Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Circular RNAs (circRNAs), a class of non-coding RNAs characterized by their closed-loop structure, are widely present in the body and exhibit greater stability compared to conventional linear RNAs. With the development of molecular biology, circRNAs are gradually considered as a prognostic indicator and therapeutic target for various diseases. Research on the mechanism of circRNA in various diseases has become an important direction. In addition, digestive diseases are becoming more common as people's eating habits change, and the incidence and mortality of severe digestive system tumors are increasing year by year. The study of circRNA in digestive diseases provides us with a new way to improve the diagnosis and treatment of digestive diseases. This article provides a comprehensive review of the research literature on circRNAs in digestive system diseases over the past five years (2019-2023) and covers aspects such as circRNA functions and underlying mechanisms. CircRNA has been implicated in a variety of digestive diseases. In these diseases, circRNA primarily acts as a microRNA (miRNA) sponge, interacting with miRNA to regulate the expression levels of genes associated with signaling pathways, and there is abundant research on the effects of circRNAs on drug resistance, cell proliferation, invasion, apoptosis, and poor prognosis. This article aima to discuss the current status of research on circular RNA and its key areas in digestive system diseases. The review aims to provide valuable insights for further research on the role of circular RNA in digestive system diseases and a reference for subsequent research.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240315558241009094311
2024-10-17
2025-12-19
Loading full text...

Full text loading...

References

  1. SangerH.L. KlotzG. RiesnerD. GrossH.J. KleinschmidtA.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures.Proc. Natl. Acad. Sci. USA197673113852385610.1073/pnas.73.11.3852 1069269
    [Google Scholar]
  2. SalzmanJ. GawadC. WangP.L. LacayoN. BrownP.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types.PLoS One201272e3073310.1371/journal.pone.0030733 22319583
    [Google Scholar]
  3. JeckW.R. SorrentinoJ.A. WangK. Circular RNAs are abundant, conserved, and associated with ALU repeats.RNA201319214115710.1261/rna.035667.112 23249747
    [Google Scholar]
  4. HansenT.B. KjemsJ. DamgaardC.K. Circular RNA and miR-7 in Cancer.Cancer Res.201373185609561210.1158/0008‑5472.CAN‑13‑1568 24014594
    [Google Scholar]
  5. MemczakS. JensM. ElefsiniotiA. Circular RNAs are a large class of animal RNAs with regulatory potency.Nature2013495744133333810.1038/nature11928 23446348
    [Google Scholar]
  6. ZhuK. HuX. ChenH. Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI.EBioMedicine20194934135310.1016/j.ebiom.2019.10.004 31636010
    [Google Scholar]
  7. ChenY. LiZ. ZhangM. Circ-ASH2L promotes tumor progression by sponging miR-34a to regulate Notch1 in pancreatic ductal adenocarcinoma.J. Exp. Clin. Cancer Res.201938146610.1186/s13046‑019‑1436‑0 31718694
    [Google Scholar]
  8. NaeliP. PourhanifehM.H. KarimzadehM.R. Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role.Crit. Rev. Oncol. Hematol.202014510285410.1016/j.critrevonc.2019.102854 31877535
    [Google Scholar]
  9. ZuoL. ZhangL. ZuJ. Circulating Circular RNAs as Biomarkers for the Diagnosis and Prediction of Outcomes in Acute Ischemic Stroke.Stroke202051131932310.1161/STROKEAHA.119.027348 31690252
    [Google Scholar]
  10. HanB. ChaoJ. YaoH. Circular RNA and its mechanisms in disease: From the bench to the clinic.Pharmacol. Ther.2018187314410.1016/j.pharmthera.2018.01.010 29406246
    [Google Scholar]
  11. LiJ. XuQ. HuangZ. CircRNAs: A new target for the diagnosis and treatment of digestive system neoplasms.Cell Death Dis.202112220510.1038/s41419‑021‑03495‑0 33627631
    [Google Scholar]
  12. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  13. SungH. FerlayJ. SiegelR.L. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  14. VenterJ.C. AdamsM.D. MyersE.W. The sequence of the human genome.Science200129155071304135110.1126/science.1058040 11181995
    [Google Scholar]
