Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

One percent of persons over 65 years of age suffer from Parkinson's disease, a neurological ailment marked by dopaminergic neurons in the nigrostriatal pathway gradually dying and being depleted in the striatum. Parkin and PINK1 gene mutations, which are essential for mitophagy and impair mitochondrial function, are the cause of it. Parkinson's disease is linked to a number of motor and impairment disorders, including bradykinesia, rigid muscles, tremor at rest, and imbalance. Numerous signaling pathways, including α-synuclein aggregation, lead to age-related decline in proteolytic defense systems. Parkinson's disease etiology involves oxidative stress, ferroptosis, mitochondrial failure, and neuroinflammation. Parkinson's disease is significantly influenced by neuroinflammation, which is a result of both innate and adaptive immune responses. The purpose of studying mechanisms and phytomolecules is to assist researchers in creating therapies for Parkinson's disease. Phytomolecules, like curcumin, β-amyrin, berberine, capsaicin, and gentisic acid, exert neuroprotective properties by reducing ROS levels, lessening α-synuclein-induced toxicity, and shielding the cells from apoptosis. In conclusion, the studies presented here provide valuable insights into the potential of various medications for Parkinson's disease treatment. By understanding the mechanisms behind these treatments, researchers can develop more effective treatments for PD.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249355503241210101001
2024-12-18
2025-09-18
Loading full text...

Full text loading...

References

  1. PostumaR.B. BergD. SternM. PoeweW. OlanowC.W. OertelW. ObesoJ. MarekK. LitvanI. LangA.E. HallidayG. GoetzC.G. GasserT. DuboisB. ChanP. BloemB.R. AdlerC.H. DeuschlG. MDS clinical diagnostic criteria for Parkinson’s disease.Mov. Disord.201530121591160110.1002/mds.26424 26474316
    [Google Scholar]
  2. Van Den EedenS.K. TannerC.M. BernsteinA.L. FrossR.D. LeimpeterA. BlochD.A. NelsonL.M. Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity.Am. J. Epidemiol.2003157>111015102210.1093/aje/kwg06812777365
    [Google Scholar]
  3. VivekananthamS. ShahS. DewjiR. DewjiA. KhatriC. OlogundeR. Neuroinflammation in Parkinson’s disease: role in neurodegeneration and tissue repair.Int. J. Neurosci.20151251071772510.3109/00207454.2014.982795 25364880
    [Google Scholar]
  4. BordoniM. ScarianE. ReyF. GagliardiS. CarelliS. PansarasaO. CeredaC. Biomaterials in neurodegenerative disorders: a promising therapeutic approach.Int. J. Mol. Sci.2020219324310.3390/ijms21093243 32375302
    [Google Scholar]
  5. KimT.Y. LeemE. LeeJ.M. KimS.R. Control of reactive oxygen species for the prevention of Parkinson’s disease: The possible application of flavonoids.Antioxidants20209758310.3390/antiox9070583 32635299
    [Google Scholar]
  6. BorscheM. KönigI.R. DelcambreS. PetrucciS. BalckA. BrüggemannN. ZimprichA. WasnerK. PereiraS.L. AvenaliM. DeuschleC. BadanjakK. GhelfiJ. GasserT. KastenM. RosenstielP. LohmannK. BrockmannK. ValenteE.M. YouleR.J. GrünewaldA. KleinC. Mitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism.Brain2020143103041305110.1093/brain/awaa246 33029617
    [Google Scholar]
  7. ValenteE.M. BentivoglioA.R. DixonP.H. FerrarisA. IalongoT. FrontaliM. AlbaneseA. WoodN.W. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36.Am. J. Hum. Genet.200168489590010.1086/319522 11254447
    [Google Scholar]
  8. WangQ. LiuY. ZhouJ. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target.Transl. Neurodegener.2015411910.1186/s40035‑015‑0042‑0 26464797
    [Google Scholar]
  9. ZhangZ. LiG. SzetoS.S.W. ChongC.M. QuanQ. HuangC. CuiW. GuoB. WangY. HanY. Michael SiuK.W. Yuen LeeS.M. ChuI.K. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease.Free Radic. Biol. Med.20158433134310.1016/j.freeradbiomed.2015.02.030 25769424
    [Google Scholar]
  10. VelagapudiR. KumarA. BhatiaH.S. El-BakoushA. LepiarzI. FiebichB.L. OlajideO.A. Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling.Int. Immunopharmacol.201748172910.1016/j.intimp.2017.04.018 28458100
    [Google Scholar]
  11. LeesA.J. The relevance of the lewy body to the pathogenesis of idiopathic Parkinson’s disease.J. Neurol. Neurosurg. Psychiatry2012831095495510.1136/jnnp‑2012‑302969 22645254
    [Google Scholar]
  12. LothariusJ. BrundinP. Pathogenesis of Parkinson’s disease: dopamine, vesicles and α-synuclein.Nat. Rev. Neurosci.200231293294210.1038/nrn983 12461550
    [Google Scholar]
  13. FearnleyJ.M. LeesA.J. Ageing and Parkinson’s disease: substantia nigra regional selectivity.Brain199111452283230110.1093/brain/114.5.2283 1933245
    [Google Scholar]
  14. DamierP. HirschE.C. AgidY. GraybielA.M. The substantia nigra of the human brain.Brain199912281437144810.1093/brain/122.8.1437 10430830
    [Google Scholar]
  15. BeyerK. ArizaA. α-Synuclein posttranslational modification and alternative splicing as a trigger for neurodegeneration.Mol. Neurobiol.201347250952410.1007/s12035‑012‑8330‑5 22923347
    [Google Scholar]
  16. SingletonB. α-synuclein locus triplication causes Parkinson’s disease.Science (80-.)20033025646841
    [Google Scholar]
  17. DengH. YuanL. Genetic variants and animal models in SNCA and Parkinson disease.Ageing Res. Rev.201415116117610.1016/j.arr.2014.04.002 24768741
    [Google Scholar]
  18. BraakH. TrediciK.D. RübU. de VosR.A.I. Jansen SteurE.N.H. BraakE. Staging of brain pathology related to sporadic Parkinson’s disease.Neurobiol. Aging200324219721110.1016/S0197‑4580(02)00065‑9 12498954
    [Google Scholar]
  19. GlassC.K. SaijoK. WinnerB. MarchettoM.C. GageF.H. Mechanisms underlying inflammation in neurodegeneration.Cell2010140691893410.1016/j.cell.2010.02.016 20303880
    [Google Scholar]
  20. YokoyamaH. UchidaH. KuroiwaH. KasaharaJ. ArakiT. Role of glial cells in neurotoxin-induced animal models of Parkinson’s disease.Neurol. Sci.20113211710.1007/s10072‑010‑0424‑0 21107876
