForoshaniM.S. JafariM. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke.EXCLI J.20161537839010.17179/excli2016‑309 27540350
    [Google Scholar]
  51. BaatiT. BourassetF. GharbiN. NjimL. AbderrabbaM. KerkeniA. SzwarcH. MoussaF. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene.Biomaterials201233194936494610.1016/j.biomaterials.2012.03.036 22498298
    [Google Scholar]
  52. LiS. PengZ. DallmanJ. BakerJ. OthmanA.M. BlackwelderP.L. LeblancR.M. Crossing the blood–brain–barrier with transferrin conjugated carbon dots: A zebrafish model study.Colloids Surf. B Biointerfaces201614525125610.1016/j.colsurfb.2016.05.007
    [Google Scholar]
  53. MohajeriM. BehnamB. BarretoG.E. SahebkarA. Carbon nanomaterials and amyloid-beta interactions: Potentials for the detection and treatment of Alzheimer’s disease?Pharmacol. Res.201914318620310.1016/j.phrs.2019.03.023 30943430
    [Google Scholar]
  54. HanX. JingZ. WuW. ZouB. PengZ. RenP. WikramanayakeA. LuZ. LeblancR.M. Biocompatible and blood–brain barrier permeable carbon dots for inhibition of Aβ fibrillation and toxicity, and BACE1 activity.Nanoscale2017935128621286610.1039/C7NR04352J 28850143
    [Google Scholar]
  55. LimJ.Y. BouzidT. SinitskiiA. Graphene platform for neural regenerative medicine.Neural Regen. Res.201611689489510.4103/1673‑5374.184454 27482205
    [Google Scholar]
  56. LiN. The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates.Biomaterials201132359374938210.1016/j.biomaterials.2011.08.065 21903256
    [Google Scholar]
  57. ZhangQ. WuZ. LiN. PuY. WangB. ZhangT. TaoJ. Advanced review of graphene-based nanomaterials in drug delivery systems: Synthesis, modification, toxicity and application.Mater. Sci. Eng. C2017771363137510.1016/j.msec.2017.03.196 28532014
    [Google Scholar]
  58. ChiacchiarettaM. BraminiM. RocchiA. ArmirottiA. GiordanoE. VázquezE. BandieraT. FerroniS. CescaF. BenfenatiF. Graphene oxide upregulates the homeostatic functions of primary astrocytes and modulates astrocyte-to-neuron communication.Nano Lett.20181895827583810.1021/acs.nanolett.8b02487 30088941
    [Google Scholar]
  59. RautiR. LozanoN. LeónV. ScainiD. MustoM. RagoI. Ulloa SeverinoF.P. FabbroA. CasalisL. VázquezE. KostarelosK. PratoM. BalleriniL. Graphene oxide nanosheets reshape synaptic function in cultured brain networks.ACS Nano20161044459447110.1021/acsnano.6b00130 27030936
    [Google Scholar]
  60. TaylorA.C. GonzálezC.H. MillerB.S. EdgingtonR.J. FerrettiP. JackmanR.B. Surface functionalisation of nanodiamonds for human neural stem cell adhesion and proliferation.Sci. Rep.201771730710.1038/s41598‑017‑07361‑y 28779095
    [Google Scholar]
  61. EdgingtonR. JackmanR.B. Neuron growth on nanodiamond.Nanodiamond.AmsterdamElsevier201410.1039/9781849737616‑00195
    [Google Scholar]
  62. HuangY.A. KaoC.W. LiuK.K. HuangH.S. ChiangM.H. SooC.R. ChangH.C. ChiuT.W. ChaoJ.I. HwangE. The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis.Sci. Rep.201441691910.1038/srep06919 25370150
    [Google Scholar]
  63. ShresthaS. ShresthaB.K. LeeJ. JoongO.K. KimB.S. ParkC.H. KimC.S. A conducting neural interface of polyurethane/silk-functionalized multiwall carbon nanotubes with enhanced mechanical strength for neuroregeneration.Mater. Sci. Eng. C201910251152310.1016/j.msec.2019.04.053 31147022