  15. SalzmanJ. Circular RNA Expression: Its Potential Regulation and Function.Trends Genet.201632530931610.1016/j.tig.2016.03.002 27050930
    [Google Scholar]
  16. BarrettS.P. SalzmanJ. Circular RNAs: Analysis, expression and potential functions.Development2016143111838184710.1242/dev.128074 27246710
    [Google Scholar]
  17. ChenL. ShanG. CircRNA in cancer: Fundamental mechanism and clinical potential.Cancer Lett.2021505495710.1016/j.canlet.2021.02.004 33609610
    [Google Scholar]
  18. LeiM. ZhengG. NingQ. ZhengJ. DongD. Translation and functional roles of circular RNAs in human cancer.Mol. Cancer20201913010.1186/s12943‑020‑1135‑7 32059672
    [Google Scholar]
  19. LevineM.S. RubesinS.E. Diseases of the esophagus: A pattern approach.Abdom. Radiol. (N.Y.)20174292199221810.1007/s00261‑017‑1218‑0 28647772
    [Google Scholar]
  20. YangY.M. HongP. XuW.W. HeQ.Y. LiB. Advances in targeted therapy for esophageal cancer.Signal Transduct. Target. Ther.20205122910.1038/s41392‑020‑00323‑3 33028804
    [Google Scholar]
  21. ZhouQ. LeiC. CuiF. ChenH. CaoX. Circ-ATIC regulates esophageal squamous cell carcinoma growth and metastasis through miR-1294/PBX3 pathway.Heliyon202391e1291610.1016/j.heliyon.2023.e12916 36699282
    [Google Scholar]
  22. TangR. ZhouQ. XuQ. LuL. ZhouY. Circular RNA circ_0006948 Promotes Esophageal Squamous Cell Carcinoma Progression by Regulating microRNA-3612/LASP1 Axis.Dig. Dis. Sci.20226762158217210.1007/s10620‑021‑07057‑4 34024023
    [Google Scholar]
  23. LuoC. ZhaoX. WangY. LiY. WangT. LiS. A novel circ_0000654/miR-375/E2F3 ceRNA network in esophageal squamous cell carcinoma.Thorac. Cancer202213152223223410.1111/1759‑7714.14550 35790503
    [Google Scholar]
  24. QianC. TongY. WangY. TengX. YaoJ. Circ_0001093 promotes glutamine metabolism and cancer progression of esophageal squamous cell carcinoma by targeting miR-579-3p/glutaminase axis.J. Bioenerg. Biomembr.202254211913410.1007/s10863‑022‑09935‑6 35322289
    [Google Scholar]
  25. LiangZ. ZhaoB. HouJ. ZhengJ. XinG. CircRNA circ-OGDH (hsa_circ_0003340) Acts as a ceRNA to Regulate Glutamine Metabolism and Esophageal Squamous Cell Carcinoma Progression by the miR-615-5p/PDX1 Axis.Cancer Manag. Res.2021133041305310.2147/CMAR.S290088 33854374
    [Google Scholar]
  26. ZengB. LiuZ. ZhuH. CircRNA_2646 functions as a ceRNA to promote progression of esophageal squamous cell carcinoma via inhibiting miR-124/PLP2 signaling pathway.Cell Death Discov.2021719910.1038/s41420‑021‑00461‑9 33976115
    [Google Scholar]
  27. WangJ. YaoW. LiJ. ZhangQ. WeiL. Identification of a novel circ_0001946/miR-1290/SOX6 ceRNA network in esophageal squamous cell cancer.Thorac. Cancer20221391299131010.1111/1759‑7714.14381 35411716
    [Google Scholar]
  28. LiuZ. LuX. WenL. YouC. JinX. LiuJ. Hsa_circ_0014879 regulates the radiosensitivity of esophageal squamous cell carcinoma through miR-519-3p/CDC25A axis.Anticancer Drugs2022331e349e36110.1097/CAD.0000000000001213 34407051
    [Google Scholar]
  29. WangY.M. ZhaoQ.W. SunZ.Y. Circular RNA hsa_circ_0003823 promotes the Tumor Progression, Metastasis and Apatinib Resistance of Esophageal Squamous Cell Carcinoma by miR-607/CRISP3 Axis.Int. J. Biol. Sci.202218155787580810.7150/ijbs.76096 36263172
    [Google Scholar]
  30. ZhuH. DuF. CaoC. Restoration of circPSMC3 sensitizes gefitinib‐resistant esophageal squamous cell carcinoma cells to gefitinib by regulating miR‐10a‐5p/PTEN axis.Cell Biol. Int.202145110711610.1002/cbin.11473 32997362
    [Google Scholar]
  31. YangG. ZhangY. LinH. CircRNA circ_0023984 promotes the progression of esophageal squamous cell carcinoma via regulating miR-134-5p/cystatin-s axis.Bioengineered2022134105781059310.1080/21655979.2022.2063562 35440286
    [Google Scholar]
  32. LuoJ. TianZ. ZhouY. CircABCA13 acts as a miR-4429 sponge to facilitate esophageal squamous cell carcinoma development by stabilizing SRXN1.Cancer Sci.202311472835284710.1111/cas.15807 37017121
    [Google Scholar]
  33. WangC. ZhouM. ZhuP. IGF2BP2-induced circRUNX1 facilitates the growth and metastasis of esophageal squamous cell carcinoma through miR-449b-5p/FOXP3 axis.J. Exp. Clin. Cancer Res.202241134710.1186/s13046‑022‑02550‑8 36522683
    [Google Scholar]
