Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. According to traditional chinese medicine (TCM) syndromes theory, moist heat arthralgia spasm syndrome is the most prevalent syndrome of RA patients in the active period. However, the mechanism of alteration of gut microbiota in RA with moist heat arthralgia spasm syndrome has not been reported until now.

Objective

This study focused on the alteration of gut microbiota in adjuvant-induced arthritis (AA) rats with moist heat arthralgia spasm syndrome, elaborated its regulation mechanism, and analyzed the associations between gut microbiota and microbial metabolites.

Methods

The disease-syndrome combination rat model of RA with moist heat arthralgia spasm syndrome was constructed with AA under damp-heat stimulating. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum biochemical indicators. Damages of ankle joints were observed using hematoxylin and eosin (H&E). 16 small ribosomal subunit RNA (16S rRNA) gene sequencing was conducted to assess the gut microbiota composition and function on feces from rats. Alterations in fecal metabolites profiling were evaluated by fecal metabolomics through liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). Pearson correlation analysis was performed to explore the associations of altered gut microbiota and microbial metabolites in Model rats.

Results

The imbalance of gut microbiota in Model rats was accompanied by metabolic disorders. , , , , , and were found to be dominant genera in Model rats. In total, 357 metabolites were significantly altered in Model rats and predominantly enriched into fatty acid degradation and glycerophospholipid metabolism. Pearson correlation analysis showed that TNF-α and IL-1β were associated with and 3R-hydroxy-docosan-5S-olide, alpha-N-(3-hydroxy-14-methyl-pentadecanoyl)-ornithine, 17-methyl-trans-4,5-methylenenona-decanoic acid, Semiplenamide F.

Conclusion

The key differential microbiota genera and differential microbial metabolites may become important targets for the treatment of RA and provide the theoretical basis for exploring the pathogenesis of RA.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240296536240603112525
2024-10-28
2025-12-25
Loading full text...

Full text loading...