    [Google Scholar]
  64. CostaP.M. BourgognonM. WangJ.T.W. Al-JamalK.T. Functionalised carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery.J. Control. Release201624120021910.1016/j.jconrel.2016.09.033 27693751
    [Google Scholar]
  65. KumarP. PandeyS.N. AhmadF. VermaA. SharmaH. AshiqueS. BhattacharyyaS.P. BhattacharyyaI. KumarS. MishraN. GargA. Carbon nanotubes: A targeted drug delivery against cancer cell.Curr. Nanosci.202420676980010.2174/0115734137271865231105070727
    [Google Scholar]
  66. FabbroA. VillariA. LaishramJ. ScainiD. TomaF.M. TurcoA. PratoM. BalleriniL. Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs.ACS Nano2012632041205510.1021/nn203519r 22339712
    [Google Scholar]
  67. TykhomyrovA.A. NedzvetskyV.S. KlochkovV.K. AndrievskyG.V. Nanostructures of hydrated C60 fullerene (C60HyFn) protect rat brain against alcohol impact and attenuate behavioral impairments of alcoholized animals.Toxicology20082462-315816510.1016/j.tox.2008.01.005 18289766
    [Google Scholar]
  68. PodolskiI.Y. PodlubnayaZ.A. GodukhinO.V. Fullerenes C60, antiamyloid action, the brain, and cognitive processes.Biophysics (Oxf.)2010551717610.1134/S0006350910010136
    [Google Scholar]
  69. TianF. CondeJ. BaoC. ChenY. CurtinJ. CuiD. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging.Biomaterials2016106879710.1016/j.biomaterials.2016.08.014 27552319
    [Google Scholar]
  70. AliS.S. HardtJ.I. DuganL.L. SOD Activity of carboxyfullerenes predicts their neuroprotective efficacy: A structure-activity study.Nanomedicine20084428329410.1016/j.nano.2008.05.003 18656425
    [Google Scholar]
  71. DuganL.L. TuretskyD.M. DuC. LobnerD. WheelerM. AlmliC.R. ShenC.K.F. LuhT.Y. ChoiD.W. LinT.S. Carboxyfullerenes as neuroprotective agents.Proc. Natl. Acad. Sci. USA199794179434943910.1073/pnas.94.17.9434 9256500
    [Google Scholar]
  72. JinH. ChenW.Q. TangX.W. ChiangL.Y. YangC.Y. SchlossJ.V. WuJ.Y. Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents.J. Neurosci. Res.200062460060710.1002/1097‑4547(20001115)62:4<600::AID‑JNR15>3.0.CO;2‑F 11070504
    [Google Scholar]
  73. KordonetsO.L. GodukhinO.V. PodolskiI.Y. ChailakhyanL.M. Effect of fullerenes C60 on the activity of pyramidal neurons in the CA1 field of rat hippocampal slices.Dokl. Biol. Sci.2008423438238410.1134/S0012496608060045
    [Google Scholar]
  74. JungH.S. KimH.H. ShinM.H. KimS. KimK.S. ChoK. HahnS.K. Electroceutical residue-free graphene device for dopamine monitoring and neural stimulation.ACS Biomater. Sci. Eng.2019542013202010.1021/acsbiomaterials.8b01488 33405517
    [Google Scholar]
  75. JiangZ. SongQ. TangM. YangL. ChengY. ZhangM. XuD. ChengG. Enhanced migration of neural stem cells by microglia grown on a three-dimensional graphene scaffold.ACS Appl. Mater. Interfaces2016838250692507710.1021/acsami.6b06780 27589088
    [Google Scholar]
  76. WIPO1. IN202041056414 - ocular drug delivery and tracking comprising photoluminescent carbon nanodots.Available From: https://patentscope.wipo.int/search/en/detail.jsf?docId=IN367958415&_cid=P12-LAK2D2-888681 2020
  77. WIPO1. WO2022160055 - Method of manufacturing carbon nanohorns and the carbon nanohorns thus produced.Available From: https://patentscope.wipo.int/search/ja/detail.jsf;jsessionid=138B47F362C76798BF3DA90BEB78CA8A.wapp1nA?docId=WO2022160055&_gid=202231 2020