    [Google Scholar]
  21. RossiD. VolterraA. Astrocytic dysfunction: Insights on the role in neurodegeneration.Brain Res. Bull.2009804-522423210.1016/j.brainresbull.2009.07.012 19631259
    [Google Scholar]
  22. PolazziE. MontiB. Microglia and neuroprotection: From in vitro studies to therapeutic applications.Prog. Neurobiol.201092329331510.1016/j.pneurobio.2010.06.009 20609379
    [Google Scholar]
  23. BrownG.C. NeherJ.J. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons.Mol. Neurobiol.2010412-324224710.1007/s12035‑010‑8105‑9 20195798
    [Google Scholar]
  24. HirschE.C. HunotS. Neuroinflammation in Parkinson’s disease: a target for neuroprotection?Lancet Neurol.20098438239710.1016/S1474‑4422(09)70062‑6 19296921
    [Google Scholar]
  25. GaoH.M. HongJ.S. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression.Trends Immunol.200829835736510.1016/j.it.2008.05.002 18599350
    [Google Scholar]
  26. HartmannA. HunotS. HirschE.C. Inflammation and dopaminergic neuronal loss in Parkinson’s disease: a complex matter.Exp. Neurol.2003184256156410.1016/j.expneurol.2003.08.004 14769349
    [Google Scholar]
  27. DeleidiM. GasserT. The role of inflammation in sporadic and familial Parkinson’s disease.Cell. Mol. Life Sci.201370224259427310.1007/s00018‑013‑1352‑y 23665870
    [Google Scholar]
  28. ChenH. JacobsE. SchwarzschildM.A. McCulloughM.L. CalleE.E. ThunM.J. AscherioA. Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease.Ann. Neurol.200558696396710.1002/ana.20682 16240369
    [Google Scholar]
  29. MariesE. DassB. CollierT.J. KordowerJ.H. Steece-CollierK. The role of α-synuclein in Parkinson’s disease: insights from animal models.Nat. Rev. Neurosci.20034972773810.1038/nrn1199 12951565
    [Google Scholar]
  30. VekrellisK. XilouriM. EmmanouilidouE. RideoutH.J. StefanisL. Pathological roles of α-synuclein in neurological disorders.Lancet Neurol.201110111015102510.1016/S1474‑4422(11)70213‑7 22014436
    [Google Scholar]
  31. WalesP. PinhoR. LázaroD.F. OuteiroT.F. Limelight on alpha-synuclein: pathological and mechanistic implications in neurodegeneration.J. Parkinsons Dis.20133441545910.3233/JPD‑130216 24270242
    [Google Scholar]
  32. BurréJ. The synaptic function of α-synuclein.J. Parkinsons Dis.20155469971310.3233/JPD‑150642 26407041
    [Google Scholar]
  33. RuipérezV. DariosF. DavletovB. Alpha-synuclein, lipids and Parkinson’s disease.Prog. Lipid Res.201049442042810.1016/j.plipres.2010.05.004 20580911
    [Google Scholar]
  34. KimC. LeeS.J. Controlling the mass action of α‐synuclein in Parkinson’s disease.J. Neurochem.2008107230331610.1111/j.1471‑4159.2008.05612.x 18691382
    [Google Scholar]
  35. MelkiR. Role of different alpha-synuclein strains in synucleinopathies, similarities with other neurodegenerative diseases.J. Parkinsons Dis.20155221722710.3233/JPD‑150543 25757830
    [Google Scholar]
  36. KaushikS. CuervoA.M. Proteostasis and aging.Nat. Med.201521121406141510.1038/nm.4001 26646497
    [Google Scholar]
  37. XilouriM. BrekkO.R. StefanisL. α-Synuclein and protein degradation systems: a reciprocal relationship.Mol. Neurobiol.201347253755110.1007/s12035‑012‑8341‑2 22941029
    [Google Scholar]
  38. LeeD.H. GoldR. LinkerR.A. Mechanisms of oxidative damage in multiple sclerosis and neurodegenerative diseases: therapeutic modulation via fumaric acid esters.Int. J. Mol. Sci.2012139117831180310.3390/ijms130911783 23109883
    [Google Scholar]
  39. ShuklaV. MishraS.K. PantH.C. Oxidative stress in neurodegeneration.Adv. Pharmacol. Sci.2011201111310.1155/2011/572634 21941533
    [Google Scholar]
  40. KemppainenS. LindholmP. GalliE. LahtinenH.M. KoivistoH. HämäläinenE. SaarmaM. TanilaH. Cerebral dopamine neurotrophic factor improves long-term memory in APP/PS1 transgenic mice modeling Alzheimer’s disease as well as in wild-type mice.Behav. Brain Res.201529111110.1016/j.bbr.2015.05.002 25975173
    [Google Scholar]
  41. MeliefE.J. CudabackE. JorstadN.L. SherfieldE. PostupnaN. WilsonA. DarvasM. MontineK.S. KeeneC.D. MontineT.J. Partial depletion of striatal dopamine enhances penetrance of cognitive deficits in a transgenic mouse model of Alzheimer’s disease.J. Neurosci. Res.20159391413142210.1002/jnr.23592 25824456
    [Google Scholar]
  42. BedardK. KrauseK.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.Physiol. Rev.200787124531310.1152/physrev.00044.2005 17237347
    [Google Scholar]
  43. HalliwellB. Oxidative stress and neurodegeneration: where are we now?J. Neurochem.20069761634165810.1111/j.1471‑4159.2006.03907.x 16805774
    [Google Scholar]
  44. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  45. Do VanB. GouelF. JonneauxA. TimmermanK. GeléP. PétraultM. BastideM. LalouxC. MoreauC. BordetR. DevosD. DevedjianJ.C. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC.Neurobiol. Dis.20169416917810.1016/j.nbd.2016.05.011 27189756
    [Google Scholar]
  46. Friedmann AngeliJ.P. SchneiderM. PronethB. TyurinaY.Y. TyurinV.A. HammondV.J. HerbachN. AichlerM. WalchA. EggenhoferE. BasavarajappaD. RådmarkO. KobayashiS. SeibtT. BeckH. NeffF. EspositoI. WankeR. FörsterH. YefremovaO. HeinrichmeyerM. BornkammG.W. GeisslerE.K. ThomasS.B. StockwellB.R. O’DonnellV.B. KaganV.E. SchickJ.A. ConradM. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice.Nat. Cell Biol.201416121180119110.1038/ncb3064 25402683
    [Google Scholar]
  47. WangJ. SongN. JiangH. WangJ. XieJ. Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons.Biochim. Biophys. Acta Mol. Basis Dis.20131832561862510.1016/j.bbadis.2013.01.021 23376588
    [Google Scholar]
  48. PanovA. DikalovS. ShalbuyevaN. TaylorG. ShererT. GreenamyreJ.T. Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication.J. Biol. Chem.200528051420264203510.1074/jbc.M508628200 16243845
    [Google Scholar]