  34. LiuZ. YangS. LiW. DongS. ZhouS. XuS. circRNA_141539 can serve as an oncogenic factor in esophageal squamous cell carcinoma by sponging miR-4469 and activating CDK3 gene.Aging (Albany NY)2021138121791219310.18632/aging.103071 33504681
    [Google Scholar]
  35. MengL. ZhengY. LiuS. ZEB1 represses biogenesis of circ-DOCK5 to facilitate metastasis in esophageal squamous cell carcinoma via a positive feedback loop with TGF-β.Cancer Lett.202151911712910.1016/j.canlet.2021.06.026 34216686
    [Google Scholar]
  36. KimT.H. ShivdasaniR.A. Stomach development, stem cells and disease.Development2016143455456510.1242/dev.124891 26884394
    [Google Scholar]
  37. JoshiS.S. BadgwellB.D. Current treatment and recent progress in gastric cancer.CA Cancer J. Clin.202171326427910.3322/caac.21657 33592120
    [Google Scholar]
  38. XuQ. LiaoB. HuS. ZhouY. XiaW. Circular RNA 0081146 facilitates the progression of gastric cancer by sponging miR-144 and up-regulating HMGB1.Biotechnol. Lett.202143476777910.1007/s10529‑020‑03058‑x 33496921
    [Google Scholar]
  39. BuX. ChenZ. ZhangA. Circular RNA circAFF2 accelerates gastric cancer development by activating miR-6894-5p and regulating ANTXR 1 expression.Clin. Res. Hepatol. Gastroenterol.202145310167110.1016/j.clinre.2021.101671 33722777
    [Google Scholar]
  40. LiangM. YaoW. ShiB. Circular RNA hsa_circ_0110389 promotes gastric cancer progression through upregulating SORT1 via sponging miR-127-5p and miR-136-5p.Cell Death Dis.202112763910.1038/s41419‑021‑03903‑5 34162830
    [Google Scholar]
  41. ZhouY. ZhangQ. LiaoB. QiuX. HuS. XuQ. circ_0006089 promotes gastric cancer growth, metastasis, glycolysis, and angiogenesis by regulating miR‐361‐3p/TGFB1.Cancer Sci.202211362044205510.1111/cas.15351 35347818
    [Google Scholar]
  42. ChenD.L. ShengH. ZhangD.S. The circular RNA circDLG1 promotes gastric cancer progression and anti-PD-1 resistance through the regulation of CXCL12 by sponging miR-141-3p.Mol. Cancer202120116610.1186/s12943‑021‑01475‑8 34911533
    [Google Scholar]
  43. AmeliMojaradM. AmeliMojaradM. PourmahdianA. Circular RNA circ_0051620 sponges miR-338–3p and regulates ADAM17 to promote the gastric cancer progression.Pathol. Res. Pract.202223315388710.1016/j.prp.2022.153887 35413598
    [Google Scholar]
  44. KongS. TianS. WangZ. ShiY. ZhangJ. ZhuoH. Circular RNA circPFKP suppresses the proliferation and metastasis of gastric cancer cell via sponging miR-644 and regulating ADAMTSL5 expression.Bioengineered2022135123261233710.1080/21655979.2022.2073001 35587154
    [Google Scholar]
  45. ZangX. JiangJ. GuJ. Circular RNA EIF4G3 suppresses gastric cancer progression through inhibition of β-catenin by promoting δ-catenin ubiquitin degradation and upregulating SIK1.Mol. Cancer202221114110.1186/s12943‑022‑01606‑9 35780119
    [Google Scholar]
  46. DengP. SunM. ZhaoW.Y. Circular RNA circVAPA promotes chemotherapy drug resistance in gastric cancer progression by regulating miR-125b-5p/STAT3 axis.World J. Gastroenterol.202127648750010.3748/wjg.v27.i6.487 33642823
    [Google Scholar]
  47. LiH. ShanC. WangJ. HuC. CircRNA Hsa_circ_0001017 Inhibited Gastric Cancer Progression via Acting as a Sponge of miR-197.Dig. Dis. Sci.20216672261227110.1007/s10620‑020‑06516‑8 32740683
    [Google Scholar]
  48. XuP. ZhangX. CaoJ. The novel role of circular RNA ST3GAL6 on blocking gastric cancer malignant behaviours through autophagy regulated by the FOXP2/MET/mTOR axis.Clin. Transl. Med.2022121e70710.1002/ctm2.707 35061934
    [Google Scholar]
  49. XiaY. LvJ. JiangT. CircFAM73A promotes the cancer stem cell-like properties of gastric cancer through the miR-490-3p/HMGA2 positive feedback loop and HNRNPK-mediated β-catenin stabilization.J. Exp. Clin. Cancer Res.202140110310.1186/s13046‑021‑01896‑9 33731207
    [Google Scholar]
  50. WangH. SunG. XuP. Circular RNA TMEM87A promotes cell proliferation and metastasis of gastric cancer by elevating ULK1 via sponging miR-142-5p.J. Gastroenterol.202156212513810.1007/s00535‑020‑01744‑1 33155080
    [Google Scholar]
  51. FanD. WangC. WangD. ZhangN. YiT. Circular RNA circ_0000039 enhances gastric cancer progression through miR-1292-5p/DEK axis.Cancer Biomark.202130216717710.3233/CBM‑201754 33104023
    [Google Scholar]