  78. WIPO1. US20200385272 - Allotrope of carbon having increased electron delocalization.Available From: https://patentscope.wipo.int/search/en/detail.jsf?docId=US312970919&_cid=P12-LAK3P4-01353-1 2020
  79. WIPO1. AU2021104363 - Targeted release of camptothecin for cancer chemotherapy using carbon nanotubes.Available From: https://patentscope.wipo.int/search/en/detail.jsf?docId=AU333857057&_cid=P11-LAP07A-39198-6 2020
  80. WIPO1. US20200276126 - Polydopamine-encapsulated nanodiamonds and methods.Available From: https://patentscope.wipo.int/search/en/detail.jsf?docId=US305251502&_cid=P11-LAP0NU-41271-1 2020
  81. MadannejadR. ShoaieN. JahanpeymaF. DarvishiM.H. AzimzadehM. JavadiH. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems.Chem. Biol. Interact.201930720622210.1016/j.cbi.2019.04.036 31054282
    [Google Scholar]
  82. SinghJ NayakP SinghG KhandaiM SarangiRR KarMK Carbon nanostructures as therapeutic cargoes: Recent developments and challenges.C – J Carbon Res202291c901000310.3390/c9010003
    [Google Scholar]
  83. LiuW. HuangG. SuX. LiS. WangQ. ZhaoY. LiuY. LuoJ. LiY. LiC. YuanD. HongH. ChenX. ChenT. Zebrafish: A promising model for evaluating the toxicity of carbon dot-based nanomaterials.ACS Appl. Mater. Interfaces20201243490124902010.1021/acsami.0c17492 33074666
    [Google Scholar]
  84. GhoshR. BagJ. DattaA. PramanickA. AbubakarI.H. Functionalized carbon nanotubes—A boon in treating brain diseases.J. Appl. Pharm. Sci.2023202310715810.7324/JAPS.2023.107158
    [Google Scholar]
  85. VisalliG. CurròM. IannazzoD. PistoneA. Pruiti CiarelloM. AcriG. TestagrossaB. BertuccioM.P. SqueriR. Di PietroA. In vitro assessment of neurotoxicity and neuroinflammation of homemade MWCNTs.Environ. Toxicol. Pharmacol.20175612112810.1016/j.etap.2017.09.005 28910697
    [Google Scholar]
  86. SamieiF. ShiraziF.H. NaserzadehP. DoustiF. SeydiE. PourahmadJ. Toxicity of multi-wall carbon nanotubes inhalation on the brain of rats.Environ. Sci. Pollut. Res. Int.20202711120961211110.1007/s11356‑020‑07740‑5 31984464
    [Google Scholar]
  87. MalinaT. PolákováK. HirschC. SvobodaL. ZbořilR. Toxicity of carbon nanomaterials—towards reliable viability assessment via new approach in flow cytometry.Int. J. Mol. Sci.20212214775010.3390/ijms22147750 34299367
    [Google Scholar]
  88. MalinaT. PolákováK. HirschC. SvobodaL. ZbořilR. Toxicity of carbon nanomaterials-towards reliable viability assessment via new approach in flow cytometry.Int. J. Mol. Sci.20212214775010.1088/0957‑4484/21/42/425101 20858931
    [Google Scholar]
  89. KoyamaS. KimY.A. HayashiT. TakeuchiK. FujiiC. KuroiwaN. KoyamaH. TsukaharaT. EndoM. In vivo immunological toxicity in mice of carbon nanotubes with impurities.Carbon20094751365137210.1016/j.carbon.2009.01.028
    [Google Scholar]
  90. ShiD. MiG. WebsterT.J. The synthesis, application, and related neurotoxicity of carbon nanotubes.Neurotoxicity of Nanomaterials and Nanomedicine.Cambridge, MassachusettsAcademic Press200910.1016/B978‑0‑12‑804598‑5.00011‑8
    [Google Scholar]
  91. WangY. HuA. Carbon quantum dots: Synthesis, properties and applications.J. Mater. Chem. C Mater. Opt. Electron. Devices20142346921693910.1039/C4TC00988F
    [Google Scholar]