  49. BorlandM.K. TrimmerP.A. RubinsteinJ.D. KeeneyP.M. MohanakumarK.P. LiuL. BennettJ.P.Jr Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson’s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells.Mol. Neurodegener.2008312110.1186/1750‑1326‑3‑21 19114014
    [Google Scholar]
  50. DauerW. PrzedborskiS. Parkinson’s disease.Neuron200339688990910.1016/S0896‑6273(03)00568‑3 12971891
    [Google Scholar]
  51. KlivenyiP. SiwekD. GardianG. YangL. StarkovA. ClerenC. FerranteR.J. KowallN.W. AbeliovichA. BealM.F. Mice lacking alpha-synuclein are resistant to mitochondrial toxins.Neurobiol. Dis.200621354154810.1016/j.nbd.2005.08.018 16298531
    [Google Scholar]
  52. ThomasB. BealM.F. Parkinson’s disease.Hum. Mol. Genet.200716R2R183R19410.1093/hmg/ddm159 17911161
    [Google Scholar]
  53. MudòG. MäkeläJ. LibertoV.D. TselykhT.V. OlivieriM. PiepponenP. ErikssonO. MälkiäA. BonomoA. KairisaloM. AguirreJ.A. KorhonenL. BelluardoN. LindholmD. Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease.Cell. Mol. Life Sci.20126971153116510.1007/s00018‑011‑0850‑z 21984601
    [Google Scholar]
  54. St-PierreJ. DroriS. UldryM. SilvaggiJ.M. RheeJ. JägerS. HandschinC. ZhengK. LinJ. YangW. SimonD.K. BachooR. SpiegelmanB.M. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators.Cell2006127239740810.1016/j.cell.2006.09.024 17055439
    [Google Scholar]
  55. LinM.T. BealM.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases.Nature2006443711378779510.1038/nature05292 17051205
    [Google Scholar]
  56. CasarejosM.J. MenéndezJ. SolanoR.M. Rodríguez-NavarroJ.A. García de YébenesJ. MenaM.A. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline.J. Neurochem.200697493494610.1111/j.1471‑4159.2006.03777.x 16573651
    [Google Scholar]
  57. PalacinoJ.J. SagiD. GoldbergM.S. KraussS. MotzC. WackerM. KloseJ. ShenJ. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice.J. Biol. Chem.200427918186141862210.1074/jbc.M401135200 14985362
    [Google Scholar]
  58. MogiM. HaradaM. KondoT. NarabayashiH. RiedererP. NagatsuT. Transforming growth factor-β1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson’s disease.Neurosci. Lett.1995193212913210.1016/0304‑3940(95)11686‑Q 7478158
    [Google Scholar]
  59. MogiM. HaradaM. KondoT. RiedererP. NagatsuT. Interleukin-2 but not basic fibroblast growth factor is elevated in parkinsonian brain.J. Neural Transm. (Vienna)19961038-91077108110.1007/BF01291792 9013395
    [Google Scholar]
  60. SommerA. FadlerT. DorfmeisterE. HoffmannA.C. XiangW. WinnerB. ProtsI. Infiltrating T lymphocytes reduce myeloid phagocytosis activity in synucleinopathy model.J. Neuroinflammation201613117410.1186/s12974‑016‑0632‑5 27364890
    [Google Scholar]
  61. SommerA. MarxreiterF. KrachF. FadlerT. GroschJ. MaroniM. GraefD. EberhardtE. RiemenschneiderM.J. YeoG.W. KohlZ. XiangW. GageF.H. WinklerJ. ProtsI. WinnerB. Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson’s disease.Cell Stem Cell2018231123131.e610.1016/j.stem.2018.06.015 29979986
    [Google Scholar]
  62. Galiano-LandeiraJ. TorraA. VilaM. BovéJ. CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson’s disease.Brain2020143123717373310.1093/brain/awaa269 33118032
    [Google Scholar]
  63. KarikariA.A. McFlederR.L. RibechiniE. BlumR. BruttelV. KnorrS. GehmeyrM. VolkmannJ. BrotchieJ.M. AhsanF. HaackB. MonoranuC.M. KeberU. YeghiazaryanR. PagenstecherA. HeckelT. BischlerT. WischhusenJ. KoprichJ.B. LutzM.B. IpC.W. Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson’s disease mice.Brain Behav. Immun.202210119421010.1016/j.bbi.2022.01.007 35032575
    [Google Scholar]
  64. HeissC.N. OlofssonL.E. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system.J. Neuroendocrinol.2019315e1268410.1111/jne.12684 30614568
    [Google Scholar]
  65. LahiriS. KimH. Garcia-PerezI. RezaM.M. MartinK.A. KunduP. CoxL.M. SelkrigJ. PosmaJ.M. ZhangH. PadmanabhanP. MoretC. GulyásB. BlaserM.J. AuwerxJ. HolmesE. NicholsonJ. WahliW. PetterssonS. The gut microbiota influences skeletal muscle mass and function in mice.Sci. Transl. Med.201911502eaan566210.1126/scitranslmed.aan5662 31341063
    [Google Scholar]
  66. SchwiertzA. SpiegelJ. DillmannU. GrundmannD. BürmannJ. FaßbenderK. SchäferK.H. UngerM.M. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson’s disease.Parkinsonism Relat. Disord.20185010410710.1016/j.parkreldis.2018.02.022 29454662
    [Google Scholar]
  67. PattersonA.M. MulderI.E. TravisA.J. LanA. Cerf-BensussanN. Gaboriau-RouthiauV. GardenK. LoganE. DeldayM.I. CouttsA.G.P. MonnaisE. FerrariaV.C. InoueR. GrantG. AminovR.I. Human gut symbiont Roseburia hominis promotes and regulates innate immunity.Front. Immunol.20178116610.3389/fimmu.2017.01166 29018440
    [Google Scholar]
  68. MatheoudD. CannonT. VoisinA. PenttinenA.M. RametL. FahmyA.M. DucrotC. LaplanteA. BourqueM.J. ZhuL. CayrolR. Le CampionA. McBrideH.M. GruenheidS. TrudeauL.E. DesjardinsM. Intestinal infection triggers Parkinson’s disease-like symptoms in Pink1−/− mice.Nature2019571776656556910.1038/s41586‑019‑1405‑y 31316206
    [Google Scholar]
  69. KellyL.P. CarveyP.M. KeshavarzianA. ShannonK.M. ShaikhM. BakayR.A.E. KordowerJ.H. Progression of intestinal permeability changes and alpha‐synuclein expression in a mouse model of Parkinson’s disease.Mov. Disord.2014298999100910.1002/mds.25736 24898698
    [Google Scholar]
  70. NguyenT.T. VuuM.D. HuynhM.A. YamaguchiM. TranL.T. DangT.P.T. Curcumin effectively rescued parkinson’s disease‐like phenotypes in a novel Drosophila melanogaster model with dUCH knockdown.Oxid. Med. Cell. Longev.201820181203826710.1155/2018/2038267 30057672
    [Google Scholar]
  71. DonadioV. IncensiA. RizzoG. FilecciaE. VentrutoF. RivaA. TisoD. RecchiaM. VacchianoV. InfanteR. PetrangoliniG. AllegriniP. AvinoS. PantieriR. MostacciB. AvoniP. LiguoriR. The effect of curcumin on idiopathic Parkinson Disease: A clinical and skin biopsy study.J. Neuropathol. Exp. Neurol.202281754555210.1093/jnen/nlac034 35556131
    [Google Scholar]