  52. LvL. DuJ. WangD. YanZ. Circular RNA hsa_circ_0026344 suppresses gastric cancer cell proliferation, migration and invasion via the miR-590-5p/PDCD4 axis.J. Pharm. Pharmacol.20227481193120410.1093/jpp/rgac032 35640631
    [Google Scholar]
  53. WangF.S. FanJ.G. ZhangZ. GaoB. WangH.Y. The global burden of liver disease: The major impact of China.Hepatology20146062099210810.1002/hep.27406 25164003
    [Google Scholar]
  54. AxleyP.D. RichardsonC.T. SingalA.K. Epidemiology of Alcohol Consumption and Societal Burden of Alcoholism and Alcoholic Liver Disease.Clin. Liver Dis.2019231395010.1016/j.cld.2018.09.011 30454831
    [Google Scholar]
  55. LuX. LiuY. XuanW. Circ_1639 induces cells inflammation responses by sponging miR-122 and regulating TNFRSF13C expression in alcoholic liver disease.Toxicol. Lett.2019314899710.1016/j.toxlet.2019.07.021 31325635
    [Google Scholar]
  56. GoftonC. UpendranY. ZhengM.H. GeorgeJ. MAFLD: How is it different from NAFLD?Clin. Mol. Hepatol.202329S17S3110.3350/cmh.2022.0367 36443926
    [Google Scholar]
  57. LiY. CenC.Q. LiuB. ZhouL. HuangX.M. LiuG.Y. Overexpression of circ PTK2 suppresses the progression of nonalcoholic fatty liver disease via the miR-200c/SIK2/PI3K/Akt axis.Kaohsiung J. Med. Sci.202238986987810.1002/kjm2.12568 35791807
    [Google Scholar]
  58. ChenX. TanQ.Q. TanX.R. LiS.J. ZhangX.X. Circ_0057558 promotes nonalcoholic fatty liver disease by regulating ROCK1/AMPK signaling through targeting miR-206.Cell Death Dis.202112980910.1038/s41419‑021‑04090‑z 34446693
    [Google Scholar]
  59. CastanedaD. GonzalezA.J. AlomariM. TandonK. ZervosX.B. From hepatitis A to E: A critical review of viral hepatitis.World J. Gastroenterol.202127161691171510.3748/wjg.v27.i16.1691 33967551
    [Google Scholar]
  60. ZhangL. WangZ. Circular RNA hsa_circ_0004812 impairs IFN-induced immune response by sponging miR-1287-5p to regulate FSTL1 in chronic hepatitis B.Virol. J.20201714010.1186/s12985‑020‑01314‑0 32188476
    [Google Scholar]
  61. GinèsP. KragA. AbraldesJ.G. SolàE. FabrellasN. KamathP.S. Liver cirrhosis.Lancet2021398103081359137610.1016/S0140‑6736(21)01374‑X 34543610
    [Google Scholar]
  62. RoehlenN. CrouchetE. BaumertT.F. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives.Cells20209487510.3390/cells9040875 32260126
    [Google Scholar]
  63. JiD. ChenG.F. WangJ.C. Hsa_circ_0070963 inhibits liver fibrosis via regulation of miR-223-3p and LEMD3.Aging (Albany NY)20201221643165510.18632/aging.102705 32003753
    [Google Scholar]
  64. JinH. LiC. DongP. HuangJ. YuJ. ZhengJ. Circular RNA cMTO1 Promotes PTEN Expression Through Sponging miR-181b-5p in Liver Fibrosis.Front. Cell Dev. Biol.2020871410.3389/fcell.2020.00714 32850833
    [Google Scholar]
  65. ShenH. LiuB. XuJ. Circular RNAs: characteristics, biogenesis, mechanisms and functions in liver cancer.J. Hematol. Oncol.202114113410.1186/s13045‑021‑01145‑8 34461958
    [Google Scholar]
  66. LiuW zhengL ZhangR Circ-ZEB1 promotes PIK3CA expression by silencing miR-199a-3p and affects the proliferation and apoptosis of hepatocellular carcinoma.Mol. Cancer20222117210.1186/s12943‑022‑01529‑5 35277182
    [Google Scholar]
  67. WangZ. ZhaoY. WangY. JinC. Circular RNA circHIAT1 inhibits cell growth in hepatocellular carcinoma by regulating miR-3171/PTEN axis.Biomed. Pharmacother.201911610893210.1016/j.biopha.2019.108932 31108351
    [Google Scholar]
  68. LiuL. GuM. MaJ. CircGPR137B/miR-4739/FTO feedback loop suppresses tumorigenesis and metastasis of hepatocellular carcinoma.Mol. Cancer202221114910.1186/s12943‑022‑01619‑4 35858900
    [Google Scholar]
  69. LuoY. FuY. HuangR. CircRNA_101505 sensitizes hepatocellular carcinoma cells to cisplatin by sponging miR-103 and promotes oxidored-nitro domain-containing protein 1 expression.Cell Death Discov.20195112110.1038/s41420‑019‑0202‑6 31372241
    [Google Scholar]
  70. XuJ. WanZ. TangM. N6-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling.Mol. Cancer202019116310.1186/s12943‑020‑01281‑8 33222692
    [Google Scholar]
  71. LiJ.X. WangJ.J. DengZ.F. Circular RNA circ_0008934 promotes hepatocellular carcinoma growth and metastasis through modulating miR-1305/TMTC3 axis.Hum. Cell202235249851010.1007/s13577‑021‑00657‑2 35015267
    [Google Scholar]