References

  1. McInnesI.B. SchettG. The pathogenesis of Rheumatoid arthritis.N. Engl. J. Med.2011365232205221910.1056/NEJMra1004965 22150039
    [Google Scholar]
  2. SmolenJ.S. AletahaD. McInnesI.B. Rheumatoid arthritis.Lancet2016388100552023203810.1016/S0140‑6736(16)30173‑8 27156434
    [Google Scholar]
  3. BurmesterG.R. PopeJ.E. Novel treatment strategies in Rheumatoid arthritis.Lancet2017389100862338234810.1016/S0140‑6736(17)31491‑5 28612748
    [Google Scholar]
  4. PanH.D. XiaoY. WangW.Y. RenR.T. LeungE.L.H. LiuL. Traditional chinese medicine as a treatment for Rheumatoid arthritis: From empirical practice to evidence-based therapy.Engineering20195589590610.1016/j.eng.2019.01.018
    [Google Scholar]
  5. ZhangD. LyuJ. ZhangB. ZhangX. JiangH. LinZ. Comparative efficacy, safety and cost of oral Chinese patent medicines for rheumatoid arthritis: a Bayesian network metaanalysis.BMC Complement Med Ther20202021010.1186/s12906‑020‑03004‑4
    [Google Scholar]
  6. GuoD. LvJ. ChenX. Study of miRNA interactome in active rheumatoid arthritis patients reveals key pathogenic roles of dysbiosis in the infection-immune network.Rheumatology20216031512152210.1093/rheumatology/keaa369 32910145
    [Google Scholar]
  7. KhannaS. Vazquez-BaezaY. GonzálezA. Changes in microbial ecology after fecal microbiota transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel disease.Microbiome2017515510.1186/s40168‑017‑0269‑3 28506317
    [Google Scholar]
  8. LinL. ZhangJ. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.BMC Immunol.2017181210.1186/s12865‑016‑0187‑3 28061847
    [Google Scholar]
  9. UchiyamaK. NaitoY. TakagiT. Intestinal microbiome as a novel therapeutic target for local and systemic inflammation.Pharmacol. Ther.201919916417210.1016/j.pharmthera.2019.03.006 30877020
    [Google Scholar]
  10. DingX. LiuZ. LiuY. Comprehensive evaluation of the mechanism of Gastrodia elata Blume in ameliorating cerebral ischemia-reperfusion injury based on integrating fecal metabonomics and 16S rDNA sequencing.Front. Cell. Infect. Microbiol.202212102662710.3389/fcimb.2022.1026627
    [Google Scholar]
  11. XuB. YangZ. ZhangX. 16S rDNA sequencing combined with metabolomics profiling with multi-index scoring method reveals the mechanism of salt-processed Semen Cuscuta in Bushen Antai mixture on kidney yang deficiency syndrome.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2023121612360210.1016/j.jchromb.2023.123602 36652816
    [Google Scholar]
  12. AgusA. ClémentK. SokolH. Gut microbiota-derived metabolites as central regulators in metabolic disorders.Gut20217061174118210.1136/gutjnl‑2020‑323071 33272977
    [Google Scholar]
  13. PickardJ.M. ZengM.Y. CarusoR. NúñezG. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease.Immunol. Rev.20172791708910.1111/imr.12567 28856738
    [Google Scholar]
  14. ScherJ.U. SczesnakA. LongmanR.S. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis.eLife20132e0120210.7554/eLife.01202 24192039
    [Google Scholar]
  15. MaedaY. KurakawaT. UmemotoE. Dysbiosis contributes to arthritis development via activation of autoreactive T Cells in the intestine.Arthritis Rheumatol.201668112646266110.1002/art.39783 27333153
    [Google Scholar]
  16. PaulA.K. PaulA. JahanR. Probiotics and amelioration of rheumatoid arthritis: Significant roles of Lactobacillus casei and Lactobacillus acidophilus.Microorganisms202195107010.3390/microorganisms9051070 34065638
    [Google Scholar]
  17. LarsenJ.M. The immune response to Prevotella bacteria in chronic inflammatory disease.Immunology2017151436337410.1111/imm.12760 28542929
    [Google Scholar]
  18. ChenL. LuW. WangL. Metabolite discovery through global annotation of untargeted metabolomics data.Nat. Methods202118111377138510.1038/s41592‑021‑01303‑3 34711973
    [Google Scholar]
  19. EmX.Y. Guide to metabolomics analysis: A bioinformatics workflow.Metabolites202212435710.3390/metabo12040357
    [Google Scholar]
  20. GasalyN. de VosP. HermosoM.A. Impact of bacterial metabolites on gut barrier function and host immunity: A focus on bacterial metabolism and its relevance for intestinal inflammation.Front. Immunol.20211265835410.3389/fimmu.2021.658354 34122415
    [Google Scholar]
  21. LiW. MaoX. WangX. Disease-modifying anti-rheumatic drug prescription baihu-guizhi decoction attenuates rheumatoid arthritis via suppressing toll-like receptor 4-mediated NLRP3 inflammasome activation.Front. Pharmacol.20211274308610.3389/fphar.2021.743086 34675809
    [Google Scholar]
  22. LiW. WangK. LiuY. A novel drug combination of mangiferin and cinnamic acid alleviates rheumatoid arthritis by inhibiting TLR4/NFκB/NLRP3 activation-induced pyroptosis.Front. Immunol.20221391293310.3389/fimmu.2022.912933 35799788
    [Google Scholar]
  23. JiS. YouY. PengB. Multi-omics analysis reveals the metabolic regulators of duodenal low-grade inflammation in a functional dyspepsia model.Front. Immunol.20221394459110.3389/fimmu.2022.944591 36091013
    [Google Scholar]