  72. GengX. ZhangH. HuM. LiuX. HanM. XieJ. LiZ. ZhaoF. LiuW. WeiS. A novel curcumin oil solution can better alleviate the motor activity defects and neuropathological damage of a Parkinson’s disease mouse model.Front. Aging Neurosci.20221498489510.3389/fnagi.2022.984895 35966793
    [Google Scholar]
  73. XuL. HaoL.P. YuJ. ChengS.Y. LiF. DingS.M. ZhangR. Curcumin protects against rotenone-induced Parkinson’s disease in mice by inhibiting microglial NLRP3 inflammasome activation and alleviating mitochondrial dysfunction.Heliyon202395e1619510.1016/j.heliyon.2023.e16195 37234646
    [Google Scholar]
  74. WangM.S. BoddapatiS. EmadiS. SierksM.R. Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model.BMC Neurosci.20101115710.1186/1471‑2202‑11‑57 20433710
    [Google Scholar]
  75. ZhongL. CaiB. WangQ. LiX. XuW. ChenT. Exploring the neuroprotective mechanism of curcumin inhibition of intestinal inflammation against parkinson’s disease based on the gut-brain axis.Pharmaceuticals (Basel)20221613910.3390/ph16010039 36678536
    [Google Scholar]
  76. FikryH. SalehL.A. Abdel GawadS. Neuroprotective effects of curcumin on the cerebellum in a rotenone‐induced Parkinson’s Disease Model.CNS Neurosci. Ther.202228573274810.1111/cns.13805 35068069
    [Google Scholar]
  77. CaiB. ZhongL. WangQ. XuW. LiX. ChenT. Curcumin alleviates 1-methyl- 4-phenyl- 1,2,3,6-tetrahydropyridine- induced Parkinson’s disease in mice via modulating gut microbiota and short-chain fatty acids.Front. Pharmacol.202314119833510.3389/fphar.2023.1198335 37388445
    [Google Scholar]
  78. MuthianG. MackeyV. PrasadK. CharltonC. Curcumin and an antioxidant formulation protect C57BL/6J mice from MPTP-induced Parkinson’s disease like changes: potential neuroprotection for neurodegeneration.JPRLS20188495910.2147/JPRLS.S151452
    [Google Scholar]
  79. AgrawalS.S. GullaiyaS. DubeyV. SinghV. KumarA. NagarA. TiwariP. Neurodegenerative shielding by curcumin and its derivatives on brain lesions induced by 6-OHDA model of Parkinson’s disease in albino wistar rats.Cardiovasc. Psychiatry Neurol.201220121810.1155/2012/942981 22928089
    [Google Scholar]
  80. DarbinyanL.V. SimonyanK.V. HambardzumyanL.E. SimonyanM.A. SimonyanR.M. ManukyanL.P. Membrane-stabilizing and protective effects of curcumin in a rotenone-induced rat model of Parkinson disease.Metab. Brain Dis.20233872457246410.1007/s11011‑023‑01237‑z 37247135
    [Google Scholar]
  81. WeiC.C. ChangC.H. LiaoV.H.C. Anti-Parkinsonian effects of β-amyrin are regulated via LGG-1 involved autophagy pathway in Caenorhabditis elegans.Phytomedicine20173611812510.1016/j.phymed.2017.09.002 29157804
    [Google Scholar]
  82. Kim; Cho, K.H.; Shin, M.S.; Lee, J.M.; Cho, H.S.; Kim, C.J.; Shin, D.H.; Yang, H.J. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson’s disease.Int. J. Mol. Med.201433487087810.3892/ijmm.2014.1656 24535622
    [Google Scholar]
  83. WangL. ShengW. TanZ. RenQ. WangR. StoikaR. LiuX. LiuK. ShangX. JinM. Treatment of Parkinson’s disease in Zebrafish model with a berberine derivative capable of crossing blood brain barrier, targeting mitochondria, and convenient for bioimaging experiments.Comp. Biochem. Physiol. C Toxicol. Pharmacol.202124910915110.1016/j.cbpc.2021.109151 34343700
    [Google Scholar]
  84. HuangS. LiuH. LinY. LiuM. LiY. MaoH. ZhangZ. ZhangY. YeP. DingL. ZhuZ. YangX. ChenC. ZhuX. HuangX. GuoW. XuP. LuL. Berberine protects against NLRP3 inflammasome via ameliorating autophagic impairment in MPTP-induced Parkinson’s disease model.Front. Pharmacol.20211161878710.3389/fphar.2020.618787 33584302
    [Google Scholar]
  85. de OliveiraV.M. da RochaM.N. RobertoC.H.A. LucioF.N.M. MarinhoM.M. MarinhoE.S. de MoraisS.M. Insights of structure-based virtual screening and MPO-based SAR analysis of berberine-benzimidazole derivatives against Parkinson disease.J. Mol. Struct.2024130213745310.1016/j.molstruc.2023.137453
    [Google Scholar]
  86. ChaurasiyaN.D. SinghD. CutlerS.J. WalkerL.A. TekwaniB. Berberine selectively inhibits Human Monoamine Oxidase B: Kinetics and mechanism of inhibition.Planta Med.20168258210.1055/s‑0036‑1578659
    [Google Scholar]
  87. UmJ.H. LeeK.M. KimY.Y. LeeD.Y. KimE. KimD.H. YunJ. Berberine induces mitophagy through adenosine monophosphate-activated protein kinase and ameliorates mitochondrial dysfunction in PINK1 knockout mouse embryonic fibroblasts.Int. J. Mol. Sci.202325121910.3390/ijms25010219 38203389
    [Google Scholar]
  88. RoghaniM. NegahdarF. MehdizadehM. JoghataeiM.T. MehraeenF. PoorghayoomE. Berberine chloride pretreatment exhibits neuroprotective effect against 6-hydroxydopamine-induced neuronal insult in rat.Iran. J. Pharm. Res.201514411451152
    [Google Scholar]
  89. DengH. MaZ. Protective effects of berberine against MPTP-induced dopaminergic neuron injury through promoting autophagy in mice.Food Funct.202112188366837510.1039/D1FO01360B 34342315
    [Google Scholar]
  90. ChungY.C. BaekJ.Y. KimS.R. KoH.W. BokE. ShinW.H. WonS.Y. JinB.K. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson’s disease.Exp. Mol. Med.2017493e29810.1038/emm.2016.159 28255166
    [Google Scholar]
  91. SiddiqueY.H. NazF. JyotiS. Effect of capsaicin on the oxidative stress and dopamine content in the transgenic Drosophila model of Parkinson’s disease.Acta Biol. Hung.201869211512410.1556/018.69.2018.2.1 29888671
    [Google Scholar]
  92. ZhaoZ. WangJ. WangL. YaoX. LiuY. LiY. ChenS. YueT. WangX. YuW. LiuY. Capsaicin protects against oxidative insults and alleviates behavioral deficits in rats with 6-OHDA-induced Parkinson’s Disease via Activation of TRPV1.Neurochem. Res.201742123431343810.1007/s11064‑017‑2388‑4 28861768
    [Google Scholar]
  93. RajaeiZ. HosseiniM. AlaeiH. Effects of crocin on brain oxidative damage and aversive memory in a 6-OHDA model of Parkinson’s disease.Arq. Neuropsiquiatr.201674972372910.1590/0004‑282X20160131 27706421
    [Google Scholar]