  72. ZhouW. YangF. Circular RNA circRNA-0039459 promotes the migration, invasion, and proliferation of liver cancer cells through the adsorption of miR-432.Bioengineered2022135118101182110.1080/21655979.2022.2073129 35543347
    [Google Scholar]
  73. ZhaiZ. FuQ. LiuC. Emerging roles Of hsa-circ-0046600 targeting the miR-640/HIF-1α signalling pathway in the progression of HCC.OncoTargets Ther.2019129291930210.2147/OTT.S229514 31807009
    [Google Scholar]
  74. GuY. WuF. WangH. ChangJ. WangY. LiX. Circular RNA circARPP21 Acts as a Sponge of miR-543 to Suppress Hepatocellular Carcinoma by Regulating LIFR.OncoTargets Ther.20211487989010.2147/OTT.S283026 33584097
    [Google Scholar]
  75. ChenQ. WangH. LiZ. Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription.J. Hepatol.202276113514710.1016/j.jhep.2021.08.027 34509526
    [Google Scholar]
  76. DuJ. LanT. LiaoH. CircNFIB inhibits tumor growth and metastasis through suppressing MEK1/ERK signaling in intrahepatic cholangiocarcinoma.Mol. Cancer20222111810.1186/s12943‑021‑01482‑9 35039066
    [Google Scholar]
  77. HenryB.M. SkinningsrudB. SaganiakK. PękalaP.A. WalochaJ.A. TomaszewskiK.A. Development of the human pancreas and its vasculature — An integrated review covering anatomical, embryological, histological, and molecular aspects.Ann. Anat.201922111512410.1016/j.aanat.2018.09.008 30300687
    [Google Scholar]
  78. SzatmaryP. GrammatikopoulosT. CaiW. Acute Pancreatitis: Diagnosis and Treatment.Drugs202282121251127610.1007/s40265‑022‑01766‑4 36074322
    [Google Scholar]
  79. SunQ. LiangR. LiM. ZhouH. Circ_UTRN ameliorates caerulein-induced acute pancreatitis in vitrovia reducing inflammation and promoting apoptosis through miR-320-3p/PTK2 axis.J. Pharm. Pharmacol.202274686186810.1093/jpp/rgab161 34850057
    [Google Scholar]
  80. WangJ. FuJ. XuC. JiaR. ZhangX. ZhaoS. Circ_ZFP644 attenuates caerulein-induced inflammatory injury in rat pancreatic acinar cells by modulating miR-106b/Pias3 axis.Exp. Mol. Pathol.202112110464410.1016/j.yexmp.2021.104644 33945806
    [Google Scholar]
  81. WangJ. LiX. LiuY. CircHIPK3 Promotes Pyroptosis in Acinar Cells Through Regulation of the miR-193a-5p/GSDMD Axis.Front. Med. (Lausanne)202078810.3389/fmed.2020.00088 32318575
    [Google Scholar]
  82. RenS. PanL. YangL. Interfering hsa_circ_0073748 alleviates caerulein-induced ductal cell injury in acute pancreatitis by inhibiting miR-132-3p/TRAF3/NF-κB pathway.Cell Cycle202221217218610.1080/15384101.2021.2014653 34882521
    [Google Scholar]
  83. WoodL.D. CantoM.I. JaffeeE.M. SimeoneD.M. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment.Gastroenterology20221632386402.e110.1053/j.gastro.2022.03.056 35398344
    [Google Scholar]
  84. GuoW. ZhaoL. WeiG. LiuP. ZhangY. FuL. Blocking circ_0013912 Suppressed Cell Growth, Migration and Invasion of Pancreatic Ductal Adenocarcinoma Cells in vitro and in vivo Partially Through Sponging miR-7-5p.Cancer Manag. Res.2020127291730310.2147/CMAR.S255808 32884344
    [Google Scholar]
  85. HuaS. GaoJ. LiT. The promoting effects of hsa_circ_0050102 in pancreatic cancer and the molecular mechanism by targeting miR-1182/NPSR1.Carcinogenesis202142347148010.1093/carcin/bgaa130 33289016
    [Google Scholar]
  86. YaoJ. ZhangC. ChenY. GaoS. Downregulation of circular RNA circ-LDLRAD3 suppresses pancreatic cancer progression through miR-137-3p/PTN axis.Life Sci.201923911687110.1016/j.lfs.2019.116871 31521692
    [Google Scholar]
  87. GuoX. ZhouQ. SuD. Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis.Mol. Cancer20201918310.1186/s12943‑020‑01196‑4 32375768
    [Google Scholar]
  88. ShenP. YangT. ChenQ. CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and A-to-I RNA-editing.Mol. Cancer20212015110.1186/s12943‑021‑01333‑7 33750389
    [Google Scholar]
  89. WangK.Q. YeM.L. QiaoX. YuZ.W. WuC.X. ZhengJ.F. Circular RNA Fibroblast Growth Factor Receptor 1 Promotes Pancreatic Cancer Progression by Targeting MicroRNA-532-3p/PIK3CB Axis.Pancreas202251893094210.1097/MPA.0000000000002119 36607937
    [Google Scholar]
  90. HouJ.P. MenX.B. YangL.Y. HanE.K. HanC.Q. LiuL.B. CircCCT3 Acts as a Sponge of miR-613 to Promote Tumor Growth of Pancreatic Cancer Through Regulating VEGFA/VEGFR2 Signaling.Balkan Med. J.202138422923810.5152/balkanmedj.2021.21145 34274912