  92. WangS. LiC. QianM. JiangH. ShiW. ChenJ. LächeltU. WagnerE. LuW. WangY. HuangR. Augmented glioma-targeted theranostics using multifunctional polymer-coated carbon nanodots.Biomaterials2017141293910.1016/j.biomaterials.2017.05.040 28666100
    [Google Scholar]
  93. RapheyV.R. HennaT.K. NivithaK.P. MufeedhaP. SabuC. PramodK. Advanced biomedical applications of carbon nanotube.Mater. Sci. Eng. C201910061663010.1016/j.msec.2019.03.043 30948098
    [Google Scholar]
  94. DebnathS.K. SrivastavaR. Drug delivery with carbon-based nanomaterials as versatile nanocarriers: Progress and prospects.Front. Nanotech.2021364456410.3389/fnano.2021.644564
    [Google Scholar]
  95. ZhaoD. AlizadehD. ZhangL. LiuW. FarrukhO. ManuelE. DiamondD.J. BadieB. Carbon nanotubes enhance CpG uptake and potentiate antiglioma immunity.Clin. Cancer Res.201117477178210.1158/1078‑0432.CCR‑10‑2444 21088258
    [Google Scholar]
  96. SantosT. FangX. ChenM.T. WangW. FerreiraR. JhaveriN. GundersenM. ZhouC. PagniniP. HofmanF.M. ChenT.C. Sequential administration of carbon nanotubes and near-infrared radiation for the treatment of gliomas.Front. Oncol.2014418010.3389/fonc.2014.00180 25077069
    [Google Scholar]
  97. WebsterT.J. Lee Khang KimJ.Y. Moon Kim Bokara, Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke.Int. J. Nanomedicine201272751276510.2147/IJN.S30273 22701320
    [Google Scholar]
  98. Al-JamalK.T. GherardiniL. BardiG. NunesA. GuoC. BussyC. HerreroM.A. BiancoA. PratoM. KostarelosK. PizzorussoT. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing.Proc. Natl. Acad. Sci. USA201110827109521095710.1073/pnas.1100930108 21690348
    [Google Scholar]
  99. LeeH.J. ParkJ. YoonO.J. KimH.W. LeeD.Y. KimD.H. LeeW.B. LeeN.E. BonventreJ.V. KimS.S. Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model.Nat. Nanotechnol.20116212112510.1038/nnano.2010.281 21278749
    [Google Scholar]
  100. YangZ. ZhangY. YangY. SunL. HanD. LiH. WangC. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease.Nanomedicine20106342744110.1016/j.nano.2009.11.007 20056170
    [Google Scholar]
  101. RenJ. ShenS. WangD. XiZ. GuoL. PangZ. QianY. SunX. JiangX. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2.Biomaterials201233113324333310.1016/j.biomaterials.2012.01.025 22281423
    [Google Scholar]
  102. IversonN.M. BaroneP.W. ShandellM. TrudelL.J. SenS. SenF. IvanovV. AtoliaE. FariasE. McNicholasT.P. ReuelN. ParryN.M.A. WoganG.N. StranoM.S. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes.Nat. Nanotechnol.201381187388010.1038/nnano.2013.222 24185942
    [Google Scholar]
  103. LiS. PengZ. DallmanJ. BakerJ. OthmanA.M. BlackwelderP.L. LeblancR.M. Crossing the blood–brain–barrier with transferrin conjugated carbon dots: A zebrafish model study.Colloids Surf. B Biointerfaces201614525125610.1016/j.colsurfb.2016.05.007 27187189
    [Google Scholar]
  104. LiuY. LiuJ. ZhangJ. LiX. LinF. ZhouN. YangB. LuL. Noninvasive brain tumor imaging using red emissive carbonized polymer dots across the blood–brain barrier.ACS Omega2018377888789610.1021/acsomega.8b01169 30087926
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249305383240705045921
Loading
/content/journals/cnsamc/10.2174/0118715249305383240705045921
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test