  94. DaneshvarA. JouzdaniA.F. FirozianF. AslS.S. MohammadiM. RanjbarA. Neuroprotective effects of crocin and crocin-loaded niosomes against the paraquat-induced oxidative brain damage in rats.Open Life Sci.20221711174118110.1515/biol‑2022‑0468 36185402
    [Google Scholar]
  95. HaeriP. MohammadipourA. HeidariZ. Ebrahimzadeh-bideskanA. Neuroprotective effect of crocin on substantia nigra in MPTP-induced Parkinson’s disease model of mice.Anat. Sci. Int.201994111912710.1007/s12565‑018‑0457‑7 30159851
    [Google Scholar]
  96. AliA. YuL. KousarS. KhalidW. MaqboolZ. AzizA. ArshadM.S. AadilR.M. TrifM. RiazS. ShaukatH. ManzoorM.F. QinH. Crocin: Functional characteristics, extraction, food applications and efficacy against brain related disorders.Front. Nutr.20229100980710.3389/fnut.2022.1009807 36583211
    [Google Scholar]
  97. TangJ. LuL. WangQ. LiuH. XueW. ZhouT. XuL. WangK. WuD. WeiF. TaoW. ChenG. Crocin reverses depression-like behavior in Parkinson disease mice via VTA-mPFC Pathway.Mol. Neurobiol.20205773158317010.1007/s12035‑020‑01941‑2 32495180
    [Google Scholar]
  98. Al-AbbasiF.A. Neuroprotective effect of butin against rotenone-induced Parkinson’s disease mediated by antioxidant and anti-inflammatory actions through paraoxonase-1-induction.J. Taibah Univ. Sci.202216194495310.1080/16583655.2022.2128561
    [Google Scholar]
  99. RamachandraV.H. SivanesanS. KoppalA. AnandakumarS. HowellM.D. SukumarE. VijayaraghavanR. Embelin and levodopa combination therapy for improved Parkinson’s disease treatment.Transl. Neurosci.202213114516210.1515/tnsci‑2022‑0224 35855085
    [Google Scholar]
  100. VoraU. VyasV.K. WalP. SaxenaB. Effects of eugenol on the behavioral and pathological progression in the MPTP-induced Parkinson’s disease mouse model.Drug Discov. Ther.202216415416310.5582/ddt.2022.01026 36002316
    [Google Scholar]
  101. ArdahM.T. BharathanG. KitadaT. HaqueM.E. Ellagic acid prevents dopamine neuron degeneration from oxidative stress and neuroinflammation in MPTP model of Parkinson’s disease.Biomolecules20201011151910.3390/biom10111519 33172035
    [Google Scholar]
  102. DolatshahiM. FarboodY. SarkakiA. MansouriS.M. KhodadadiA. Ellagic acid improves hyperalgesia and cognitive deficiency in 6-hydroxidopamine induced rat model of Parkinson’s disease.Iran. J. Basic Med. Sci.20151813846 25810874
    [Google Scholar]
  103. RadwanN. KhanE. ArdahM.T. KitadaT. HaqueM.E. Ellagic acid prevents α-synuclein spread and mitigates toxicity by enhancing autophagic flux in an animal model of Parkinson’s disease.Nutrients20231618510.3390/nu16010085 38201915
    [Google Scholar]
  104. QiuJ. ChenY. ZhuoJ. ZhangL. LiuJ. WangB. SunD. YuS. LouH. Urolithin A promotes mitophagy and suppresses NLRP3 inflammasome activation in lipopolysaccharide-induced BV2 microglial cells and MPTP-induced Parkinson’s disease model.Neuropharmacology202220710896310.1016/j.neuropharm.2022.108963 35065082
    [Google Scholar]
  105. SharmaN. KhuranaN. MuthuramanA. UtrejaP. Pharmacological evaluation of vanillic acid in rotenone-induced Parkinson’s disease rat model.Eur. J. Pharmacol.202190317411210.1016/j.ejphar.2021.174112 33901458
    [Google Scholar]
  106. DagdaR.K. DagdaR.Y. Vazquez-MayorgaE. MartinezB. GallahueA. Intranasal administration of forskolin and noopept reverses parkinsonian pathology in PINK1 knockout rats.Int. J. Mol. Sci.202224169010.3390/ijms24010690 36614135
    [Google Scholar]
  107. ZhouQ. ChenB. XuY. WangY. HeZ. CaiX. QinY. YeJ. YangY. ShenJ. CaoP. Geniposide protects against neurotoxicity in mouse models of rotenone-induced Parkinson’s disease involving the mTOR and Nrf2 pathways.J. Ethnopharmacol.2024318Pt A11691410.1016/j.jep.2023.11691437451492
    [Google Scholar]
  108. ChenY. ZhangY. LiL. HölscherC. Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson’s disease.Eur. J. Pharmacol.2015768212710.1016/j.ejphar.2015.09.029 26409043
    [Google Scholar]
  109. KabraM.P. BhandariS.S. SharmaA. GuptaR.B. Evaluation of anti-parkinson’s activity of gentisic acid in different animal models.J. Acute Dis.20143214114410.1016/S2221‑6189(14)60031‑7
    [Google Scholar]
  110. AslamS. AslamM. KauserH. NaqviS. Anti-parkinsonian activity of Ganoderma lucidum in experimentally induced Parkinson’s Disease.J. Pharm. Res. Int.2021266275
    [Google Scholar]
  111. BaluchnejadmojaradT. RoghaniM. NadoushanM.R.J. BagheriM. Neuroprotective effect of genistein in 6‐hydroxydopamine Hemi‐parkinsonian rat model.Phytother. Res.200923113213510.1002/ptr.2564 18693302
    [Google Scholar]
  112. ZarmouhN.O. MessehaS.S. ElshamiF.M. SolimanK.F.A. Evaluation of the isoflavone genistein as reversible human monoamine oxidase‐A and ‐B inhibitor.Evid. Based Complement. Alternat. Med.201620161142305210.1155/2016/1423052 27118978
    [Google Scholar]
  113. ArbabiE. HamidiG. TalaeiS.A. SalamiM. Estrogen agonist genistein differentially influences the cognitive and motor disorders in an ovariectomized animal model of Parkinsonism.Iran J Basic Med Sci2016191212851290
    [Google Scholar]
  114. LiuL.X. ChenW.F. XieJ.X. WongM.S. Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease.Neurosci. Res.200860215616110.1016/j.neures.2007.10.005 18054104
    [Google Scholar]
  115. KastureV.S. KattiS.A. MahajanD. WaghR. MohanM. KastureS.B. Antioxidant and antiparkinson activity of gallic acid derivatives.Pharmacol. Online20091385395
    [Google Scholar]
  116. ChandrasekharY. Phani KumarG. RamyaE.M. AnilakumarK.R. Gallic acid protects 6-OHDA induced neurotoxicity by attenuating oxidative stress in human dopaminergic cell line.Neurochem. Res.20184361150116010.1007/s11064‑018‑2530‑y 29671234
    [Google Scholar]
  117. MansouriM.T. FarboodY. SameriM.J. SarkakiA. NaghizadehB. RafeiradM. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats.Food Chem.20131382-31028103310.1016/j.foodchem.2012.11.022 23411210
    [Google Scholar]