    [Google Scholar]
  91. YuS. WangM. ZhangH. GuoX. QinR. Circ_0092367 Inhibits EMT and Gemcitabine Resistance in Pancreatic Cancer via Regulating the miR-1206/ESRP1 Axis.Genes (Basel)20211211170110.3390/genes12111701 34828307
    [Google Scholar]
  92. YangT. ShenP. ChenQ. FUS-induced circRHOBTB3 facilitates cell proliferation via miR-600/NACC1 mediated autophagy response in pancreatic ductal adenocarcinoma.J. Exp. Clin. Cancer Res.202140126110.1186/s13046‑021‑02063‑w 34416910
    [Google Scholar]
  93. MengL. ZhangY. WuP. CircSTX6 promotes pancreatic ductal adenocarcinoma progression by sponging miR-449b-5p and interacting with CUL2.Mol. Cancer202221112110.1186/s12943‑022‑01599‑5 35650603
    [Google Scholar]
  94. GuanQ. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease.J. Immunol. Res.2019201911610.1155/2019/7247238 31886308
    [Google Scholar]
  95. WangT. ChenN. RenW. Integrated analysis of circRNAs and mRNAs expression profile revealed the involvement of hsa_circ_0007919 in the pathogenesis of ulcerative colitis.J. Gastroenterol.201954980481810.1007/s00535‑019‑01585‑7 31037450
    [Google Scholar]
  96. LiB. LiY. LiL. Hsa_circ_0001021 regulates intestinal epithelial barrier function via sponging miR-224-5p in ulcerative colitis.Epigenomics202113171385140110.2217/epi‑2021‑0230 34528447
    [Google Scholar]
  97. ZhaoJ. SunY. YangH. PLGA-microspheres-carried circGMCL1 protects against Crohn’s colitis through alleviating NLRP3 inflammasome-induced pyroptosis by promoting autophagy.Cell Death Dis.202213978210.1038/s41419‑022‑05226‑5 36088391
    [Google Scholar]
  98. YinJ. YeY.L. HuT. Hsa_circRNA_102610 upregulation in Crohn’s disease promotes transforming growth factor-β1-induced epithelial-mesenchymal transition via sponging of hsa-miR-130a-3p.World J. Gastroenterol.202026223034305510.3748/wjg.v26.i22.3034 32587447
    [Google Scholar]
  99. ZygulskaA.L. PierzchalskiP. Novel Diagnostic Biomarkers in Colorectal Cancer.Int. J. Mol. Sci.202223285210.3390/ijms23020852 35055034
    [Google Scholar]
  100. LiN. CircTBL1XR1/miR-424 axis regulates Smad7 to promote the proliferation and metastasis of colorectal cancer.J. Gastrointest. Oncol.202011591893110.21037/jgo‑20‑395 33209488
    [Google Scholar]
  101. WangJ. ZhouL. ChenB. Circular RNA circCSPP1 promotes the occurrence and development of colon cancer by sponging miR-431 and regulating ROCK1 and ZEB1.J. Transl. Med.20222015810.1186/s12967‑022‑03240‑x 35101080
    [Google Scholar]
  102. ChenP. YaoY. YangN. GongL. KongY. WuA. Circular RNA circCTNNA1 promotes colorectal cancer progression by sponging miR-149-5p and regulating FOXM1 expression.Cell Death Dis.202011755710.1038/s41419‑020‑02757‑7 32699205
    [Google Scholar]
  103. ZouY. LiuL. MengJ. DaiM. Circular RNA circ_0068464 combined with microRNA-383 regulates Wnt/β-catenin pathway to promote the progression of colorectal cancer.Bioengineered20221335113512510.1080/21655979.2022.2036905 35168468
    [Google Scholar]
  104. ChenB. HongY. GuiR. N6-methyladenosine modification of circ_0003215 suppresses the pentose phosphate pathway and malignancy of colorectal cancer through the miR-663b/DLG4/G6PD axis.Cell Death Dis.202213980410.1038/s41419‑022‑05245‑2 36127319
    [Google Scholar]
  105. WangJ. LuoJ. LiuG. LiX. Circular RNA hsa_circ_0008285 inhibits colorectal cancer cell proliferation and migration via the miR-382-5p/PTEN axis.Biochem. Biophys. Res. Commun.2020527250351010.1016/j.bbrc.2020.03.165 32423803
    [Google Scholar]
  106. ZhouP. XieW. HuangH.L. circRNA_100859 functions as an oncogene in colon cancer by sponging the miR-217-HIF-1α pathway.Aging (Albany NY)20201213133381335310.18632/aging.103438 32644049
    [Google Scholar]
  107. ChenF. GuoL. DiJ. LiM. DongD. PeiD. Circular RNA ubiquitin-associated protein 2 enhances autophagy and promotes colorectal cancer progression and metastasis via miR-582-5p/FOXO1 signaling.J. Genet. Genomics202148121091110310.1016/j.jgg.2021.07.017 34416339
    [Google Scholar]
  108. WuM. KongC. CaiM. Hsa_circRNA_002144 promotes growth and metastasis of colorectal cancer through regulating miR-615-5p/LARP1/mTOR pathway.Carcinogenesis202142460161010.1093/carcin/bgaa140 33347535