  24. SchrammC. KriegsmannJ. ProtschkaM. Susceptibility to collagen-induced arthritis is modulated by TGFβ responsiveness of T cells.Arthritis Res. Ther.200462R114R11910.1186/ar1039 15059274
    [Google Scholar]
  25. RathiB. BodhankarS. MohanV. ThakurdesaiP. Ameliorative effects of a polyphenolic fraction of Cinnamomum zeylanicum L. bark in Animal models of inflammation and Arthritis.Sci. Pharm.201381256758910.3797/scipharm.1301‑16 23833722
    [Google Scholar]
  26. XueM. LiangH. JiX. Fucoidan prevent murine autoimmune diabetes via suppression TLR4-signaling pathways, regulation DC/Treg induced immune tolerance and improving gut microecology.Nutr. Metab.20191618710.1186/s12986‑019‑0392‑1 31889967
    [Google Scholar]
  27. WangQ. ChenB. ShengD. Multiomics analysis reveals aberrant metabolism and immunity linked gut microbiota with insomnia.Microbiol. Spectr.2022105e00998e2210.1128/spectrum.00998‑22 36190400
    [Google Scholar]
  28. LiuX. ZouQ. ZengB. FangY. WeiH. Analysis of fecal Lactobacillus community structure in patients with early Rheumatoid arthritis.Curr. Microbiol.201367217017610.1007/s00284‑013‑0338‑1 23483307
    [Google Scholar]
  29. BaiY. LiY. MarionT. Resistant starch intake alleviates collagen-induced arthritis in mice by modulating gut microbiota and promoting concomitant propionate production.J. Autoimmun.202111610256410.1016/j.jaut.2020.102564 33203617
    [Google Scholar]
  30. WellsP.M. AdebayoA.S. BowyerR.C.E. Associations between gut microbiota and genetic risk for Rheumatoid arthritis in the absence of disease: a cross-sectional study.Lancet Rheumatol.202027e418e42710.1016/S2665‑9913(20)30064‑3 33345197
    [Google Scholar]
  31. MoenA.E.F. LindstrømJ.C. TannaesT.M. The prevalence and transcriptional activity of the mucosal microbiota of ulcerative colitis patients.Sci. Rep.2018811727810.1038/s41598‑018‑35243‑4
    [Google Scholar]
  32. HanP. LiL.S. WangZ.X. Multi-omics analysis provides insight into the possible molecular mechanism of hay fever based on gut microbiota.Engineering20221511512510.1016/j.eng.2021.03.013
    [Google Scholar]
  33. MoenK. BrunJ.G. ValenM. Synovial inflammation in active Rheumatoid arthritis and Psoriatic arthritis facilitates trapping of a variety of oral bacterial DNAs.Clin. Exp. Rheumatol.2006246656663 17207381
    [Google Scholar]
  34. Martinez-MartinezR.E. Abud-MendozaC. Patiño-MarinN. Rizo-RodríguezJ.C. LittleJ.W. Loyola-RodríguezJ.P. Detection of periodontal bacterial DNA in serum and synovial fluid in refractory Rheumatoid arthritis patients.J. Clin. Periodontol.200936121004101010.1111/j.1600‑051X.2009.01496.x 19929953
    [Google Scholar]
  35. FeldmannM. MainiS.R.N. Role of cytokines in Rheumatoid arthritis: an education in pathophysiology and therapeutics.Immunol. Rev.2008223171910.1111/j.1600‑065X.2008.00626.x 18613827
    [Google Scholar]
  36. WangH. LinetskyM. GuoJ. YuA.O. SalomonR.G. Metabolism of 4-hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone by retinal pigmented epithelial cells.Chem. Res. Toxicol.20162971198121010.1021/acs.chemrestox.6b00153 27355557
    [Google Scholar]
  37. Di MinnoM.N.D. NapolitanoM. GiuffridaA.C. Diagnosis and treatment of chronic synovitis in patients with haemophilia: consensus statements from the Italian Association of Haemophilia Centres.Br. J. Haematol.2022196487188310.1111/bjh.17919 34923621
    [Google Scholar]
  38. GaoY. WuS. Comprehensive analysis of the phospholipids and phytosterols in Schisandra chinensis oil by UPLC-Q/TOF- MSE.Chem. Phys. Lipids2019221152310.1016/j.chemphyslip.2019.03.003 30853340
    [Google Scholar]
  39. XieC. ZhangZ. YangM. Lactiplantibacillus plantarum AR113 exhibit accelerated liver regeneration by regulating gut microbiota and plasma glycerophospholipid.Front. Microbiol.20221280047010.3389/fmicb.2021.800470 35154031
    [Google Scholar]
  40. ShindouH. HishikawaD. HarayamaT. EtoM. ShimizuT. Generation of membrane diversity by lysophospholipid acyltransferases.J. Biochem.20131541212810.1093/jb/mvt048 23698096
    [Google Scholar]
  41. AilteI. LingelemA.B.D. KavaliauskieneS. Addition of lysophospholipids with large head groups to cells inhibits Shiga toxin binding.Sci. Rep.2016613033610.1038/srep30336 27458147
    [Google Scholar]
  42. El AidyS. DerrienM. AardemaR. Transient inflammatory-like state and microbial dysbiosis are pivotal in establishment of mucosal homeostasis during colonisation of germ-free mice.Benef. Microbes201451677810.3920/BM2013.0018 24322881
    [Google Scholar]
  43. FuchsB. SchillerJ. WagnerU. HäntzschelH. ArnoldK. The phosphatidylcholine/lysophosphatidylcholine ratio in human plasma is an indicator of the severity of Rheumatoid arthritis: Investigations by 31P NMR and MALDI-TOF MS.Clin. Biochem.2005381092593310.1016/j.clinbiochem.2005.06.006 16043165
    [Google Scholar]
  44. LiuP. ZhuW. ChenC. The mechanisms of lysophosphatidylcholine in the development of diseases.Life Sci.202024711744310.1016/j.lfs.2020.117443 32084434
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240296536240603112525
Loading
/content/journals/cmm/10.2174/0115665240296536240603112525
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test