  118. AntunesM.S. LaddF.V.L. LaddA.A.B.L. MoreiraA.L. BoeiraS.P. Cattelan SouzaL. Hesperidin protects against behavioral alterations and loss of dopaminergic neurons in 6-OHDA-lesioned mice: the role of mitochondrial dysfunction and apoptosis.Metab. Brain Dis.202136115316710.1007/s11011‑020‑00618‑y 33057922
    [Google Scholar]
  119. TamilselvamK. BraidyN. ManivasagamT. EssaM.M. PrasadN.R. KarthikeyanS. ThenmozhiA.J. SelvarajuS. GuilleminG.J. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease.Oxid. Med. Cell. Longev.2013201311110.1155/2013/102741 24205431
    [Google Scholar]
  120. ManivasagamT. NatarajJ. TamilselvamK. EssaM. JanakiramanU. Antioxidant and anti-inflammatory potential of hesperidin against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced experimental Parkinson′s disease in mice.Int. J. Nutr. Pharmacol. Neurol. Dis.20133329410.4103/2231‑0738.114875
    [Google Scholar]
  121. LiS. PuX.P. Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease.Biol. Pharm. Bull.20113481291129610.1248/bpb.34.1291 21804220
    [Google Scholar]
  122. MahfudinU. SubarnasA. WilarG. HermantoF. Potential activity of kaempferol as Anti-Parkinson’s; Molecular docking and pharmacophore modelling study.Int. J. App. Pharm.2023438
    [Google Scholar]
  123. RahulN.F. NazF. JyotiS. SiddiqueY.H. Effect of kaempferol on the transgenic Drosophila model of Parkinson’s disease.Sci. Rep.20201011379310.1038/s41598‑020‑70236‑2 32796885
    [Google Scholar]
  124. HanX. ZhaoS. SongH. XuT. FangQ. HuG. SunL. Kaempferol alleviates LD-mitochondrial damage by promoting autophagy: Implications in Parkinson’s disease.Redox Biol.20214110191110.1016/j.redox.2021.101911 33713908
    [Google Scholar]
  125. XuC.L. QuR. ZhangJ. LiL.F. MaS.P. Neuroprotective effects of madecassoside in early stage of Parkinson’s disease induced by MPTP in rats.Fitoterapia20139011211810.1016/j.fitote.2013.07.009 23876367
    [Google Scholar]
  126. FengG. ZhangZ. BaoQ. ZhangZ. ZhouL. JiangJ. LiS. Protective effect of chinonin in MPTP-induced C57BL/6 mouse model of Parkinson’s disease.Biol. Pharm. Bull.20143781301130710.1248/bpb.b14‑00128 24871044
    [Google Scholar]
  127. Oliveira-JuniorM.S. PereiraE.P. de AmorimV.C.M. ReisL.T.C. do NascimentoR.P. da SilvaV.D.A. CostaS.L. Lupeol inhibits LPS-induced neuroinflammation in cerebellar cultures and induces neuroprotection associated to the modulation of astrocyte response and expression of neurotrophic and inflammatory factors.Int. Immunopharmacol.20197030231210.1016/j.intimp.2019.02.055 30852286
    [Google Scholar]
  128. BadshahH. AliT. RehmanS. AminF. UllahF. KimT.H. KimM.O. Protective effect of lupeol against lipopolysaccharide-induced neuroinflammation via the p38/c-Jun N-terminal kinase pathway in the adult mouse brain.J. Neuroimmune Pharmacol.2016111486010.1007/s11481‑015‑9623‑z 26139594
    [Google Scholar]
  129. SaleemU. GullZ. SaleemA. ShahM.A. AkhtarM.F. AnwarF. AhmadB. PanichayupakaranantP. Appraisal of anti‐Parkinson activity of rhinacanthin‐C in haloperidol‐induced parkinsonism in mice: A mechanistic approach.J. Food Biochem.2021454e1367710.1111/jfbc.13677 33709527
    [Google Scholar]
  130. LinY.L. TsayH.J. LaiT.H. TzengT.T. ShiaoY.J. Lithospermic acid attenuates 1-methyl-4-phenylpyridine-induced neurotoxicity by blocking neuronal apoptotic and neuroinflammatory pathways.J. Biomed. Sci.20152213710.1186/s12929‑015‑0146‑y 26018660
    [Google Scholar]
  131. MuroyamaA. FujitaA. LvC. KobayashiS. FukuyamaY. MitsumotoY. Magnolol protects against MPTP/MPP+ -induced toxicity via inhibition of oxidative stress in in vivo and in vitro models of Parkinson’s disease.Parkinsons Dis.201220121910.1155/2012/985157 22655218
    [Google Scholar]
  132. ChenH.H. LinS.C. ChanM.H. Protective and restorative effects of magnolol on neurotoxicity in mice with 6-hydroxydopamine-induced hemiparkinsonism.Neurodegener. Dis.20118536437410.1159/000323872 21494012
    [Google Scholar]
  133. WengC.C. ChenZ.A. ChaoK.T. EeT.W. LinK.J. ChanM.H. HsiaoI.T. YenT.C. KungM.P. HsuC.H. WeyS.P. Quantitative analysis of the therapeutic effect of magnolol on MPTP-induced mouse model of Parkinson’s disease using in vivo 18F-9-fluoropropyl-(+)-dihydrotetrabenazine PET imaging.PLoS One2017123e017350310.1371/journal.pone.0173503 28257461
    [Google Scholar]
  134. YuJ. GaoX. ZhangL. ShiH. YanY. HanY. WuC. LiuY. FangM. HuangC. FanS. Magnolol extends lifespan and improves age-related neurodegeneration in Caenorhabditis elegans via increase of stress resistance.Sci. Rep.2024141315810.1038/s41598‑024‑53374‑9 38326350
    [Google Scholar]
  135. HuangW. WangY. HuangW. Mangiferin alleviates 6-OHDA-induced Parkinson’s disease by inhibiting AKR1C3 to activate Wnt signaling pathway.Neurosci. Lett.202482113760810.1016/j.neulet.2023.137608 38142926
    [Google Scholar]
  136. ZhouH. MaoZ. ZhangX. LiR. YinJ. XuY. Neuroprotective effect of mangiferin against Parkinson’s disease through Gprotein-coupled receptor-interacting protein 1 (GIT1)-mediated antioxidant defense.ACS Chem. Neurosci.2023acschemneuro.2c0045810.1021/acschemneuro.2c0045837036451
    [Google Scholar]
  137. KavithaM. NatarajJ. EssaM.M. MemonM.A. ManivasagamT. Mangiferin attenuates MPTP induced dopaminergic neurodegeneration and improves motor impairment, redox balance and Bcl-2/Bax expression in experimental Parkinson’s disease mice.Chem. Biol. Interact.20132062239247
    [Google Scholar]
  138. KumarN. JamesR. SinhaS. KinraM. AnuranjanaP.V. NandakumarK. Naringin exhibited Anti-Parkinsonian like effect against haloperidol-induced catalepsy in mice.RJPT202114266266610.5958/0974‑360X.2021.00118.9
    [Google Scholar]
  139. AhmadM.H. FatimaM. AliM. RizviM.A. MondalA.C. Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson’s disease.Neuropharmacology202120110883110.1016/j.neuropharm.2021.108831 34655599
    [Google Scholar]
  140. LouH. JingX. WeiX. ShiH. RenD. ZhangX. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway.Neuropharmacology20147938038810.1016/j.neuropharm.2013.11.026 24333330