    [Google Scholar]
  109. LuoY. YaoQ. Circ_0085315 promotes cell proliferation, invasion, and migration in colon cancer through miR-1200/MAP3K1 signaling pathway.Cell Cycle202221111194121110.1080/15384101.2022.2044137 35230926
    [Google Scholar]
  110. MatsuoK. AkibaJ. KusukawaJ. YanoH. Squamous cell carcinoma of the tongue: Subtypes and morphological features affecting prognosis.Am. J. Physiol. Cell Physiol.20223236C1611C162310.1152/ajpcell.00098.2022 36252129
    [Google Scholar]
  111. ZhouY. ZhangS. MinZ. YuZ. ZhangH. JiaoJ. Knockdown of circ_0011946 targets miR-216a-5p/BCL2L2 axis to regulate proliferation, migration, invasion and apoptosis of oral squamous cell carcinoma cells.BMC Cancer2021211108510.1186/s12885‑021‑08779‑4 34620126
    [Google Scholar]
  112. LiuJ. JiangX. ZouA. circIGHG-Induced Epithelial-to-Mesenchymal Transition Promotes Oral Squamous Cell Carcinoma Progression via miR-142-5p/IGF2BP3 Signaling.Cancer Res.202181234435510.1158/0008‑5472.CAN‑20‑0554 33203701
    [Google Scholar]
  113. QiuF. QiaoB. ZhangN. Blocking circ-SCMH1 (hsa_circ_0011946) suppresses acquired DDP resistance of oral squamous cell carcinoma (OSCC) cells both in vitro and in vivo by sponging miR-338-3p and regulating LIN28B.Cancer Cell Int.202121141210.1186/s12935‑021‑02110‑8 34353342
    [Google Scholar]
  114. YuH. YuZ. WangX. WangD. Circular RNA circCLK3 promotes the progression of tongue squamous cell carcinoma via miR‐455‐5p/PARVA axis.Biotechnol. Appl. Biochem.202269243144110.1002/bab.2120 33655541
    [Google Scholar]
  115. ChenX. KongD. DengJ. MoF. LiangJ. Overexpression of circFNDC3B promotes the progression of oral tongue squamous cell carcinoma through the miR-1322/MED1 axis.Head Neck202244112417242710.1002/hed.27152 35916453
    [Google Scholar]
  116. QianC. YangY. LanT. WangY. YaoJ. Hsa_circ_0043265 Restrains Cell Proliferation, Migration and Invasion of Tongue Squamous Cell Carcinoma via Targeting the miR-1243/SALL1 Axis.Pathol. Oncol. Res.20212758713010.3389/pore.2021.587130 34257535
    [Google Scholar]
  117. JuR. HuangY. GuoZ. The circular RNAs differential expression profiles in the metastasis of salivary adenoid cystic carcinoma cells.Mol. Cell. Biochem.202147621269128210.1007/s11010‑020‑03989‑z 33237453
    [Google Scholar]
  118. WeiH. LiJ. XieC. DongH. Circular RNA hsa_circ_0011946 promotes the malignant process of salivary adenoid cystic carcinoma by downregulating miR 1205 expression.Exp. Ther. Med.202223429510.3892/etm.2022.11224 35317442
    [Google Scholar]
  119. WuS. HuangX. TieX. ChengY. XueX. FanM. Role and mechanism of action of circular RNA and laryngeal cancer.Pathol. Res. Pract.202122315346010.1016/j.prp.2021.153460 33971544
    [Google Scholar]
  120. GongH. WuW. FangC. HeD. CircBFAR correlates with poor prognosis and promotes laryngeal squamous cell cancer progression through miR-31-5p/COL5A1 axis.Laryngoscope Investig. Otolaryngol.2022761951196210.1002/lio2.966 36544920
    [Google Scholar]
  121. LiS. ZhangY. HeZ. XuQ. LiC. XuB. Knockdown of circMYOF inhibits cell growth, metastasis, and glycolysis through miR-145-5p/OTX1 regulatory axis in laryngeal squamous cell carcinoma.Funct. Integr. Genomics202222411310.1007/s10142‑022‑00862‑8 35474406
    [Google Scholar]
  122. ChenF. ZhangH. WangJ. Circular RNA CircSHKBP1 accelerates the proliferation, invasion, angiogenesis, and stem cell-like properties via modulation of microR-766-5p/high mobility group AT-hook 2 axis in laryngeal squamous cell carcinoma.Bioengineered2022135115511156310.1080/21655979.2022.2068922 35502885
    [Google Scholar]
  123. HickmanL. ContrerasC. Gallbladder Cancer.Surg. Clin. North Am.201999233735510.1016/j.suc.2018.12.008 30846038
    [Google Scholar]
  124. WangS. ZhangY. CaiQ. Circular RNA FOXP1 promotes tumor progression and Warburg effect in gallbladder cancer by regulating PKLR expression.Mol. Cancer201918114510.1186/s12943‑019‑1078‑z 31623628
    [Google Scholar]
  125. WangS. SuT. TongH. Circβ-catenin promotes tumor growth and Warburg effect of gallbladder cancer by regulating STMN1 expression.Cell Death Discov.20217123310.1038/s41420‑021‑00626‑6 34489401
    [Google Scholar]