    [Google Scholar]
  141. MsibiZ.N.P. MabandlaM.V. Oleanolic acid mitigates 6-hydroxydopamine neurotoxicity by attenuating intracellular ROS in PC12 cells and striatal microglial activation in rat brains.Front. Physiol.201910105910.3389/fphys.2019.01059 31496954
    [Google Scholar]
  142. KongC.H. ChoK. MinJ.W. KimJ.Y. ParkK. KimD.Y. JeonM. KangW.C. JungS.Y. LeeJ.Y. RyuJ.H. Oleanolic acid alleviates the extrapyramidal symptoms and cognitive impairment induced by haloperidol through the striatal PKA signaling pathway in mice.Biomed. Pharmacother.202316811563910.1016/j.biopha.2023.115639 37812895
    [Google Scholar]
  143. MabandlaM.V. NyokaM. DanielsW.M.U. Early use of oleanolic acid provides protection against 6-hydroxydopamine induced dopamine neurodegeneration.Brain Res.20151622647110.1016/j.brainres.2015.06.017 26111646
    [Google Scholar]
  144. PingaleT.D. GuptaG.L. Oleanolic acid-based therapeutics ameliorate rotenone-induced motor and depressive behaviors in parkinsonian male mice via controlling neuroinflammation and activating Nrf2-BDNF-dopaminergic signaling pathways.Toxicol. Mech. Methods202434433534910.1080/15376516.2023.2288198 38084769
    [Google Scholar]
  145. BoyinaH.K. GeethakhrishnanS.L. PanugantiS. GangarapuK. DevarakondaK.P. BakshiV. GuggillaS.R. In silico and in vivo studies on quercetin as potential anti-parkinson agent.Adv. Exp. Med. Biol.2020119511110.1007/978‑3‑030‑32633‑3_1 32468451
    [Google Scholar]
  146. JosiahS.S. FamusiwaC.D. CrownO.O. LawalA.O. OlaleyeM.T. AkindahunsiA.A. AkinmoladunA.C. Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats.Neurotoxicology20229015817110.1016/j.neuro.2022.03.004 35337893
    [Google Scholar]
  147. LvC. HongT. YangZ. ZhangY. WangL. DongM. ZhaoJ. MuJ. MengY. Effect of quercetin in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced mouse model of Parkinson’s disease.Evid. Based Complement. Alternat. Med.201220121610.1155/2012/928643 22454690
    [Google Scholar]
  148. JiangY. XieG. AlimujiangA. XieH. YangW. YinF. HuangD. Protective effects of querectin against MPP+-induced dopaminergic neurons injury via the Nrf2 signaling pathway.Frontiers in Bioscience-Landmark20232834210.31083/j.fbl2803042 37005755
    [Google Scholar]
  149. SriraksaN. WattanathornJ. MuchimapuraS. TiamkaoS. BrownK. ChaisiwamongkolK. Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s disease induced by 6-hydroxydopamine.Evid. Based Complement. Alternat. Med.201220121910.1155/2012/823206 21792372
    [Google Scholar]
  150. AzamF. AbodabosH.S. TabanI.M. RfiedaA.R. MahmoodD. AnwarM.J. KhanS. SizochenkoN. PoliG. TuccinardiT. AliH.I. Rutin as promising drug for the treatment of Parkinson’s disease: an assessment of MAO-B inhibitory potential by docking, molecular dynamics and DFT studies.Mol. Simul.201945181563157110.1080/08927022.2019.1662003
    [Google Scholar]
  151. Moshahid KhanM. RazaS.S. JavedH. AhmadA. KhanA. IslamF. SafhiM.M. IslamF. Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson’s disease.Neurotox. Res.201222111510.1007/s12640‑011‑9295‑2 22194158
    [Google Scholar]
  152. Presti-SilvaS.M. HerlingerA.L. Martins-SilvaC. PiresR.G.W. Biochemical and behavioral effects of rosmarinic acid treatment in an animal model of Parkinson’s disease induced by MPTP.Behav. Brain Res.202344011425710.1016/j.bbr.2022.114257 36526017
    [Google Scholar]
  153. ZhaoY. HanY. WangZ. ChenT. QianH. HeJ. LiJ. HanB. WangT. Rosmarinic acid protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity in zebrafish embryos.Toxicol. In Vitro20206510482310.1016/j.tiv.2020.104823 32147576
    [Google Scholar]
  154. LvR. DuL. ZhouF. YuanX. LiuX. ZhangL. Rosmarinic acid alleviates inflammation, apoptosis, and oxidative stress through regulating miR-155-5p in a mice model of Parkinson’s disease.ACS Chem. Neurosci.202011203259326610.1021/acschemneuro.0c00375 32946211
    [Google Scholar]
  155. LvR. DuL. LiuX. ZhouF. ZhangZ. ZhangL. Rosmarinic acid attenuates inflammatory responses through inhibiting HMGB1/TLR4/NF-κB signaling pathway in a mouse model of Parkinson’s disease.Life Sci.201922315816510.1016/j.lfs.2019.03.030 30880023
    [Google Scholar]
  156. QuL. XuH. JiaW. JiangH. XieJ. Rosmarinic acid protects against MPTP-induced toxicity and inhibits iron-induced α-synuclein aggregation.Neuropharmacology201914429130010.1016/j.neuropharm.2018.09.042 30342981
    [Google Scholar]
  157. HanX. HanB. ZhaoY. LiG. WangT. HeJ. DuW. CaoX. GanJ. WangZ. ZhengW. Rosmarinic acid attenuates rotenone-induced neurotoxicity in SH-SY5Y Parkinson’s disease cell model through Abl inhibition.Nutrients20221417350810.3390/nu14173508 36079767
    [Google Scholar]
  158. SinghA. YadawaA.K. ChaturvediS. WahajuddinM. MishraA. SinghS. Mechanism for antiParkinsonian effect of resveratrol: Involvement of transporters, synaptic proteins, dendrite arborization, biochemical alterations, ER stress and apoptosis.Food Chem. Toxicol.202115511243310.1016/j.fct.2021.112433 34302886
    [Google Scholar]
  159. LiuQ. ZhuD. JiangP. TangX. LangQ. YuQ. ZhangS. CheY. FengX. Resveratrol synergizes with low doses of L-DOPA to improve MPTP-induced Parkinson disease in mice.Behav. Brain Res.2019367101810.1016/j.bbr.2019.03.043 30922940
    [Google Scholar]
  160. KhanM.M. AhmadA. IshratT. KhanM.B. HodaM.N. KhuwajaG. RazaS.S. KhanA. JavedH. VaibhavK. IslamF. Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease.Brain Res.2010132813915110.1016/j.brainres.2010.02.031 20167206
    [Google Scholar]
  161. JinF. WuQ. LuY.F. GongQ.H. ShiJ.S. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats.Eur. J. Pharmacol.20086001-3788210.1016/j.ejphar.2008.10.005 18940189
    [Google Scholar]
  162. Eyvari BrooshghalanS. SabahiM. EbadiS.A. SadeghianZ. Mohajjel NayebiA. HaddadiR. Silibinin chronic treatment in a rat model of Parkinson disease: A comprehensive in-vivo evaluation and in silico molecular modeling.Eur. J. Pharmacol.202394117551710.1016/j.ejphar.2023.175517 36669615