  126. ZhangN. LiJ. SunH. TianA. ChenY. Circ_0008234 regulates the biological process of gallbladder carcinoma by targeting the miR-204-5p/FGFR2 axis.Histol. Histopathol.2023388893905 36278816
    [Google Scholar]
  127. BrindleyP.J. BachiniM. IlyasS.I. Cholangiocarcinoma.Nat. Rev. Dis. Primers2021716510.1038/s41572‑021‑00300‑2 34504109
    [Google Scholar]
  128. TuJ. ChenW. ZhengL. Circular RNA Circ0021205 Promotes Cholangiocarcinoma Progression Through MiR-204-5p/RAB22A Axis.Front. Cell Dev. Biol.2021965320710.3389/fcell.2021.653207 34012964
    [Google Scholar]
  129. GuanC. LiuL. ZhaoY. YY1 and eIF4A3 are mediators of the cell proliferation, migration and invasion in cholangiocarcinoma promoted by circ-ZNF609 by targeting miR-432-5p to regulate LRRC1.Aging (Albany NY)20211323251952521210.18632/aging.203735 34898474
    [Google Scholar]
  130. SuY. YuT. WangY. HuangX. WeiX. Circular RNA circDNM3OS Functions as a miR-145-5p Sponge to Accelerate Cholangiocarcinoma Growth and Glutamine Metabolism by Upregulating MORC2.OncoTargets Ther.2021141117112910.2147/OTT.S289241 33628035
    [Google Scholar]
  131. SalmenaL. PolisenoL. TayY. KatsL. PandolfiP.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language?Cell2011146335335810.1016/j.cell.2011.07.014 21802130
    [Google Scholar]
  132. LanW LiC ChenQ LGCDA: Predicting CircRNADisease Association Based on Fusion of Local and Global Features.IEEE/ACM Trans Comput Biol Bioinform202410.1109/TCBB.2024.3387913
    [Google Scholar]
  133. TianY. ZouQ. WangC. JiaC. MAMLCDA: A Meta-Learning Model for Predicting circRNA-Disease Association Based on MAML Combined With CNN.IEEE J. Biomed. Health Inform.20242874325433510.1109/JBHI.2024.3385352 38578862
    [Google Scholar]
  134. WangY. LiuX. ShenY. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information.Brief. Bioinform.2023242bbad06910.1093/bib/bbad069 36847701
    [Google Scholar]
  135. WuJ. LuP. ZhangW. Predicting associations between CircRNA and diseases through structure-aware graph transformer and path-integral convolution.Anal. Biochem.202469211555410.1016/j.ab.2024.115554 38710353
    [Google Scholar]
  136. LiuR. LiY. WuA. Identification of Plasma hsa_circ_0005397 and Combined With Serum AFP, AFP-L3 as Potential Biomarkers for Hepatocellular Carcinoma.Front. Pharmacol.20211263996310.3389/fphar.2021.639963 33679420
    [Google Scholar]
  137. ZhangW. LiuY. MinZ. circMine: A comprehensive database to integrate, analyze and visualize human disease–related circRNA transcriptome.Nucleic Acids Res.202250D1D83D9210.1093/nar/gkab809 34530446
    [Google Scholar]
  138. HuJ. HuB. DengL. ChengL. FanQ. LuC. Arsenic sulfide inhibits the progression of gastric cancer through regulating the circRNA_ASAP2/Wnt/β-catenin pathway.Anticancer Drugs2022331e711e71910.1097/CAD.0000000000001246 34486534
    [Google Scholar]
  139. WangL. LiB. YiX. XiaoX. ZhengQ. MaL. Circ_SMAD4 promotes gastric carcinogenesis by activating wnt/β‐catenin pathway.Cell Prolif.2021543e1298110.1111/cpr.12981 33458917
    [Google Scholar]
  140. LiuW.G. XuQ. Upregulation of circHIPK3 promotes the progression of gastric cancer via Wnt/β-catenin pathway and indicates a poor prognosis.Eur. Rev. Med. Pharmacol. Sci.2019231879057912 31599413
    [Google Scholar]
  141. HuangX. LiZ. ZhangQ. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression.Mol. Cancer20191817110.1186/s12943‑019‑0969‑3 30927924
    [Google Scholar]
  142. ZhouN. WangW. XuC. YuW. Circular RNA PLEC acts as a sponge of microRNA-198 to promote gastric carcinoma cell resistance to paclitaxel and tumorigenesis.Pathol. Res. Pract.202122415348710.1016/j.prp.2021.153487 34225215
    [Google Scholar]
  143. RoyS. KandaM. NomuraS. Diagnostic efficacy of circular RNAs as noninvasive, liquid biopsy biomarkers for early detection of gastric cancer.Mol. Cancer20222114210.1186/s12943‑022‑01527‑7 35139874
    [Google Scholar]
  144. XuC. JunE. OkugawaY. A Circulating Panel of circRNA Biomarkers for the Noninvasive and Early Detection of Pancreatic Ductal Adenocarcinoma.Gastroenterology20241661178190.e1610.1053/j.gastro.2023.09.050 37839499
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240315558241009094311
Loading
/content/journals/cmm/10.2174/0115665240315558241009094311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test