    [Google Scholar]
  163. EbrahimiS.S. OryanS. IzadpanahE. HassanzadehK. Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease.Toxicol. Lett.201727610811410.1016/j.toxlet.2017.05.018 28526446
    [Google Scholar]
  164. DongJ. ZhangX. WangS. XuC. GaoM. LiuS. LiX. ChengN. HanY. WangX. HanY. Thymoquinone prevents dopaminergic neurodegeneration by attenuating oxidative stress via the Nrf2/ARE Pathway.Front. Pharmacol.20211161559810.3389/fphar.2020.615598 33519481
    [Google Scholar]
  165. RaiS.N. ZahraW. SinghS.S. BirlaH. KeswaniC. DilnashinH. RathoreA.S. SinghR. SinghR.K. SinghS.P. Anti-inflammatory activity of ursolic acid in MPTP-induced Parkinsonian mouse model.Neurotox. Res.201936345246210.1007/s12640‑019‑00038‑6 31016688
    [Google Scholar]
  166. RaiS.N. YadavS.K. SinghD. SinghS.P. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model.J. Chem. Neuroanat.201671414910.1016/j.jchemneu.2015.12.002 26686287
    [Google Scholar]
  167. ZahraW. RaiS.N. BirlaH. SinghS.S. RathoreA.S. DilnashinH. SinghR. KeswaniC. SinghR.K. SinghS.P. Neuroprotection of rotenone-induced parkinsonism by ursolic acid in PD mouse model.CNS Neurol. Disord. Drug Targets202019752754010.2174/1871527319666200812224457 32787765
    [Google Scholar]
  168. HaddadiH. RajaeiZ. AlaeiH. ShahidaniS. Chronic treatment with carvacrol improves passive avoidance memory in a rat model of Parkinson’s disease.Arq. Neuropsiquiatr.2018762717710.1590/0004‑282x20170193 29489959
    [Google Scholar]
  169. ManouchehrabadiM. FarhadiM. AziziZ. Torkaman-BoutorabiA. Carvacrol protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro models of Parkinson’s disease.Neurotox. Res.202037115617010.1007/s12640‑019‑00088‑w 31364033
    [Google Scholar]
  170. ZhaoH. JiZ.H. LiuC. YuX.Y. Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats.Neuroscience201529048549110.1016/j.neuroscience.2015.01.060 25662510
    [Google Scholar]
  171. WangX. CaoG. DingD. LiF. ZhaoX. WangJ. YangY. Ferruginol prevents degeneration of dopaminergic neurons by enhancing clearance of α-synuclein in neuronal cells.Fitoterapia202215610506610.1016/j.fitote.2021.105066 34678438
    [Google Scholar]
  172. SiracusaR. PaternitiI. ImpellizzeriD. CordaroM. CrupiR. NavarraM. CuzzocreaS. EspositoE. The association of palmitoylethanolamide with luteolin decreases neuroinflammation and stimulates autophagy in Parkinson’s disease model.CNS Neurol. Disord. Drug Targets201514101350136610.2174/1871527314666150821102823 26295827
    [Google Scholar]
  173. ChenH.Q. JinZ.Y. WangX.J. XuX.M. DengL. ZhaoJ.W. Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation.Neurosci. Lett.2008448217517910.1016/j.neulet.2008.10.046 18952146
    [Google Scholar]
  174. AntunesM.S. GoesA.T.R. BoeiraS.P. PrigolM. JesseC.R. Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice.Nutrition20143011-121415142210.1016/j.nut.2014.03.024 25280422
    [Google Scholar]
  175. SuY. LiM. WangQ. XuX. QinP. HuangH. ZhangY. ZhouY. YanJ. Inhibition of the TLR/NF-κB signaling pathway and improvement of autophagy mediates neuroprotective effects of plumbagin in Parkinson’s disease.Oxid. Med. Cell. Longev.2022202211410.1155/2022/1837278
    [Google Scholar]
  176. JavedH. AzimullahS. MeeranM.F.N. AnsariS.A. OjhaS. Neuroprotective effects of thymol, a dietary monoterpene against dopaminergic neurodegeneration in rotenone-induced rat model of Parkinson’s disease.Int. J. Mol. Sci.2019207153810.3390/ijms20071538 30934738
    [Google Scholar]
  177. NourmohammadiS. YousefiS. ManouchehrabadiM. FarhadiM. AziziZ. Torkaman-BoutorabiA. Thymol protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease via inhibiting oxidative stress.BMC Complement. Med. Ther.202222
    [Google Scholar]
  178. HeJ. LiangJ. WangL. HuaX. Verbascoside promotes the regeneration of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra.Neural Regen. Res.201611110110610.4103/1673‑5374.175053 26981096
    [Google Scholar]
  179. KabutoH. YamanushiT.T. Effects of zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] and eugenol [2-methoxy-4-(2-propenyl)phenol] on the pathological progress in the 6-hydroxydopamine-induced Parkinson’s disease mouse model.Neurochem. Res.201136122244224910.1007/s11064‑011‑0548‑5 21769642
    [Google Scholar]
  180. TanD.X. ManchesterL.C. LiuX. Rosales-CorralS.A. Acuna-CastroviejoD. ReiterR.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes.J. Pineal Res.201354212713810.1111/jpi.12026 23137057
    [Google Scholar]
  181. TurkistaniA. Al-kuraishyH.M. Al-GareebA.I. NegmW.A. BahaaM.M. MetaweeM.E. El-Saber BatihaG. Blunted melatonin circadian rhythm in Parkinson’s disease: express bewilderment.Neurotox. Res.20244253810.1007/s12640‑024‑00716‑0 39177895
    [Google Scholar]
  182. VohraA. KarnikR. DesaiM. VyasH. KulshresthaS. UpadhyayK.K. KoringaP. DevkarR. Melatonin-mediated corrective changes in gut microbiota of experimentally chronodisrupted C57BL/6J mice.Chronobiol. Int.202441454856010.1080/07420528.2024.2329205 38557404
    [Google Scholar]
  183. ShiT. BianX. YaoZ. WangY. GaoW. GuoC. Quercetin improves gut dysbiosis in antibiotic-treated mice.Food Funct.20201198003801310.1039/D0FO01439G 32845255
    [Google Scholar]
  184. XuF. ChenH. GaoY. YangX. ZhangC. NiX. Sodium butyrate ameliorates postoperative delirium by regulating gut microbiota dysbiosis to inhibit astrocyte activation in aged mice.Neurochem. Res.202449123342335510.1007/s11064‑024‑04245‑2 39340594
    [Google Scholar]
  185. HwangO. Role of oxidative stress in Parkinson’s disease.Exp. Neurobiol.2013221111710.5607/en.2013.22.1.11 23585717
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249355503241210101001
Loading
/content/journals/cnsamc/10.2174/0118715249355503241210101001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test